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This special collection of papers is based on some of the invited presentations at the Fifth U.S.-Japan Symposium on Flow S
and Modeling that was held on March 29–31, 2000 at Rice University in Houston, TX. A large number of the other invited pap
be published in a special issue of theInternational Journal of Computational Fluid Dynamics.

The Symposium was sponsored by the Rice University George R. Brown School of Engineering and the Department of Me
Engineering and Materials Science. The Organizing Committee consisted of Mutsuto Kawahara~Chuo University!, Tayfun Tezduyar
~Rice University!, and Thomas Hughes~Stanford University!.

The topics covered in this special collection of papers include determination of finite element stabilization parameters an
scales; extended finite element techniques based on level set functions applied to two-fluid flows; finite element flow solvers
hydrodynamics applications; numerical solutions of Cauchy-Riemann equations; hierarchical divergence-free bases applied t
late flows; aerodynamic interactions between parachutes; mesh moving techniques; and fluid-particle interactions.

We would like to thank the authors for the effort in preparing their contribution and for meeting the deadline. We also would
thank those whom we asked for help in reviewing these papers.

Tayfun E. Tezduyar
Rice University

Associate Editor

Thomas J. R. Hughes
Stanford University

Guest Editor
May 2002
Copyright © 2003 by ASMEJournal of Applied Mechanics JANUARY 2003, Vol. 70 Õ 1
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Stabilization Parameters and
Smagorinsky Turbulence Model
For the streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin
mulations for flow problems, we present in this paper a comparative study of the st
zation parameters defined in different ways. The stabilization parameters are cl
related to the local length scales (‘‘element length’’), and our comparisons include
rameters defined based on the element-level matrices and vectors, some earlier defi
of element lengths, and extensions of these to higher-order elements. We also comp
numerical viscosities generated by these stabilized formulations with the eddy vis
associated with a Smagorinsky turbulence model that is based on element length s
@DOI: 10.1115/1.1526569#
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1 Introduction
In recent decades, we have seen a substantial interest in

emphasis on using stabilized formulations in flow simulation a
modeling with the finite element method. Streamline-upwin
Petrov-Galerkin~SUPG! formulation for incompressible flows
@1#, SUPG formulation for compressible flows,@2#, Galerkin/least-
squares~GLS! formulation, @3#, and pressure-stabilizing/Petrov
Galerkin ~PSPG! formulation for incompressible flows,@4# are
some of the most significant stabilized formulations that fou
usage in a wide range of applications. Many real-world flow pro
lems are included among the applications that were addres
These stabilized formulations became so attractive primarily
cause they stabilize the method without introducing excessive
merical dissipation. It is in this mindful way that they preve
numerical oscillations and other instabilities in solving proble
with high Reynolds and/or Mach numbers and shocks and str
boundary layers, as well as when using equal-order interpola
functions for velocity and pressure and other unknowns. It w
pointed out in@5# that these stabilized formulations also substa
tially improve the convergence rate in iterative solution of t
large, matrix systems. Such matrix systems are solved at e
Newton-Raphson step in iterative solution of the coupled non
ear equation systems generated at every time level of a simula

The SUPG, GLS and PSPG formulations all include a stab
zation parameter that is mostly referred to in the literature as ‘‘t. ’’
In general, this parameter might involve a measure of the lo
length scale~i.e., the ‘‘element length’’! and other factors such a
the local Reynolds and Courant numbers. Various element len
and ts were proposed for the SUPG formulation, starting w
those proposed in@6# and@2#, and followed by the one introduce
in @7#. More element lengths andts were prescribed for the
SUPG, GLS, and PSPG methods reported later. Some othets,
dependent upon spatial and temporal discretizations, were in
duced and tested in@8#. Later,ts which are applicable to higher
order elements were proposed in@9#.

Recently, new ways of computing thets based on the elemen
level matrices and vectors were introduced in@10#. These new
definitions are expressed in terms of the ratios of the norms of
relevant matrices or vectors. They automatically take into acco
the local length scales, advection field, and the element-level R

Contributed by the Applied Mechanics Division of theTHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan.
2002; final revision, June 11, 2002. Associate Editor: L. T. Wheeler. Discussio
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California—Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASMEJOURNAL OF APPLIED MECHANICS.
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nolds number. Based on these definitions, at can be calculated for
each element, or even for each element node or degree-of-free
or element equation. It was also shown in@10# that thesets, when
calculated for each element, yield values quite comparable
those calculated based on the definition introduced in@7#. In con-
junction with these stabilization parameters, in@11#, a
discontinuity-capturing directional dissipation stabilization w
introduced as a potential alternative or complement to the LS
~least-squares on incompressibility constraint! stabilization. A sec-
ond element length scale based on the solution gradient was
introduced in@11#. This new element length scale would be us
together with the element length scales already defined~directly
or indirectly! in @10#. New stabilization parameters for the diffu
sive limit were introduced in@12#. These new parameters ar
closely related to the second element length scale that was in
duced in@11#. That second element length scale can be recogn
in @12# as a diffusion length scale.

In this paper we carry out a comparative investigation of
stabilization parameters and element length scales defined in
above references, as well as the element length scales defin
other work~see@6,13#!. These comparisons include extensions
all these stabilization parameters and element length scale
higher-order elements. Furthermore, we compare the nume
viscosities generated by the SUPG stabilization with the eddy
cosity introduced by a Smagorinsky turbulence model,@14#, spe-
cifically one that is based on element length scales,@15#.

2 Formulations and Stabilization Parameters

2.1 Advection-Diffusion Equation. Consider over a do-
mainV with boundaryG the following time-dependent advection
diffusion equation, written onV and;tP(0,T) as

]f

]t
1u•“f2“•~n“f!50, (1)

wheref represents the transported quantity,u is a divergence-free
advection field, andn is the diffusivity. The essential and natura
boundary conditions associated with Eq.~1! are

f5g onGg ,n•n“f5h onGh , (2)

whereGg andGh are complementary subsets of the boundaryG, n
is the unit normal vector, andg and h are given functions. A
function f0(x) is specified as the initial condition.

Given suitably defined finite-dimensional trial solution and te
function spacesS f

h andV f
h , the stabilized finite element formu

lation of Eq.~1! can be written as follows: findfhPS f
h such that

;whPV f
h :

8,
on
art-

nta
after
003 by ASME Transactions of the ASME
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whS ]fh

]t
1uh

•“fhDdV1E
V
“wh

•n“fhdV2E
Gh

whhdG

1(
e51

nel E
Ve

tSUPGu
h
•“whS ]fh

]t
1uh

•“fh2“•~n“fh! DdV

50. (3)

Herenel is the number of elements,Ve is the domain for elemen
e, andtSUPG is the SUPG stabilization parameter.

With the notationb:*Ve( . . . )dV:bV denoting the element
level matrix b and element-level vectorbV corresponding to the
element-level integral*Ve( . . . )dV. The element-level matrice
and vectors are defined as follows:

m: E
Ve

wh
]fh

]t
dV :mV , (4)

c: E
Ve

whuh
•“fhdV :cV , (5)

k: E
Ve
“wh

•n“fhdV :kV , (6)

k̃: E
Ve

uh
•“whuh

•“fhdV : k̃V , (7)

c̃: E
Ve

uh
•“wh

]fh

]t
dV : c̃V . (8)

From @10#, the element-level Reynolds and Courant numb
can be written as

Re5
iuhi2

n

ici

i k̃i
, (9)

Cru5
Dt

2

ici
imi

, (10)

Crn5
Dt

2

iki
imi

, (11)

Crñ5
Dt

2
tSUPG

i k̃i
imi

, (12)

whereibi is the norm of matrixb. Also from @10#, we write the
components of the element-matrix-basedtSUPG:

tS15
ici

i k̃i
, (13)

tS25
Dt

2

ici

i c̃i
, (14)

tS35tS1Re5S ici

i k̃i
D Re, (15)

and the construction oftSUPG:

tSUPG5S 1

tS1
r

1
1

tS2
r

1
1

tS3
r D 2

1
r

. (16)

We note thattS1, tS2, andtS3 are the limiting values for, respec
tively, the advection-dominated, transient-dominated, a
diffusion-dominated cases. We should also note that Eqs.~9!–~15!
involve the ratios of matrix norms. Our experience has shown
these ratios are relatively insensitive to the definition of the no
Examples herein employ the Frobenius norm.

In @10#, the element-vector-basedtSUPG is defined as
Journal of Applied Mechanics
rs

-
nd

hat
m.

~tSUPG!V5S 1

tSV1
r

1
1

tSV2
r

1
1

tSV3
r D 2

1
r

, (17)

where

tSV15
icVi

i k̃Vi
, (18)

tSV25
icVi

i c̃Vi
, (19)

tSV35tSV1Re5S icVi

i k̃ Vi
D Re. (20)

2.2 Navier-Stokes Equations of Incompressible Flows
The Navier-Stokes equations for incompressible flows can
written as

rS ]u

]t
1u•“u2fD2“•s50 on V, (21)

“•u50 onV, (22)

wherer, u and f are the density, velocity, and the external forc
respectively. The stress tensors is defined as

s~p,u!52pI12m«~u!. (23)

Herep is the pressure,I is the identity tensor,m5rn is the vis-
cosity, n is the kinematic viscosity, and«(u) is the strain-rate
tensor:

«~u!5
1

2
~~“u!1~“u!T!. (24)

The essential and natural boundary conditions associated with
~21! are

u5g on Gg ,n•s5h on Gh , (25)

where g and h are given functions. A divergence-free veloci
field u0(x) is specified as the initial condition.

Given suitably defined finite-dimensional trial solution and te
function spaces for velocity and pressure,S u

h , V u
h , S p

h and V p
h

5S p
h , the stabilized finite element formulation of Eqs.~21!–~22!

can be written as follows: FinduhPS u
h and phPS p

h such that
;whPV u

h andqhPV p
h :

E
V

wh
•rS ]uh

]t
1uh

•“uh2fDdV

1E
V

«~wh!:s~ph,uh!dV2E
Gh

wh
•hhdG

1E
V

qh
“•uhdV

1(
e51

nel E
Ve

1

r
@tSUPGruh

•¹wh1tPSPG¹qh#

3FrS ]uh

]t
1uh

•“uhD2“•s~ph,uh!2rfGdV

1(
e51

nel E
Ve

tLSIC“•whr“•uhdV50. (26)

Here tPSPG and tLSIC are the PSPG and LSIC~least-squares on
incompressibility constraint! stabilization parameters.
JANUARY 2003, Vol. 70 Õ 3
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We now define the following element-level matrices and v
tors:

m: E
Ve

wh
•r

]uh

]t
dV :mV , (27)

c: E
Ve

wh
•r~uh

•“uh!dV :cV , (28)

k: E
Ve

«~wh!:2m«~uh!dV :kV , (29)

g: E
Ve

~“•wh!phdV :gV , (30)

gT: E
Ve

qh~“•uh!dV :gV
T , (31)

k̃: E
Ve

~uh
•“wh!•r~uh

•“uh!dV : k̃V , (32)

c̃: E
Ve

~uh
•“wh!•r

]uh

]t
dV : c̃V , (33)

g̃: E
Ve

~uh
•“wh!•“phdV :g̃V , (34)

b: E
Ve
“qh

•

]uh

]t
dV :bV , (35)

g: E
Ve
“qh

•~uh
•“uh!dV :gV , (36)

u: E
Ve
“qh

•“phdV :uV , (37)

e: E
Ve

~“•wh!r~“•uh!dV :eV . (38)

The element-level Reynolds and Courant numbers are defi
in the same way as they were defined before, given by Eqs.~9!–
~12!. The components of the element-matrix-basedtSUPG are de-
fined in the same way as they were defined before, given by
~13!–~15!. tSUPG is constructed from its components in the sam
way as it was constructed before, given by Eq.~16!. The compo-
nents of the element-vector-basedtSUPG are defined in the sam
way as they were defined before, given by Eqs.~18!–~20!. The
construction of (tSUPG)V is also the same as it was before, giv
by Eq. ~17!.

From @10#, we write the element-matrix-basedtPSPGas

tPSPG5S 1

tP1
r

1
1

tP2
r

1
1

tP3
r D 2

1
r

, (39)

where

tP15
igTi
igi

, (40)

tP25
Dt

2

igTi
ibi

, (41)

tP35tP1Re5S igTi
igi DRe. (42)

Also from @10#, the element-vector-basedtPSPGis written as

~tPSPG!V5S 1

tPV1
r

1
1

tPV2
r

1
1

tPV3
r D 2

1
r

, (43)
4 Õ Vol. 70, JANUARY 2003
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where

tPV15tP1, (44)

tPV25tPV1

igVi
ibVi

, (45)

tPV35tPV1Re. (46)

Lastly from @10#, the element-matrix-basedtLSIC and the
element-vector-basedtLSIC are given as

tLSIC5
ici
iei

, (47)

~tLSIC!V5tLSIC . (48)

For the purpose of comparison, we also define here stabiliza
parameters that are based on an earlier definition of the le
scaleh first introduced in@7#:

hUGN52iuhi S (
a51

nen

uuh
•“Nau D 21

, (49)

whereNa is the interpolation function associated with nodea. The
stabilization parameters are defined as

tSUGN15
hUGN

2iuhi
, (50)

tSUGN25
Dt

2
, (51)

tSUGN35
hUGN

2

4n
, (52)

~tSUPG!UGN5S 1

tSUGN1
2

1
1

tSUGN2
2

1
1

tSUGN3
2 D 2

1
2

(53)

~tPSPG!UGN5~tSUPG!UGN , (54)

~tLSIC!UGN5
hUGN

2
iuhiz. (55)

Herez is given as follows:

z5H S ReUGN

3 D ReUGN<3,

1 ReUGN.3,

(56)

where ReUGN5
iuhihUGN

2n .

Remark 1 The discontinuity-capturing directional dissipatio
(DCDD) stabilization was introduced in@11# as a potential alter-
native or complement to the LSIC stabilization. As part of t
DCDD stabilization, a second element length scale that is ba
on the solution gradient was also introduced in@11#.

Remark 2 New definitions for the diffusion-dominated limits
the SUPG and PSPG stabilization parameters were introduce
@12#. These new definitions are closely related to the second
ment length scale that was first introduced in@11# and later em-
ployed in@12# as a diffusion length scale.

Remark 3 For the advection-dominated limits of the SUP
and PSPG stabilization parameters, equivalent length scales
be defined by simply multiplying the stabilization parameter w
2iuhi .

For the comparative investigation we would like to carry o
we also provide here element length scales defined in other s
ies, based on the element shapes and advection field. For
tional convenience, we first define the following unit vector:
Transactions of the ASME
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. (57)

The element length given in@6# for a quadrilateral element can b
written as

hSA15US x21x3

2
2

x41x1

2 D •sU1US x31x4

2
2

x11x2

2 D •sU,
(58)

wherexa is the nodal coordinate vector associated with nodea.
For triangular elements, we use the following expression fr
@13#:

hSA15
1

4
@ u~x22x1!•su1u~x32x2!•su1u~x12x3!•su#. (59)

To write some of the other element lengths given in@13#, we first
define a special sign function:

SSgn~y!5H 21 y<0

11 y.0J , (60)

and the streamwise components of the nodal ‘‘radial’’ posit
vectors:

da5~xa2xo!•s, (61)

where

xo5S (
a51

nen

xaD /nen . (62)

The number of upstream and downstream element nodes ca
expressed as

nuen5(
a51

nen 1

2
~12SSgn~da!!, (63)

nden5(
a51

nen 1

2
~11SSgn~da!!. (64)

Then one of the element lengths given in@13# can be written as

hSA25S (
a51

nen 1

2
~11SSgn~da!!daD Y nden

2S (
a51

nen 1

2
~12SSgn~da!!daD Y nuen. (65)

Another one of the element lengths given in@13# can be written as

hSA35max~d1 ,d2 , . . .dnen
!2min~d1 ,d2 , . . .dnen

!. (66)

A third element length given in@13# is the node-based version o
the one given by Eq.~65!:

~hSA4!a5Uda2S (
a51

nen 1

2
~12SSgn~da!!daD Y nuenU . (67)

2.3 Streamline-UpwindÕPetrov-Galerkin „SUPG… Stabili-
zation and Smagorinsky Turbulence Viscosities. To compare
the numerical viscosities generated by the SUPG stabiliza
with the eddy viscosity introduced by a Smagorinsky turbulen
model, we first write an equivalent ‘‘viscosity’’ based on th
SUPG stabilization parameter:

nSUPG5tSUPGiuhi2. (68)

The eddy viscosity introduced by a Smagorinsky turbulen
model that is based on the element length scales@15# is written as

nSMAG5~0.1hSMAG!2~2«~uh!:«~uh!!1/2, (69)
Journal of Applied Mechanics
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where hSMAG is the square-root~or cube-root! of the area~or
volume! of the element.

4 Comparisons

3.1 Element Length Comparisons. We first inspect in one
dimension the functions (Na) and (Na1tSUGN1u

h
•“Na), which

we will call, respectively, ‘‘Galerkin function’’ and ‘‘SUPG func-
tion.’’ Figs. 1–3 show, for linear, quadratic, and cubic elemen
these functions after they are assembled for a global node. W
the Galerkin functions are continuous across element bounda
the SUPG perturbations to them are not. For a linear element
perturbation is constant over an element, but for quadratic
cubic elements it is not. The same thing can be said for the
ment lengthhUGN ~see Fig. 4!. When averaged over an elemen
and normalized by the element length for a linear element,
normalized average values ofhUGN for quadratic and cubic ele
ments are approximately 0.52 and 0.30. The normalized ave
values of the equivalent length scale computed fromtS1 ~with the
1-norm of the element level matrices! for quadratic and cubic
elements are approximately 1/4 and 1/6.

Stabilization parameters and element lengths based on diffe
definitions, including those based on element-level matrices
vectors and (tSUPG)UGN and (tPSPG)UGN , were calculated and
tested in@10#. The matrix norm used in@10# was the 1-norm. The
tests were carried out for several shapes of bilinear quadrilat

Fig. 1 For linear elements, Galerkin „broken line … and SUPG
„solid line … functions, assembled for a global node A

Fig. 2 For quadratic elements, Galerkin „broken line … and
SUPG „solid line … functions, assembled for a global node A. For
nodes at element boundaries „top … and interiors „bottom ….
JANUARY 2003, Vol. 70 Õ 5
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and linear triangular elements, withiui51.0 andDt51.0, and as
function of the advection direction. The test flow computatio
reported in@10# show that the definitions based on the eleme
level matrices and vectors perform well.

Here, element lengths are calculated and compared for lin
quadratic and cubic elements in two-dimensions, based on fou
the definitions given in this paper: the equivalent length sc
computed fromtS1 ~with the Frobenius norm of the element lev
matrices!, hUGN , hSA1, andhSA2. Definitions that depend on the
location within an element are evaluated at the origin of the na
ral coordinate system for quadrilateral elements and at the c

Fig. 3 For cubic elements, Galerkin „broken line … and SUPG
„solid line … functions, assembled for a global node A. For nodes
at element boundaries „top …, upstream interiors „middle …, and
downstream interiors „bottom ….

Fig. 4 Variation of h UGN within linear and higher-order one-
dimensional elements
6 Õ Vol. 70, JANUARY 2003
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troid for triangular elements. Both Lagrangian and serendip
quadrilaterals have been evaluated. The element lengths c
lated based on the definitions listed above are shown in Figs. 5
The element shape is indicated by a dashed line and the node
indicated by a circled cross. Each closed curve represents a
ferent element length definition. For each advection direction,
element length is that of a line through the element center, par
to the advection, bounded by its intersections with the clo
curve. In other words, let us imagine a line passing through
center and find its two intersection points with the closed cur
Then the distance between those two points is the element le
in that advection direction. Although the results displayed here
tS1 are based on the Frobenius norm of the element level matri
we see little difference between thetS1s calculated with different
matrix norms. From Figs. 5–7, we note that the difference
tween different element length definitions is more pronounced
higher-order elements. In general, the element length decre
with the increase in the order of the element. This observa
is consistent with what we see forhUGN in one dimension~see Fig.
4!.

3.2 Comparison of Streamline-UpwindÕPetrov-Galerkin
„SUPG… Stabilization and Smagorinsky Turbulence Viscosi-
ties. Flow past a cylinder at Re53,000 and Re550,000 are used
as test problems to compare the numerical viscosities gener
by the SUPG stabilization with the numerical viscosity introduc
by a Smagorinsky turbulence model. The stabilization parame

Fig. 5 For a square Lagrangian element, the element length
calculated with different definitions and as function of advec-
tion direction
Transactions of the ASME
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are computed as given by Eqs.~49!–~56!, but with the tSUGN2
component dropped. When calculating ReUGN used in Eq.~56!,
the kinematic viscosityn is augmented withnSMAG . Velocity and
pressure are both interpolated with bilinear functions. A mesh w
14,960 nodes and 14,700 quadrilateral elements is emplo
Close to the cylinder surface, the radial distance between the m
points ~normalized by the cylinder diameter! is 2.531024 at Re
53,000 and 531025 at Re550,000. A close-up view of the mes
for the latter case is shown in Fig. 8. In each case, the comp
tions are carried out until a developed unsteady solution is
tained. Then, based on the velocity field at a given insta
nSMAG /nSUPG is calculated.

Figure 9 shows the vorticity andnSMAG /nSUPG for Re53,000.
Shades of gray represent values ofnSMAG /nSUPG ranging from
0.00~white! to 0.05, with black indicating 0.05 and higher value
Except for the regions in black,nSMAG /nSUPG is less than 5%.
Because Fig. 9 shows pictures zoomed into a small part of the
domain, one can also infer that most of the full domain is mark
in white, and therefore for those regions the ratio is essenti
0%. As additional information, we would like to note that whe
we inspect the overall data fornSMAG /nSUPG, we see that in mos
of the domain it is less than 1%. The turbulence model is ac
only in regions with significant vorticity. Except for a very few
points in the near wake,nSUPG dominatesnSMAG . When a wall
damping function is used with the turbulence model,nSMAG be-
comes even smaller. Similar observations can be made for
550,000 ~see Fig. 10!. It is important to remember that while

Fig. 6 For a square serendipity element, the element length
calculated with different definitions and as function of advec-
tion direction
Journal of Applied Mechanics
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nSMAG is an isotropic viscosity,nSUPG is the maximum value of a
directional viscosity, with the maximum value attained in the a
vection direction. However, in most of the domainnSMAG /nSUPG
is so small that, except for directions nearly perpendicular to
advection direction,nSMAG will still be substantially less than the
direction-adjusted value ofnSUPG. It is also important to remem-
ber thatnSUPGis generated by a residual-based formulation, wh
nSMAG is not.

Fig. 7 For an equilateral triangular element, the element
length calculated with different definitions and as function of
advection direction

Fig. 8 Flow past a cylinder. A close-up view of the finite ele-
ment mesh with 14,960 nodes and 14,700 elements.
JANUARY 2003, Vol. 70 Õ 7
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4 Concluding Remarks
For the SUPG and PSPG formulations for flow problems,

presented a comparative study of the element lengths~i.e., local
length scales! defined in different ways. These element lengths
closely related to the stabilization parameters used in the SU
and PSPG formulations. Our comparisons included parameter
fined based on the element-level matrices and vectors, some
lier definitions of element lengths, and extensions of these
higher-order elements. This comparative study shows that the
ference between different element length definitions is more p
nounced for higher-order elements, and the element length
creases with the increase in the order of the element. We be
that the parameter definitions based on the element-level mat
and vectors provide a good, general framework that automatic
takes into account the local length scales and the advection fi
Therefore these stabilization parameter definitions and the co
sponding element length definitions are what we favor. We a
compared, based on some test flow computations, the nume
viscosities generated by the SUPG stabilization with the eddy
cosity associated with a Smagorinsky turbulence model. Th
test computations show that, in most of the flow domain,
SUPG viscosity is much larger the Smagorinsky viscosity. It
clear that better understanding is needed for the performanc
the stabilized formulations with higher-order element and also
the interaction between the stabilized formulations and the S
gorinsky turbulence model.

Fig. 9 Flow past a cylinder at Re Ä3,000. Vorticity „top … and
nSMAG ÕnSUPG with „middle … and without „bottom … the wall func-
tion in computation of nSMAG . In displaying nSMAG ÕnSUPG ,
shades of gray represent the values ranging from 0.00 „white …

to 0.05, with 0.05 and higher values indicated by black.
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An Extended Finite Element
Method for Two-Phase Fluids
An extended finite element method with arbitrary interior discontinuous gradients is
plied to two-phase immiscible flow problems. The discontinuity in the derivative o
velocity field is introduced by an enrichment with an extended basis whose gradie
discontinuous across the interface. Therefore, the finite element approximation can
ture the discontinuities at the interface without requiring the mesh to conform to
interface, eliminating the need for remeshing. The equations for incompressible flow
solved by a fractional step method where the advection terms are stabilized by a ch
teristic Galerkin method. The phase interfaces are tracked by level set functions whic
discretized by the same finite element mesh and are updated via a stabilized conse
law. The method is demonstrated in several examples.@DOI: 10.1115/1.1526599#
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1 Introduction
Two-phase flow problems are generally solved by two types

methods, interface-tracking algorithms or interface-capturing
gorithms. Interface tracking methods use a deforming mesh
grid which conforms to the interface or tracks the interface
some other explicit manner. Examples are arbitrary Euleri
Lagrangian methods,@1#, and deforming space-time finite eleme
formulations,@2,3#. In interface-capturing methods, an auxilia
function is defined on a fixed grid that describes the interfa
Some examples of interface-capturing methods are volume
fluid methods@4,5#, level set methods@6,7#, and marker and cel
methods,@8#.

The method described in this paper is an interface track
method that shares many of the advantages of interface capt
methods: A fixed mesh is used, but we employ an enriched b
that includes the discontinuities at the interface. By embedding
interface jump conditions in the finite element basis, the accur
of typical interface tracking methods is retained while remesh
is avoided. Remeshing can be quite expensive and can fail w
the interface topology is significantly altered, as when phases
together or separate.

The methodology is called the extended finite element meth
The extended finite element method was first introduced by
lytschko and Black@9# and Moës et al.@10#. A general description
of the method for modeling arbitrary discontinuities in a functi
and/or its derivatives is given by Belytschko et al.@11#. The idea
for modeling discontinuities in derivatives used here origina
from Krongauz and Belytschko@12#, who developed it in the con
text of meshless methods. The extended finite element me
was originally developed for crack problems but the methodolo
has been extended to several other problem classes. Suk
et al. @13# introduced a combined level set and discontinuous
tended finite element method to solve elastic problems involv
holes and inclusions. Wagner et al.@14# solve problems involving
particulate Stokes flow. Chessa et al.@15#, Dolbow and Merle
@16#, and Renaud and Dolbow@17# applied extended finite ele
ment method to solidification problems.
We employ the level set method to track the interface, Osher
Sethian @6,7#. The level set method is similar to pseud
concentration methods,@18,19#; it describes the location of the

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, Dec. 4, 20
final revision, Mar. 12, 2002. Associate Editor: T. E. Tezduyar. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, De
ment of Mechanics and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication in the paper itself in the ASME JOURNAL OFAPPLIEDMECHANICS.
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interface by a signed scalar distance function, generally den
asf(x,t) on the computational domain. The interface position
the set of points at which the level set field vanishes.

The extended finite element method couples naturally with
level set method. In the method proposed in this paper the
riched basis is constructed directly in terms of the level
f(x,t). Sincef(x,t) is approximated by the same finite eleme
mesh, the location of the discontinuity is expressed entirely
terms of nodal values off. Thus, as will be seen, the structure
the discontinuity and its approximation of the discontinuous fi
are expressed entirely in terms of nodal values of the velocity
level set function.

We extend the level set methods presented by Peng et al.@20#
to finite element meshes to track the phase interface. The for
lation by finite elements enhances the versatility of the method
is applicable to problems that would be difficult to solve on
structured grid, i.e., problems that require local mesh refinem
or problems involving complicated geometries and/or boundar

Finite element formulations of level set methods were first d
cussed by Barth and Sethian@21# with respect to triangulated do
mains. Since then several papers have used the level set meth
a finite element context; Rao et al.@22#, Chessa et al.@15#, and
Quecedo and Pastor@23#. However, level set methods are mo
commonly seen in finite difference schemes. This is probably
to the fact that finite difference methods are more widely used
solving the conservation law equations that are used to update
level set. Furthermore, some level set techniques rely on st
tured grids, i.e., fast marching methods. However, level set te
niques are also very robust in finite element schemes. For
ample, Peng et al.@20# present an efficient PDE-based method f
updating the level set field in a region about the interface. Th
use finite difference schemes that are directly applicable to
structured grids with no significant increase in cost or complex

The level set method has been used by Sussman et al.@24–27#
to solve two-phase incompressible flow problems with finite d
ference methods. Fedkiw et al.@28,29# have used level sets in
conjunction with ghost fluid methods to solve compressib
compressible and compressible-incompressible two-phase fl
using finite difference schemes.

The outline of this paper is as follows; in Section 2 the gove
ing equations are presented. In Section 3 we present the dis
tinuous finite element approximation for the velocity field. Th
finite element formulations for the level set update and the Nav
Stokes equations are presented in Sections 4 and 5, respect
Section 6 presents examples illustrating the accuracy and app
tion of these methods.
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2 Governing Equations
In this paper we consider isothermal incompressible two-ph

flow which is described by the following equations for bo
phases:

rS ]u

]t
1“•~u^ u!2fD2“•s50 (1)

“•u50 (2)

whereu is the velocity field,r is the fluid density,p is the hydro-
static pressure,f is an applied body force, ands is the Cauchy
stress, which is decomposed into the deviatoric stresst, and the
hydrostatic pressure as follows:

s5t2pI . (3)

For a Newtonian fluid the deviatoric stresst is given by

t52mD (4)

with the rate of deformation tensorD defined as

D5
1

2
~“u1u“ ! (5)

Substituting~2-2! into ~1!, we obtain

rS ]u

]t
1“•~u^ u! D1“p5“•~m“u!1f (6)

These equations hold over a domainV which is shown in Fig. 1.
The domainV is partitioned intoV1 , V2 whereV1 andV2 are
regions composed of fluids 1 and 2, respectively, andG int is the
interface between the two fluids. We assume that both phase
homogeneous and therefore the material properties are consta
V1 andV2 but since we solve~6! and~2! on V we considerr and
m to be functions of position and time due to the motion of t
interface. The closure ofV, ]V is partitioned intoGu and GT
which are the boundaries where velocity and traction conditi
are specified as follows:

u~x,t !5ū ;xPGu (7)

n•s~x,t !5 t̄ ;xPG t . (8)

We split the traction boundary condition into its normal and d
viatoric components

p~x,t !5 p̄ ;xPG t (9)

Fig. 1 Problem domain
Journal of Applied Mechanics
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n•t~x,t !5 t̄s ;xPG t . (10)

The vectorn is an outward unit normal toV. Assuming negligible
surface tension, no-slip and immiscible flow, the stress and ve
ity fields must satisfy the following conditions across the inte
face:

vnint•sb50 (11)

vub50 (12)

wherenint is an outward unit normal fromV1 . To track the fluid
interface we define a level set fieldf(x,t) on V such that it
conforms to the following sign convention:

f~x,t !H .0 ;xPV1

50 ;xPG int

,0 ;xPV2 .

(13)

Using this convention we can define the material properties on
entire domain as a function off

r~f!5H r1 f>0

r2 f,0
;xPV (14)

m~f!5H m1 f>0

m2 f,0
;xPV (15)

or

r~f!5r21H~f!~r12r2! ;xPV (16)

m~f!5m21H~f!~m12m2! ;xPV (17)

whereH~•! is the Heaviside function. Furthermore, we define
signed distance functiond(x,t) as

d~x,t !5 min
x̄PG int

ix2 x̄isign~nint•~x2 x̄!! (18)

and we require that initially

f~x,t50!5d~x,t50!. (19)

Since the fluids are immiscible we prohibit flow across the int
face i.e.,

]

]t
f~X,t !50 ;XPG int (20)

whereX denotes the position of a point that remains on the int
face. Expressing this condition in terms of spacial coordinates,
arrive at the standard level set evolution equation

]f

]t
1u•“f50. (21)

This equation is used to update the level set and conseque
update the interface location.

3 Enriched Finite Element With Interior Discontinu-
ous Gradient

The domain of the problem,V is subdivided into elementsVe
associated with a set of nodesxI , I 51 to n. The interpolation
function ~shape function! associated with nodeI is denoted by
NI(x) and the set of all nodes byN. Recall that the support o
NI(x), which is the area over which it is nonzero, is limited to t
elements connected to the nodeI, i.e., the support is compact. Th
support of a typical nodeI is shown in Fig. 2. Since we are
dealing with a second-order partial differential equations~6!, we
choose the shape functions to be piecewise continuously diffe
tiable, i.e.,C0(V).

The extended finite element approximation is constructed
terms of the level set function defined by~19! and the shape
functionsNI . In constructing the approximation, we distinguis
JANUARY 2003, Vol. 70 Õ 11
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the nodes whose support is intersected by the interfaceG int from
all others; this set of nodes is denoted byNenrich.

Figure 2 illustrates which nodes are enriched for a typical
ample. The enriched approximation is given by

uh~x,t !5(
I PN

NI~x!UI~ t !1 (
JPNenrich

NJ~x!~ ufh~x,t !u

2ufh~xJ ,t !u!AJ~ t ! (22)

whereUI(t) are the nodal parameters for the standard finite e
ment approximation andAJ(t) are additional nodal parameters
the enriched nodeJ. For convenience, we also write the above

uh~x,t !5(
I PN

NI~x!UI~ t !1 (
JPNenrich

NJ
enrich~x,t !AJ~ t ! (23)

where

NJ
enrich~x,t !5NJ~x!CJ~x,t ! (24)

CJ~x,t !5ufh~x,t !u2ufh~xJ ,t !u. (25)

The second term in~25! is not essential but yields the desirab
property thatuh(xI ,t)5UI(t).

We next examine the character of this approximation around
interfaceG int . Taking the gradient of~22! we obtain

“uh5(
I PN

UI~ t ! ^“NI1 (
JPNenrich

AJ~ t ! ^ ~“NJCJ1NJ“CJ!.

(26)

We next note that

“CJ5sign~f! “f5sign~f!nint (27)

Fig. 2 A typical finite element mesh with interface G int show-
ing the support of a generic node I and the enriched notes
12 Õ Vol. 70, JANUARY 2003
x-

le-
t

as

le

the

where sign~•! is the sign of the number function and second equ
ity follows from the fact thatf is distance function and therefor
u“fu51, see~18!–~19!. Substituting~27! into ~26! gives

“uh5(
I PN

UI~ t ! ^“NI1 (
JPNenrich

AJ~ t !

^ ~“NJCJ1NJsign~f!nint!. (28)

Therefore the jump inuh(x,t) across the interface is given by

v“uhb52 (
JPNenrich

NJAJ^ nint on G int (29)

and

v“uh
•nintb52 (

JPNenrich

NJAJ on G int . (30)

The magnitude of the jump depends onAI(t) and varies smoothly
along the interface as can be seen from~30! since its spacial
character results from the projection of theC0 shape functions
onto the interface. Note, that as with all piecewise continuo
finite element approximations,v“ubÞ0 on the element edges, se
@30#.

The enrichment functions for a linear two-node element in o
dimension are illustrated in Fig. 3. Each enrichment function i
product of the shape functionNI , and the corresponding enrich
ment functionC(x,t). Note that the enriched shape function
vanish at the nodes. The enrichment functions for a three-n
linear triangle are shown in Fig. 4. As can be seen, each enr

Fig. 3 Example of an enriched finite element shape function in
R1
Fig. 4 Enriched finite element shape function for a three-node linear triangular
element
Transactions of the ASME
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ment function vanishes along two of the edges. On the third e
a kink, similar to that what appears in the one-dimensional e
ment, can be seen.

The character of this enrichment is of two types. The first ty
is within the elements cut by the interface; here all nodes
enriched and the enrichment is a partition of unity@31#, so the
enrichment functionC(x,t) is reproduced exactly. The secon
type is within the elements adjacent to the fully enriched e
ments; here not all of the elements nodes are enriched. In th
partially enriched elements the enrichment provides ablendingso
that the enrichment vanishes at the edge of the support of
bisected nodes. Figure 5 illustrates which elements are of the
and second types as well as those that are not enriched. The
richment is local and the resulting system matrices are sparse

The enrichment modifies the velocity field only in the elemen
crossed by the interface and in the adjacent elements that shar
enriched nodes, see Fig. 5. In other words, only the elements
lie entirely within the supports of shape functions cut by the
terface are affected by the enrichment.

The additional degrees-of-freedomAJ can be handled by add
ing nodes to the element or increasing the number of degrees
freedom for the enriched nodes. In either case, the modificat
required in a standard finite element code are minimal.

4 Level Set Formulation
The level set function that tracks the interface is approxima

by the same mesh and shape functions that are used for the v
ity and pressure fields. However, no enrichment is needed for
level set function since it is continuously differentiable across
interface. Thus the level set approximation is given by

fh~x,t !5(
I PN

NI~x!f I~ t ! (31)

wheref I(t)5f(xI ,t) are the nodal values of the level set. W
follow the level set update method outlined in Peng et al.@20#. In
this form Eq.~21! is modified as follows:

]f

]t
1c~f!u•“f50 (32)

wherec(f) is a cutoff function that is defined by

c~f!5H 1 if ufu<d

~ ufu2g!2~2ufu1g23d!/~g2d! if d,ufu<g

0 if ufu.g
(33)

Fig. 5 Enrichment for a typical finite element mesh, showing
elements that are fully enriched, partially enriched, and unen-
riched. Also illustrated is the boundary where the enrichment
vanishes.
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whered is the cutoff distance from the interface andg is transition
distance. A characteristic method is used to stabilize the non-s
adjoint term,@32#. This, in conjunction with a forward Euler tem
poral discretization, yields the following update equation:

fn112fn52DtFc~f!u•“f2
Dt

2
“•~c2~f!~u^ u!•“f!GU

t5tn

(34)

where the superscript indicates the time-step number andDt is the
time-step. Using the standard Galerkin procedure, i.e., the test
trial functions,fh(x,t) andch(x) are in the same finite elemen
function spaceVf

h , we get the following variational form of the
update equation:

E
V

c~fn112fn!dV52DtE
V

cc~f!u•“fdV1
Dt2

2 E
V
“c

•~c2~f!u^ u!•“fdV. (35)

Because the hyperbolic nature of~21!, a nonlinear viscous shock
capturing operatorBsc(f) is added, see Hansbo@33#. This mini-
mizes the oscillations that may occur at discontinuities in cur
ture on the front. This operator is given by

Bsc~f!5E
V

nsc~f!~“c•“f!dV. (36)

wherensc is a nonlinear viscosity defined as

nsc~f!5hessc

U]f

]t
1u•“fU

uu•“fu1he . (37)

ssc is a parameter used to control the degree of added visco
~typically ssc'0.1) andhe is a measure of elemente. The fol-
lowing variational formulation is used to update the level set fie

E
V

c~fn112fn!dV52DtE
V

cc~f!u•“fndV1
Dt2

2 E
V
“c

•~c2~f!u^ u!•“fndV1E
V

nsc“c

•“fndV. (38)

Because of the cutoff function, only the level set in the regi
ufu<d needs to be updated in time. This significantly minimiz
the computational overhead.

For some velocity fieldsf may deviate significantly from a
signed distance function after even a few time-steps. This m
cause high gradients inf near the interface and introduce signifi
cant error in the interface position. These errors cause a los
conservation of the phase volumes. This has often been cited
shortcoming of the level set method and many interface-captu
methods,@34,35#. Extensional velocity fields and reinitializatio
are used to circumvent these difficulties,@7,25,26,36#.

5 Navier-Stokes Formulation
We solve the Navier-Stokes equations by a characteristic ba

split CBS algorithm based on the projection method of Cho
@37# as described in Zienkiewicz and Codina@38# and Zienk-
iewicz and Taylor@32#. In this method an auxiliary velocity field
u* is introduced to uncouple the momentum and continuity eq
tions; a characteristic method is used to stabilize the non-s
adjoint operators in~6!. The characteristic based split formulatio
of ~6! can be written as
JANUARY 2003, Vol. 70 Õ 13
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Fig. 6 Initial configuration of interstitial fluid problem
t

t

ent
u* 2un5
Dt

r F2“•~ru^ u!1“•t2rf1
Dt

2
~u•“ !

3~“•~ru^ u!1rf!GU
t5tn

. (39)

The final velocity field is ‘‘corrected’’ by the pressure incremen
so that is divergence free

un112u* 5
Dt

r
“pn11. (40)

By taking the divergence of~40! and recalling that the velocity a
time tn11 must be divergence free~i.e., Eq.~2!! we arrive at the
following Poisson equation for the pressure:

Dt¹2pn115“•~ru* !. (41)

Applying the standard Galerkin procedure on~39! for the frac-
tional velocity fieldu* we get the following:

E
V

W•~u* 2un!dV5
Dt

r F2E
V

W•“•~ru^ u!dV

2E
V

~“W!:tdV1E
G t

W•~n•t!dS

2E
V

W•~rf!dV2
Dt

2 E
V

~“•~u^ W!!

•~“•~ru^ u!1rf!dVGU
t5tn

(42)
ANUARY 2003
whereW is a test function. Similarly, the weak form for~41! is
obtained by multiplying by the pressure test functionV.

E
V
“V•“pn11dV5

1

Dt S EGu

V“~pn112pn!•ndS1E
V
“V

•~ru* !dV2E
Gu

V~ru* !•ndSD . (43)

To eliminate the boundary pressure terms we use~40! and require
that u* 5u on Gu yielding

E
V
“V•“pn11dV5

1

Dt S EV
“V•~ru* !dV2E

Gu

V~ru* !•ndSD
(44)

and for the velocity correction Eq.~41!

E
V

W•~run11!dV5E
V

W•~ru* !dV1DtE
V

W•“pn11dV.

(45)

For the derivation of the finite element equations it is conveni
to write the enriched approximation as

uh~x,t !5N̄~x,f!Ū~ t ! (46)

where

N̄~x,f!5@N1 , N2 . . . Nn , N1c1 , N2c2 . . . Nne
cne

#

(47)

Ū~ t !5@U1 , U2 . . . Un , A1 , A2 . . . Ane
#T. (48)
Fig. 7 Phase interface at several time-steps for interstitial fluid problem
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The finite element approximations are

W5N̄n11W (49)

un5N̄nŪn (50)

u* 5N̄n11Ū* (51)

V5NV (52)

pn5Npn (53)

where the superscriptn on N̄n indicates that enriched shape fun
tions are a function offn(x,t) ~due to the moving enrichment!.
Substituting~50!–~53! into Eq.~42!–~45! we obtain the following
finite element equations:

M* Ū* 5MŪn2DtFCŪn1KŪn2fn2
Dt

2
~KuŪn1fs

n!G (54)

DtK ppn115GuŪ* 2fp (55)

Ūn115Ū* 2DtM21GTpn11 (56)

where

M* 5E
V

~N̄n11!TrnN̄ndV (57)

M5E
V

~N̄n11!TrnN̄n11dV (58)

C5E
V

~N̄n11!T~“~rnunN̄n!!dV (59)

K5E
V

~Bn11!TmnS I02
2

3
mmTDBndV (60)

Ku52
1

2 EV
~“T~unN̄n11!!Trn~“T~unN̄n!!dV (61)

f5E
V

N̄n11rgdV1E
G t

N̄n11tsdS (62)

K p5E
V

~“N!T
“NdV (63)

Gu5E
V

~“N̄n!TrnNndV (64)

fp5E
G t

NTn•un11dS (65)

G5E
V

~“N̄n11!TN̄dV. (66)

In the aboveB is the gradient matrix defined as

Bn5@B1
n B2

n
¯ Bn

n#T (67)

BI
n53

]N̄I
n

]x1

0

0
]N̄I

n

]x2

]N̄I
n

]x2

]N̄I
n

]x1

4 (68)
Journal of Applied Mechanics
-

I05F 2

2

1
G (69)

m5@1 1 0#T. (70)

It should be noted that when evaluating the gradient of the
riched shape functionsN̄ the chain rule must be employed due
the spacial dependence of the level set fieldf, so

Fig. 8 Rising bubble problem

Fig. 9 Phase interface for several time-steps for rising bubble
problem
JANUARY 2003, Vol. 70 Õ 15
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“N̄I5“NIc I1NI“c I . (71)

The update of the fluid/level set system is as follows; givenun,
pn, andfn we first explicitly update the level set as described
Section 4 to obtainf(x,tn11) then solve~54! for u* then~55! for
pn11 and finally ~5! for un11.

It should be noted that when evaluating these discontinu
finite element matrices and vectors a quadrature rule must be
that will correctly integrate over elements where the discontinu
exists. Quadrature rules for these enriched methods are desc
in Chessa et al.@15# Moës et al.@10#, and Sukumar et al.@13#.

6 Example Problems

6.1 Interstitial Fluid in a ‘‘Jogged’’ Channel. Consider
the problem of a interstitial fluid flowing through a ‘‘jogged’’
channel as shown in Fig. 6 at the initial timet50. The mesh is
completely unstructured, as can be seen from Fig. 6. An i
velocity is prescribed at the left-hand side, no slip boundary c
ditions are prescribed on the channel walls and a constant pre
condition is set on the right edge. The fluid is initially at rest a
is slowly ramped up to a steady-state value of 1.0. The stea
state velocity field and interfaces are shown at several time-s
in Fig. 7. Note that the interface remains quite smooth, except
some kinking in the upper-left hand corner in the final time-st

6.2 Bubble Rising to a Free Surface. Next we consider the
problem of an immersed droplet of a secondary phase rising
denser primary phase toward a free surface as shown in Fi
Slip boundary conditions are given on the sides and the bot
edges and a constant pressure is prescribed at the top edge
computational domain. The Reynolds number inside the bubb
320 and for the surrounding fluid is 465. The results are qua
tively similar to the exact solution for a spherical droplet in
infinite media as given by Hadamard@39#. The interface is shown
for several time-steps in Fig. 9.

It should be noted that the level set method has no difficu
handling the large deformation of the interface and drastic to
logical changes associated with evolution of the bubble.

7 Conclusions
A method has been presented for modeling the evolution

discontinuous gradients in finite element methods. This met
has been applied to two-phase flow problems in conjunction w
the level set method to track phase interfaces. The method
employ to introduce the discontinuity in the gradient of the e
ment basis thru a partition of unity. It can accurately resolve d
continuities in the velocity gradient at the interface without
meshing, even for materials with significantly differin
viscosities. It is capable of handling highly deformed interfac
and interfaces where the topology significantly changes in a c
sistent and straightforward manner.

The evolution of the interface in time is tracked by a level
method. A finite element formulation has been developed for
level set method. The finite element formulation allows the le
set method to easily be applied to problems where mesh re
ment is needed and problems with complex geometries an
boundaries where a structured grid would be difficult. In contr
to methods such as the volume of fluids methods, the level
method has an explicit representation of the interface, and in
trast to methods involving indicator functions the level set meth
varies smoothly over the interface.

Both the strength of the discontinuity and its location are
scribed by nodal values. The location is described by the no
values of the level setf I , the strength of the discontinuity by th
magnitude of the enrichmentAI . This eliminates a need for geo
metric construction of the interface, so the extension to three
mensions can be readily accomplished.
16 Õ Vol. 70, JANUARY 2003
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@10# Moës, N., Dolbow, J., and Belytschko, T., 1999, ‘‘A Finite Element Method f
Crack Growth Without Remeshing,’’ Int. J. Numer. Methods Eng.,46, pp.
131–150.

@11# Belytschko, T., Moe¨s, N., Usui, S., and Parimi, C., 2001, ‘‘Arbitrary Discon
tinuities in Finite Element,’’ Int. J. Numer. Methods Eng.,50~4!, pp. 993–
1013.

@12# Krongauz, Y., and Belytschko, T., 1997, ‘‘EFG Approximation With Disco
tinuous Derivatives,’’ Int. J. Numer. Methods Eng., accepted for publicatio

@13# Sukumar, N., Chopp, D. L., Moe¨s, N., and Belytschko, T., 2000, ‘‘Modeling
Holes and Inclusions by Level Sets in the Extended Finite Element Metho
Comput. Methods Appl. Mech. Eng., submitted for publication.

@14# Wagner, G. J., Moe¨s, N., Liu, W. K., and Belytschko, T., 2001, ‘‘The Extende
Finite Element Method for Rigid Particles in Stokes Flow,’’ Int. J. Nume
Methods Eng.,51~3!, pp. 293–313.

@15# Chessa, J., Smolinski, P., and Belytschko, T., 2002, ‘‘The Extended Fi
Element Method for Stefan Problems,’’ Int. J. Numer. Methods Eng., accep
for publication.

@16# Dolbow, J., and Merle, R., 2001, ‘‘Modeling Dendritic Solidification With th
Extended Finite Element Method,’’Proceedings of the First MIT Conferenc
on Computational Fluid and Solid Mechanics, K. J. Bathe, ed., Boston,
Elsevier, New York, pp. 1135–1138.

@17# Renaud, M., and Dolbow, J., 2003, ‘‘Solving Thermal and Phase Change P
lems With the Extended Finite Element Method,’’ Computational Mechanic
accepted for publication.

@18# Dhatt, G., Gao, D. M., and Cheikh, A. B., 1990, ‘‘A Finite Element Simulatio
of Metal Flow in Moulds,’’ Int. J. Numer. Methods Eng.,30, pp. 821–831.

@19# Usmani, A. S., Cross, J. T., and Lewis, R. W., 1992, ‘‘A Finite Element Mod
for the Simulations of Mould Filling in Metal Casting and Associated He
Transfer,’’ Int. J. Numer. Methods Eng.,35, pp. 787–806.

@20# Peng, D., Merriman, B., Osher, S., Zhao, H., and Kang, M., 1999, ‘‘A PD
Based Fast Local Level Set Method,’’ J. Comput. Phys.,155, pp. 410–438.

@21# Barth, T., and Sethian, J. A., 1998, ‘‘Numerical Schemes for the Hamilt
Jacobi and Level Set Equations on Triangulated Domains,’’ J. Comput. Ph
145, pp. 1–40.

@22# Rao, V. S., Hughes, T. J. R., and Garikipati, K., 2000, ‘‘On Modeling Therm
Oxidation of Silicon II: Numerical Aspects,’’ Int. J. Numer. Methods Eng.,47,
pp. 359–377.

@23# Quecedo, M., and Pastor, M., 2001, ‘‘Application of the Level Set Method
the Finite Element Solution of Two-Phase Flows,’’ Int. J. Numer. Metho
Eng.,50, pp. 645–663.

@24# Sussman, M., Almgren, A., Bell, J. B., Colella, P., Howell, L. H., and We
come, M. L., 1999, ‘‘An Adaptive Level Set Approach for Incompressib
Two-Phase Flows,’’ Comput. Phys.,148, pp. 81–124.

@25# Sussman, M., and Fatemi, E., 1999, ‘‘An Efficient Interface Preserving Le
Set Re-distancing Algorithm and Its Applications to Interfacial Incompressi
Fluid Flow,’’ J. Sci. Comput.,20~4!, pp. 1165–1191.

@26# Sussman, M., Fatemi, E., Smereka, P., and Osher, S. 1997, ‘‘An Impro
Level Set method for Incompressible Two-Phase Flows,’’ Comput. Flui
27~5!, pp. 663–680.

@27# Sussman, M., Smereka, P., and Osher, S., 1994, ‘‘A Level Set Approach
Computing Solutions to Incompressible Two-Phase Flows,’’ J. Comput. Ph
114, pp. 146–159.
Transactions of the ASME



f
e

f

put.

J.

ck-

ten-

,’’

-
sed
@28# Caide, R., Fedkiw, R. P., and Anderson, C., 2001, ‘‘A Numerical Method
Two-Phase Flow Consisting of Separate Compressible and Incompressibl
gions,’’ J. Comput. Phys.,166~1!, pp. 1–27.

@29# Merriman, T. B., Fedkiw, R. P., Aslam, P., and Osher, S., 2003, ‘‘A No
Oscillatory Eulerian Approach to Interfaces in Multi-Material Flows,’’ J. Com
put. Phys., to appear.

@30# Belytschko, T., Liu, W. K., and Moran, B., 2000,Nonlinear Finite Elements
for Continua and Structures, John Wiley and Sons, New York.

@31# Melenk, J. M., and Babusˇka, I., 1996, ‘‘The Partition of Unity Method: Basic
Theory and Applications,’’ Comput. Methods Appl. Mech. Eng.,139, pp. 289–
314.

@32# Zienkiewicz, O. C., and Taylor, R. L., 2000,The Finite Element Method,
Volume 3: Fluid dynamics, Butterworth and Hienemann, Stoneham, MA.

@33# Hansbo, P., 1993, ‘‘Explicit Streamline Diffusion Finite Element Methods
Journal of Applied Mechanics
or
Re-

n-
-

or

the Compressible Euler Equations in Conservation Variables,’’ J. Com
Phys.,109, pp. 274–288.

@34# Rider, W. J., and Kothe, D. B., 1998, ‘‘Reconstructing Volume Tracking,’’
Comput. Phys.,141, pp. 112–152.

@35# Rider, W. J., and Kothe, D. B., 1995, ‘‘Streaching and Tearing Interface Tra
ing Methods,’’ AIAA Paper 95-1717~LANL Report LA-UR-95-1145!.

@36# Sethian, J. A., and Adalstienson, D., 1999, ‘‘The Fast Construction of Ex
sion Velocities in Level Set Methods,’’ J. Comput. Phys.,148, pp. 2–22.

@37# Chorin, A. J., 1968, ‘‘Numerical Solution of the Navier-Stokes Equation
Math. Comput.,23, pp. 745–762.

@38# Zienkiewicz, O. C., and Codina, R., 1995, ‘‘A General Algorithm for Com
pressible and Incompressible Flow, Part I. The Split Characteristic Ba
Scheme,’’ Int. J. Numer. Methods Fluids,20, pp. 869–885.

@39# Hadamard, J. S., 1911, C. R. Acad. Sci.,152, p. 1735.
JANUARY 2003, Vol. 70 Õ 17



d for
d gov-
d at a
zed
as the

of the
lems
J. Garcı́a
e-mail: Julio@cimne.upc.es

E. Oñate
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An Unstructured Finite Element
Solver for Ship Hydrodynamics
Problems
A stabilized semi-implicit fractional step algorithm based on the finite element metho
solving ship wave problems using unstructured meshes is presented. The stabilize
erning equations for the viscous incompressible fluid and the free surface are derive
differential level via a finite calculus procedure. This allows us to obtain a stabili
numerical solution scheme. Some particular aspects of the problem solution, such
mesh updating procedure and the transom stern treatment, are presented. Examples
efficiency of the semi-implicit algorithm for the analysis of ship hydrodynamics prob
are presented.@DOI: 10.1115/1.1530631#
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Introduction
The prediction of the wave pattern and resistance joint to

study of the flow around a ship are topics of major relevance
naval architecture. The analytical and numerical solutions of
problem have challenged mathematicians and hydrodynami
for over a century.

Despite recent advances in computational fluid dynam
~CFD! methods and computer hardware, the numerical soluti
of ship wave problems is still a challenge. This is mainly due
the difficulties in solving the incompressible flow equatio
coupled to the free boundary constraint stating that at this bou
ary the fluid particles must remain on the water surface, wh
position is in turn unknown.

This paper presents advances in recent work of the auth
@1–10#, to derive a stabilized finite element method which allo
us to overcome the above mentioned problems. The starting p
are the modified governing differential equations for the inco
pressible flow and the free surface condition incorporating
necessary stabilization terms via afinite calculus~FIC! procedure
developed by the authors,@8–10#. The FIC technique is based o
writing the different balance equations over a domain of finite s
and retaining higher order terms. These terms incorporate the
gredients for the necessary stabilization of any transient
steady-state numerical solutionalready at the differential equa
tions level. In addition, the modified differential equations can
used to derive a numerical scheme for computing the stabiliza
parameters,@5,6,7,9#.

The stabilized differential equations are first solved in time
ing a semi-implicit fractional step approach. Application of t
standard Galerkin finite element formulation to the fractional st
equations leads to a stabilized system of discretized equa
which overcomes the above-mentioned problems, allowing
equal order linear interpolations of the velocity and pressure v
ables over the elements. Unstructured grids of linear tetrah
have been used in this work. The approach is similar to se
implicit fractional methods proposed in@11–13#. The particular
features of the algorithm here proposed are the additional sta
zation terms introduced by the FIC formulation. These terms
sure the stabilization of the algorithm for small time-step sizes
enhance the convergence towards the steady-state solution.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, July 26, 20
final revision, Mar. 12, 2002. Associate Editor: T. E. Tezduyar. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, De
ment of Mechanics and Environmental Engineering, University of California—Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication in the paper itself in the ASME JOURNAL OFAPPLIEDMECHANICS.
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surface wave boundary effects are accounted for in the flow s
tion either by moving the free surface nodes in a Lagrang
manner, or else for via the introduction of a prescribed pressur
the free surface computed from the wave height.

The content of the paper is structured as follows. First the
bilized semi-implicit fractional step approach using the finite e
ment method is then described. Details of the computation of
stabilization parameters are also given. Finally some example
applications of the unstructured-grid solver for ship hydrodyna
ics problems are presented.

Finite Calculus „FIC … Formulation of Viscous Turbulent
Flow and Free Surface Equations

We consider the motion around a body of a viscous incompre
ible fluid including a free surface.

The finite calculus form of the governing differential equatio
for the three-dimensional problem can be written as,@8–10# fol-
lows:
Momentum

r mi
2

1

2
hj

]r mi

]xj
50 on V i , j 51,2,3 (1)

Mass Balance

r d2
1

2
hj

]r d

]xj
50 on V j 51,2,3 (2)

1;
the
art-

nta
afterFig. 1 Transom stern model. „a… Regular stern flow, „b … tran-
som stern flow.
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r b2
1

2
hb j

]r b

]xj
50 on Gb j 51,2 (3)

where

r mi
5

]ui

]t
1

]

]xj
~uiuj !1

]p

]xi
2

]t i j

]xj

r d5
]ui

]xi
, i 51,2,3

r b5
]b

]t
1ui

]b

]xi
2u3 , i 51,2.

In the above,ui is the velocity along thei th global reference
axis,p is the dynamic pressure (p̄5r(p2gz) wherep̄ is the total
pressure,r is the density andg is the gravity acceleration,b is the
wave elevation, andt i j are the deviatoric viscous stresses relat
to the kinematic viscositym by the standard expression

t i j 5mS ]ui

]xj
1

]uj

]xi
2d i j

2

3

]uk

]xk
D . (4)

The boundary conditions for the stabilized problem are writt
as

njt i j 2t i1
1

2
hjnj r mi

50 on G t (5)

uj2uj
p50 on Gu (6)

Fig. 2 DTMB 5415 model. Geometrical definition based on
NURBS surfaces.
Journal of Applied Mechanics
ed

en

where nj are the components of the unit normal vector to t
boundary andt i anduj

p are prescribed tractions and displaceme
on the boundariesG t andGu , respectively.

The underlined terms in Eqs.~1!–~3! introduce the necessar
stabilization for the numerical solution. Additional time stabiliz
tion terms can be accounted for in Eqs.~1!–~3!, @4,5,9#, although
they have been found unnecessary for the type of problems so
here.

Thecharacteristic lengthdistanceshj represent the dimension
of the finite domain where balance of momentum and mas
enforced,@4,8#. The characteristic distanceshb j

in Eq. ~3! repre-
sent the dimensions of a finite domain surrounding a point wh
the velocity is constrained to be tangent to the free surface,@2,9#.

Equations~1!–~6! are the starting point for deriving a variety o
stabilized numerical methods for solving the incompressi
Navier-Stokes equations with a free surface using equal-orde
terpolations for the velocities, the pressure, and the wave he
@1–4,8,9#.

Fractional Step Approach
Let us discretize in time the stabilized momentum Eq. (1a) as

ui
n112ui

n

Dt
1

]

]xj
~uiuj !

n1
]pn

]xi
2

]t i j
n

]xj
2

1

2
hj

]r mi

n

]xj
50. (7)

A fractional step method can be simply derived by splitting E
~7! as follows:

ui* 5ui
n2DtF ]

]xj
~uiuj !2

]t i j

]xj
2

1

2
hj

]r mi

n

]xj
G n

(8)

Fig. 3 DTMB 5415 model. Surface mesh used in the analysis.
Fig. 4 DTMB 5415 model. Wave profile on the hull.
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Fig. 5 DTMB 5415 model. Wave profile at y ÕLÄ0.082. -* - experimental values,
†24‡. –numerical results.
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ui
n115ui* 2Dt

]p

]xi
. (9)

Note that addition of Eqs.~8! and~9! gives the original stabilized
momentum Eq.~7!.

Substitution of Eq.~9! into Eq. ~2! gives

Dt
]2pn

]xi]xi
5

]ui*

]xi
2t iui

]r d
n

]xi
(10)

wheret i are intrinsic time parameters defined ast i5hi /2ui .
The free surface wave Eq.~3! can be also discretized in time t

give, @2,7,9#,

bn115bn2DtFui
n

]bn

]xi
2u3

n2
1

2
hb j

]r b
n

]xj
G i , j 51,2. (11)

Pressure Stabilization
Using Eq. ~1! and neglecting high-order terms it can be o

tained:

ui

]

]xi
S ]uj

]xj
D5

]r mi

]xi
. (12)

Substituting Eq.~12! into Eq. ~10! gives

~Dt1t i !
]2pn

]xi]xi
5

]ui*

]xi
2t iF]r i8

]xi
Gn

(13)

with

Fig. 6 Wave map of the DTMB 5415 model obtained in the
simulation „above … compared to the experimental data „below …
Y 2003
b-

r i85
]ui

]t
1

]~uiuj !

]xj
2

]t i j

]xj
i , j 51,2,3. (14)

Equation~13! is used to compute the pressure. The left-ha
side is a Laplacian equation for the pressure values at timen,
whereas the right-hand side includes known values of the fr
tional velocities, the velocities and the viscous stresses at timen.

Remark 1. Standard fractional step procedures neglect the c
tribution from the terms involvingt i in Eq. ~13!. These terms
improve the stabilization properties of the algorithm as they e
sure the solution of Eq.~13! when the values ofDt are small. Also
the influence of thet i terms has proven to be essential for obtai
ing improved and fully converged solutions in steady-state pr
lems.

The finite calculus procedure can be also applied to deriv
stabilized pressure increment split scheme. This can be sim
derived by splitting Eq.~7! only for the pressure increment simi
larly as described in@14#.

Remark 2. In Eq. ~13! the cross derivative terms of the pressu
have been neglected. These terms can be accounted for if a pr
definition of thet i parameters is used. For details see@8#.

Remark 3. The residualr i8 can be discretized using the finit
elements method,@15# as

r i85Nr̄ i8 (15)

whereN5@N1 ,N2 , ¯ ,Nn# contains the shape functionsNj and
( •̄) denotes nodal values.

Application of the Galerkin method to Eq.~13! gives after in-
tegration by parts

Fig. 7 KVLCC2 model. Geometrical definition based on
NURBS surfaces.
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Hklp̄l
n5E

V

]Nk

]xi
ui* dV2E

V

]Nk

]xi
Nr̄ i8

ndV (16)

where Hkl5*V(Dt1t i)]Nk /]xi(]Nl /]xi )dV is the standard
Laplacian matrix.

The values ofr i8 can now be computed by projecting the pre
sure gradients. Neglecting the stabilization terms in Eq.~1! we can
write

r i852
]p

]xi
. (17)

Application of the Galerkin method to Eq.~17! gives using Eq.
~15!

Mr̄ i8
n5qn (18a)

with

Mkl5E
V

NkNldV and qk
n52E

V
Nk

]pn

]xi
dV. (18b)

Equation (18a) can be solved for the values ofr̄ i8
n using an

iterative Jacobian scheme.
Remark 4. The above formulation can also be aplied to t

Reynolds~RANSE! equations. In this case the value ofr mi
in the

stabilized momentum equations is given by,@7#:

r mi
5

]ui

]t
1

]

]xj
~uiuj !1

]p

]xi
2

]~t i j
n 1tRi j

n !

]xj
(19)

Fig. 8 KVLCC2 model. Surface mesh used in the analysis.
Journal of Applied Mechanics
s-

e

wheretR
n is the Reynolds stress tensor. In this worktR

n has been
modeled using the standard Boussinesq’s approximation.

Remark 5. The value of the intrinsic time parameterst i have
been taken as,@8,9#,

t i5S 4m

3hi
2 1

2ui

hi
D 21

. (20)

Equation~20! provides the standard values of the intrinsic tim
parameter for the convective limit (ui→0) and the viscous limit
(m→0).

The characteristic length distanceshi are defined here using th
SUPG assumptions giving,@4,8,16#,

h5H h1

h2

h3

J 5h
u

uuu
(21)

whereh5@V(e)#1/3, whereV(e) is the volume of the tetrahedra
element.

The characteristic lenght distanceshb i in the free-surface Eqs
~3! are defined by an identical expression to Eq.~21! with h
5@A(e)#1/2, A(e) being the area of the triangular element over t
sea surface.

More details on the computation of the stabilization parame
can be found in@4–10#.

Finite Element Discretization
Space discretization is carried out using the finite elem

method,@15#. A linear interpolation over four-node tetrahedra f
both ui and p is chosen in the examples shown in next sectio
Similarly, linear triangles are chosen to interpolateb on the free-
surface mesh.

The discretized integral form in space is obtained by apply
the standard Galerkin procedure to Eqs.~8!, ~13!, ~9!, and ~11!
and the boundary conditions~5! and ~6!. Solution of the dis-
cretized problem follows the pattern given below.
Step 1. Solve Eq.„8) for the nodal fractional velocities. The
Dirichlet boundary conditions on the nodal velocities are impos
when solving Eq.~8!. Note that the fractional step method can
interpreted as an incomplete block LU factorization of the mon
lithic problem,@14,17#.
Step 2. Solve Eq.„13) for the nodal pressures at time n¿1. The
pressures computed from Step 4 are used as a boundary con
Fig. 9 KVLCC2 model. Wave profile on the hull compared to experimental
data, †25‡. Thick line shows numerical results.
JANUARY 2003, Vol. 70 Õ 21
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Fig. 10 KVLCC2 model. Wave profile on a cut at y ÕLÄ0.0964 compared to
experimental data, †25‡. Thick line shows numerical results.

Fig. 11 KVLCC2 model. Map of the X component of the velocity on a plane at 2.71 m from the
orthogonal aft. Comparison with the experimental data, †25‡.

Fig. 12 KVLCC2 model. Map of the X component of the velocity on a plane at 2.82 m from the
orthogonal aft. Comparison with the experimental data, †25‡.
ANUARY 2003 Transactions of the ASME
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Fig. 13 KVLCC2 model. Map of the eddy kinetic energy „K … on a plane at 2.71 m from the
orthogonal aft. Comparison with the experimental data, †25‡.
s

e of

ee
e

free
for solution of Eq.~13! ~viz. Eq. ~18!!.
Step 3. Solve Eq.„9) for the nodal velocities at time n¿1. The
Dirichlet boundary conditions on the nodal velocities are impo

Fig. 14 Bravo Españ a sail racing boat. Mesh used in the
analysis.

Fig. 15 Bravo Españ a. Velocity contours.
d Mechanics
ed

when solving Eq.~9!.
Step 4. Solve for the new free surface height at time n¿1. The
new free-surface elevationbn11 in the fluid domain is computed
from Eq. ~11!.

The pressure at the free surface is obtained from the balanc
tractions at the surface,@18#,

njrt i j 2ni p̄5njrat i j
a 2ni p̄

a1ni

g

R
(22)

wherep̄ is the pressure field on water,p̄a is the air pressure,t i j
a is

the air viscous stress tensor,ra is the air density,g is the surface
tension coefficient,R is the average curvature radius of the fr
surface, andni is the vector in the normal direction to the fre
surface. Assuming]b/]x!1 and ]b/]y!1 it can be takenn
5@0,0,21#.

In Eq. ~22! the turbulent stresses are neglected close to the
surface as shown experimentally,@18,19#.

Assuming that air is at rest (pa50 andt i j
a 50), Eq.~22! can be

simplified as

njrt i j 2ni p̄5ni

g

R
. (23)

The third component of above equation gives

p̄5rt331
g

R
. (24)

The dynamic pressure is finally obtained from

Fig. 16 Bravo Españ a. Streamlines.
JANUARY 2003, Vol. 70 Õ 23
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Fig. 17 Bravo Españ a. Resistance test. Comparison of numerical results with experimental data.
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whereg is the modulus of the acceleration of the gravity.
Reaching this point the fluid domain has to be updated du

the new position of the free surface. This is an expensive pro
and a simplified solution can be found by neglecting the chang
the free surface and taking into account its effects by prescrib
the pressure acting on the free surface. In order to increase
accuracy of the solution, the free-surface equation is modified
making use of a Taylor series expansion ofb in theOz direction,
@20#.

Remark 6. The conceptually simplest way to carry out the me
updating due to the new position of the free surface and of
ship is by remeshing the new fluid domain. A number of alg
rithms for computation of moving boundaries and interfaces
cluding free-surface flows using interface-tracking and interfa
capturing techniques and remeshing algorithms have b
proposed in recent years,@13,21#. Indeed, the use of tetrahedr
elements and unstructured grids simplifies this process. Howe
remeshing is nowadays too expensive if industrial application
the algorithm are sought.

Chiandussi, Bugeda, and On˜ate @22# have proposed a simpl
method for movement of mesh nodes ensuring minimum elem
distorsion, thereby reducing the need of remeshing. The metho
based on the iterative solution of a fictitious linear elastic probl
on the mesh domain. In order to minimize mesh deformation
‘‘elastic’’ properties of each mesh element are adequately sele
so that elements suffering greater distortions are stiffer. Appl
tions of this technique to ship hydrodynamic problems can
found in @3,7,9#.

Transom Stern Model
It is well known that the transom flow occuring at a sufficie

high speed has a singularity for the standard solution of the f
surface Eq.~11!. Several authors have proposed solutions to th
problem,@23,24#, mainly based on experimental observations
this phenomena. Next, a more natural solution to solve the t
som flow is presented.

The standard solution of convective equations such as the
surface equation requires prescribing the Dirichlet conditions
the inflow. As the transom causes a discontinuity in the dom
the solution of the free-surface equation close to this region
inconsistent with the convective nature of the equation. The di
solution of the free surface equation in this case results in
instability of the wave height close to the transom region. T
instability is found experimentally for low speeds. The flow a
sufficient high speed is physically more stable although it s
cannot be reproduced by standard numerical techniques.
l. 70, JANUARY 2003
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The solution to this problem is to apply adequate free-surf
boundary conditions at the transom boundary. The obvious co
tion is to fix both the free-surface elevationb and its derivative
along the corresponding streamline to values given by the tran
position and the surface gradient. However, prescribing those
ues can influence the transition between the transom flux and
lateral flux, resulting in unaccurate wave maps.

The method here proposed is to extend the free surface be
the ship. In this way the neccesary Dirichlet boundary conditio
imposed at the inflow domain are enough to achieve the w
possessed properties of the problem. We note that is not an ad
condition, as Eq.~11! has to be satisfied also in the wetted surfa
below the ship. Obviously, this way to proceed is valid both
the wetted and dry transom cases and it can be also applie
ships with regular stern. In Fig. 1 the nodes marked with ‘‘a’’
include the standard degrees-of-freedom~b! of the free-surface
problem; those nodes marked with ‘‘b’’ introduce the new
degrees-of-freedom, while wave elevationb is prescribed at the
nodes marked as ‘‘c. ’’

Indeed, accounting for every surface element of the wetted s
surface is not neccesary. Just the first row of elements is enoug
the rest usually have a fixed wave elevation and will not influen
the results.

This scheme can not be used in the case of partially we
transom when the flow remains adhered to the transom instea
a detatched flow. These phenomena usually appear for highly
steady flows where wake vortex induces the deformation of
free surface. To favor the convergence of the free surface
stable state an artificial viscosity term has been added to the
surface equations in the vecinity of the transom in these case

Examples
All examples have been solved in a standard single proce

PC using the computer code SHYNE,@25# based on the algorithm
here presented and the pre/postprocessorGiD developed at CI-
MNE, @26#. Recent industrial applications of the CFD formulatio
presented can be found in@27#.

Example 1. DTMB 5415 Model. The first case analyzed i
the David Taylor Model Basin 5415 benchmark model. The g
ometry used in the analysis was obtained from the Gothenb
2000 Workshop database,@28#. The NURBS definition is shown
in Fig. 2. The obtained results are compared with experime
data available,@28#. The main characteristics of the analysis ar

• length: 5.72 m, beam: 0.5 m, draught: 0.248 m, wetted s
face: 4.861 m2,

• velocity: 2.1 m/seg, Froude number: 0.28, and
• viscosity: 0.001 Kg/mseg, density: 1000 Kg/m3, Reynolds

number: 12.3106.
Transactions of the ASME
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The analysis was carried out for three different grids~from
150,000 to 600,000 linear tetrahedra, corresponding to 25,000
115,000 nodes! in order to qualitatively analyze the influence
the element size in the solution. Here only the results correspo
ing to the finest grid are shown. The smallest element size u
was 0.002 m and the maximum 0.750 m. The surface mesh o
DTMB 5415 used in the last analysis is shown in Fig. 3. T
Smagorinsky turbulence model with the extended law of the w
was chosen. The tramsom stern flow model presented was u

Figures 4 and 5 show the wave profile on the hull and in a
at y/L50.082, respectively. Numerical results obtained are co
pared with the experimental data.

Figure 6 shows the comparison of the wave map obtained w
the experimental data available.

Example 2. KVLCC2 Model. The next example is the analy
sis of the KVLCC2 benchmark model. Here a partially wett
tramsom stern is expected due to the low Froude number of
test. Figure 7 shows the NURBS geometry used obtained from
Hydrodynamic Performance Research team of Korea~KRISO!.
The obtained results are compared with the experimental
available in the KRISO database,@29#.

The smallest element size used was 0.001 m and the la
0.50 m. The surface mesh chosen is shown in Fig. 8. A tota
550,000 tetrahedra were used in the analysis. The tramsom
flow model presented in the previous section was used.

Test 1. Wave pattern calculation. The main characteristics o
the analysis are listed below:

• length: 5.52 m, beam~at water plane!: 0.82 m, draught: 0.18
m, wetted surface: 8.08 m2,

• velocity: 1.05 m/seg, Froude number: 0.142, and
• viscosity: 0.00126 Kg/mseg, density: 1000 Kg/m3, Reynolds

number: 4.63106.

The turbulence model used in this case was theK model. Fig-
ures 9 and 10 show the wave profiles on the hull and in a cu
y/L50.082 obtained in Test 1, compared to the experimental d
The obtained results are quantitatively good close to the hul
lost of accuracy is observed in the profiles away from the h
This is probably due to the fact that the element sizes are
small enough in this area.

Test 2. Wake analysis at different planes. Several turbulence
models were used~Smagorinsky,K, andK-e model! in order to
verify the quality of the results. Here, only the results from t
K-e model are shown. We note that the velocity maps obtai
even for the simplest Smagorinsky model were qualitatively go
showing the accuracy of the fluid solver scheme used. The m
characteristics of this analysis are listed below:

• length: 2.76 m, beam~at water plane!: 0.41 m, draught: 0.09
m, wetted surface: 2.02 m2,

• velocity: 25 m/seg, Froude number: 0.0, and
• viscosity: 3.051025 Kg/mseg, density: 1.01 Kg/m3, Rey-

nolds number: 4.63106.

Figures 11 to 13 present the results corresponding to the Te
Figures 11 and 12 show the contours of the axial (X) component
of the velocity on planes at 2.71 m and 2.82 m from the ortho
nal aft, respectively. Figure 13 shows the maps of the kin
energy on the first of these planes. Experimental results are sh
for comparison in all cases.

Example 3. AMERICAN CUP BRAVO ESPAÑA Model
The final example is the analysis of the Spanish American C
racing sail boatBravo Espan˜a. The finite element mesh used
shown in Fig. 14. The results presented in Figs. 15–17 corresp
to the analysis of a nonsymmetrical case including appenda
Good comparison between the experimental data and the num
cal results was again obtained.
Journal of Applied Mechanics
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Conclusions
The finite calculus method provides modified forms of the go

erning differential equations for a viscous fluid with a free surfa
Solution of the modified equations with a semi-implicit fraction
step finite element method provides a straight forward and st
algorithm for analysis of ship hydrodynamic problems.

Numerical results obtained in the three-dimensional visc
analysis of complex ship geometries indicate that the propo
numerical method can be used with confidence for practical
drodynamic design purposes in naval architecture.
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Numerical Solutions of
Cauchy-Riemann Equations for
Two and Three-Dimensional
Flows
For two-dimensional flows, the conservation of mass and the definition of vorticity c
prise a generalized Cauchy-Riemann system for the velocity components assumi
vorticity is given. If the flow is compressible, the density is a function of the speed
the entropy, and the latter is assumed to be known. Introducing artificial time
symmetric hyperbolic system can be easily constructed. Artificial viscosity is ne
for numerical stability and is obtained from a least-squares formulation. The augme
system is solved explicitly with a standard point relaxation algorithm which
highly parallelizable. For an extension to three-dimensional flows the continuity equa
is combined with the definitions of two vorticity components, and are solved for the
velocity components. Second-order accurate results are compared with exact solutio
incompressible, irrotational, and rotational flows around cylinders and spheres. Re
for compressible (subsonic) flows are also included.@DOI: 10.1115/1.1530632#
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1 Introduction
Numerical flow simulations are usually based on the soluti

of Euler and Navier-Stokes equations in terms of primitive
conservative variables. Alternative formulations based on the v
tor potential or in terms of velocity—vorticity equations are n
popular because of the associated difficulties and limitations.
cently there are some efforts to construct numerical sche
based on decoupling the kinematics and the dynamics of the
tion. The motivations and the advantages of such formulations
discussed in Ref.@1#.

In this work we are interested in calculating the velocity fie
using the continuity equation and the definition of vorticity. F
steady, incompressible, inviscid, irrotational flow the two veloc
components can be obtained from the standard Cauchy-Riem
system. The two first-order equations are equivalent to
second-order Laplace equation in terms of the potential or
stream function. Also, a least-squares procedure results in
Laplace equations for the two velocity components.

If the flow is not irrotational and there are also sources in
field, the nonhomogeneous Cauchy-Riemann equations are n
ducible to a single second-order equation. The velocity vector
be represented as the gradient of a potential plus the curl of
other vector. The first component is curl-free and the second c
ponent is divergence-free. This decomposition is always poss
under very general conditions according to the Helmholtz th
rem. However, for general three-dimensional flows, the bound
conditions are complicated. On the other hand, the least-squ
procedure produces three second-order equations for the thre
locity components. It is not clear, however, how to impose ea
the entropy condition, in such a formulation, in order to exclu
expansion shocks for simulation of transonic flows.

The least-squares formulation has other problems as well, e

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 2
2001; final revision, June 11, 2002. Associate Editor: T. E. Tezduyar. Discussio
the paper should be addressed to the Editor, Prof. Robert M. McMeek
Department of Mechanical and Environmental Engineering University of Californ
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months after final publication of the paper itself in the ASME JOURNAL OFAPPLIED
MECHANICS.
Copyright © 2Journal of Applied Mechanics
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for incompressible flows. First the spurious solution must be
cluded via imposing the first-order equations on the bound
Moreover mass may not be conserved at the discrete level. Sp
arrangements, for example, staggered grids may be necessa
ensure conservation of numerical fluxes. For the vorticity, o
tained from the curl of the momentum equations, special treatm
is required to guarantee that its divergence vanishes identical
the discrete level.

In the following we will solve generalized Cauchy-Rieman
equations embedded in an artificial time process governed b
symmetric hyperbolic system leading to a well-posed init
boundary value problem. Since we are interested only in
steady-state solution, the accuracy of the transient behavior is
an issue. Standard convergence acceleration techniques su
multigrid can be employed to improve the efficiency of the calc
lations ~see Appendix A!.

To avoid odd and even decoupling and to insure numer
stability, artificial viscosity must be introduced. To guarant
second-order accuracy~for incompressible and subsonic flow!, ar-
tificial viscosity based on the least-squares formulation is u
~see Hughes et al.@2# and Tezduyar and Hughes@3#!. The scheme
is also similar to Lerat’s recent work,@4#, at least for subsonic
flows. The second-order terms vanish identically at the continu
level since they are consistent with the Cauchy-Riemann eq
tions. At the discrete level they produce higher-order dissipat
Such a construction can be viewed as a compact method to
place the commonly used fourth order dissipation schemes
posed by McCormack@5# and by Jameson@6#.

The paper is organized in four sections; governing relatio
numerical algorithms, numerical results, and conclusions w
some general remarks.

2 Governing Equations and Boundary Conditions
The equations for flow over a cylinder and over a sphere w

ten in cylindrical and spherical coordinates are given.

Flow Over a Cylinder
Continuity Equation.

1

r F1

r

]~rrv r !

]r
1

1

r

]~rvu!

]u G50. (1)
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a–
four
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Vorticity Definition.

1

r

]~rvu!

]r
2

1

r

]~v r !

]u
5vz . (2)

Three-Dimensional Flow Around a Sphere

Continuity Equation.

1

r F 1

r 2

]~r 2rv r !

]r
1

1

r sinu

]~sinurvu!

]u
1

1

r sinu

]rvf

]f G50.

(3)

Vorticity Definitions.

1

r sinu

]v r

]f
2

1

r

]~rvf!

]r
5vu (4)

1

r

]~rvu!

]r
2

1

r

]v r

]u
5vf (5)

and the boundary conditions are

Fig. 1 „a… Streamlines for incompressible flow over a cylinder
with vzÄ0. „b… Streamlines for incompressible axisymmetric
flow around a sphere with vfÄ0.
28 Õ Vol. 70, JANUARY 2003
v r50 at r 5r i (6)

vu and vf are given atr 5r o , (7)

wherer i and r o are the radii of inner and outer spheres.

Fig. 2 „a… Plot of the local Mach number for compressible flow
around a cylinder with M`Ä0.2. „b… Plot of the local Mach num-
ber for compressible flow over sphere with M`Ä0.2. „c… Ex-
ample 2: Convergence history for the ir i` norm for systems 1
and 2. „d… Convergence history for the ir i` norm for systems 1
and 2.

Table 1 Shown are the total number of iterations and final max
norm error of „v r ,v u ,v f… for the computed solution where the
error is the difference between the exact analytic solution and
the numerical results

e Number of Iterations Absolute Error

System 1 1757 0.0084
System 2 1 1805 0.0147
System 3 Dr

2
381 0.0309
Transactions of the ASME



Fig. 2 „continued …
e ble

lation
In case of irrotational, isentropic flows the vorticity vanish
identically and the density is related to the speed according
Bernoulli’s law:

r5F12
g21

2
M`

2 ~ uqu221!G1/g21

, (8)

Table 2 Shown are the total number of iterations to reach a
residual tolerance of 10 À5 for the computed solutions with e
Ä1 and eÄ Dr Õ2 and freestream Mach numbers 0.1 and 0.2

e Iterations(M50.1) Iterations(M50.2)

System 1 1 1467 1481
System 2 Dr /2 231 228
Journal of Applied Mechanics
s
to
where M` is the freestream Mach number. For incompressi
flows M`50.

3 Numerical Methods
Incompressible and compressible~subsonic! flows around cyl-

inder and spheres are calculated using a least-squares formu

Table 3 Shown are the total number of iterations to reach a
residual tolerance of 10 À5 for the computed solutions with e
Ä1 and eÄ Dr Õ2 and freestream Mach numbers 0.1 and 0.2

e Iterations(M50.1) Iterations(M50.2)

System 1 1 3657 3647
System 2 Dr /2 341 344
JANUARY 2003, Vol. 70 Õ 29



Table 4 Convergence results

V-Cycle Point Relaxation
N Iterations iei` Time~sec.! Iterations iei` Time~sec.!

322 15 1.40e-2 3 532 1.40e-2 58
642 15 3.52e-3 12 1754 3.52e-3 823
1282 20 8.80e-4 69 6787 8.89e-4 11810
2562 23 2.19e-4 337 26982 2.27e-4 107622
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as well as Cauchy-Riemann equations embedded in a symm
hyperbolic system which is augmented by artificial viscosity. A
spatial derivatives are discretized using second-order accura
nite volume schemes. The time derivative terms are discret
via first-order time differences. The discretized systems are so
using a point Gauss-Seidel relaxation scheme. The source co
implemented in C11 and run on an HP-Visualize C3000 work
station. In the following, the problems we solved are stated.~Tran-
sonic flows with shocks are calculated in@7# using similar
schemes but with linearized boundary conditions.!

The governing equations, denoted

L~w> !, (9)

can be imbedded in the following system:

] tw> 5L~w> !1eL* L~w> ! (10)

whereL* is the adjoint of the operatorL. For cartesian coordi-
nates and incompressible irrotational flows,L* L(w> ) are the
Laplacians of thew> components.

The boundary conditions we imposed are
On Solid Surface:A Dirchlet condition is used for the radia

velocity v r and a Neumann condition derived from the vortici
equation is used for the angular velocityvu ~andvf).

Far-Field: A Dirchlet condition is used for the angular velocit
vu ~andvf) and a Neumann condition derived from the continu
equation is used for the radial velocityv r .

Flow Field: Periodic boundary conditions are used within t
flow field for bothv r andvu ~andvf).

4 Numerical Results

4.1 Incompressible Flow. We tested the present formula
tion for cases with analytical solutions, for example, flow w
circulation over a cylinder, uniform and shear, as well as a cy
der in a rotating fluid~see Bachelor@8#!. We have also calculated
flow over a sphere using axisymmetric as well as the full thr
dimensional equations. In Fig. 1, the streamlines are plotted
incompressible flows over a cylinder and a sphere. In all the ab
cases, the results are satisfactory in terms of accuracy and co
gence. For example the results of flow calculations over a sp
are as follows.

Example 1. In this example we assume axisymmetric irrot
tional flow around a sphere, but we solve for each of the velo
components (v r ,vu ,vf), as in a fully three-dimensional flow. Nu
merical solutions are computed in a spherical coordinate sys
with three space dimensions. The grid spacings used areDr
50.1, Du5p/18, andDf5p/18. The grid dimensions are 3
319337 and the radius of the sphere is nondimensionalized t
The program is ran until a residual tolerance of 1.0e-5 is met
the results are shown in Table 1.

4.2 Compressible Flow

Example 2. We solve for compressible flow over a cylinde
with and without density in the least-squares formulation us
e51 and e5 Dr /2 for a cylindrical coordinate system in tw
space dimensions. The grid spacing isDr 50.1 andDu5p/18.
30 Õ Vol. 70, JANUARY 2003
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The grid dimensions are 36337 and the radius of the cylinder i
nondimensionalized to 1, the circulation around the cylinder
kept atG50, the vorticityvz50.0, and Mach numbers of 0.1 an
0.2 are used. The program is run until a residual tolerance
1.0e-5 is met.~See Figs. 2~a,c! and Table 2.!

Example 3. We solve for compressible flow over a sphe
usinge51 ande5 Dr /2 for a spherical coordinate system in tw
space dimensions. The grid spacing isDr 50.1 andDu5p/18.
The grid dimensions are 36337 and the radius of the sphere
nondimensionalized to 1, the vorticityvz50.0, and Mach num-
bers of 0.1 and 0.2 are used. The program is run until a resid
tolerance of 1.0e-5 is met.~See Figs. 2(b,d) and Table 3.!

All of the above results are obtained using constant artific
viscosity,e. In general, however,e can vary from point to point
and from iteration to iteration and it can be optimized, depend
on local flow conditions, to accelerate the convergence of
calculations.

5 Concluding Remarks
Given the vorticity and the density, the velocity components

two and three-dimensional flows can be calculated from a ge
alized system of Cauchy-Riemann equations. Standard nume
algorithms are applicable to achieve the expected accuracy
efficiency. For a complete flow simulation, the dynamics of t
motion must be included to provide the entropy and the to
enthalpy and hence the vorticity. The full simulation is still und
progress and will be reported separately.

Appendix

Multigrid Convergence Results. The convergence of the
point relaxation schemes can be enhanced by implementin
multigrid V-Cycle scheme. The V-Cycle scheme from Brigg
Henson, and McCormick@9# was modified to compute the incom
pressible, irrotational flow over a cyclinder using the Cauch
Riemann equations withe5 p/8. The fine grids used for the com
putations areN5322,642,1282,2562. The coarsest grid used fo
each run isN582. A comparison of point relaxation and V-Cycl
~n1,n2! is shown below. The parametersn151 is the number of
relaxations used going down the grids andn252 is the number of
relaxations used coming up the grids. The comparison inclu
the number of iterations until convergence ofir i`,10e-5, the
absolute erroriei` between the computed solution and the an
lytic solution, and the CPU runtime.~See Table 4.!
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An Overset Finite-Element
Large-Eddy Simulation Method
With Applications to
Turbomachinery and
Aeroacoustics
A numerical method for the prediction of an unsteady fluid flow in a complex geom
that involves moving boundary interfaces is presented in this paper. The method is
applicable to the prediction of the far-field sound that results from an unsteady fluid
The flow field is computed by large-eddy simulation (LES), while surface-pressure
tuations obtained by the LES are used to predict the far-field sound. To deal with a m
boundary interface in the flow field, a form of the finite element method in which ov
grids are applied from multiple dynamic frames of reference has been developed
method is implemented as a parallel program by applying a domain-decomposition
gramming model. The validity of the proposed method is shown through two nume
examples: prediction of the internal flows of a hydraulic pump stage and prediction o
far-field sound that results from unsteady flow around an insulator mounted on a h
speed train.@DOI: 10.1115/1.1530637#
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1 Introduction
Computational fluid dynamics has already become an in

pensable tool for turbomachinery design mainly because of
advances in numerical methods for turbomachinery~see, for ex-
ample, Moore et al.@1#, Dawes@2#, Hah et al.@3#, and Denton
@4#! and the remarkable progress in the performance of high-
computers. Regarding internal flow simulations of a hydrau
pump, where our primary interest lies, Goto@5# used the incom-
pressible version of Dawes’ three-dimensional Navier-Stokes c
~Dawes @2#! to investigate the internal flows of a mixed-flo
pump impeller with various tip clearances. Although the over
loss tends to be underestimated, the Euler head as well as the
patterns at the impeller’s exit are reasonably well predicted. Ta
mura and Goto@6# applied the Denton’s viscous code LOSS3
and its multistage version, MULTISTAGE14~Denton@4#! to com-
pute the internal flows of a low-specific-speed bowl pump sta
Despite the highly distorted nature of the diffuser flow, Takem
and Goto@6# found that the distributions of the total pressu
predicted by the stage computations qualitatively agree with
measured equivalent. Kaupert et al.@7# computed the interna
flows of a high-specific-speed radial pump impeller by using
commercial code, TASCflow version 2.3. Their computations s
cessfully predicted the discontinuities in the measured impell
head-flow characteristics, including the hysteresis of the flow
at which the discontinuities take place. Although the internal flo
of a pump are essentially unsteady, the steady Reynolds-aver
Navier-Stokes~RANS! equations were used as the governi
equations in all the computations mentioned above. More rece
Shi and Tsukamoto@8# applied the unsteady form of the RAN
equations for computing unsteady interactions that take plac
the region between the impeller blades and diffuser vanes.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, July 30, 20
final revision, June 11, 2002. Associate Editor: T. E. Tezduyar. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, De
ment of Mechanics and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication in the paper itself in the ASME JOURNAL OFAPPLIEDMECHANICS.
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static pressure fluctuations predicted by their computations ag
quantitatively with the measured ones. He and Sato@9# developed
a new time-stepping method for the computation of incompre
ible flows in turbomachinery, and applied the method to pred
the internal flows in a centrifugal pump stage. A reasonably go
agreement has been obtained between the predicted and mea
values of the impeller’s exit flow.

Because the RANS equations are in terms of time avera
however, RANS computation has inherent limitations in predi
ing the unsteady nature of a flow field. Solutions from the RAN
equations usually deteriorate when the flow field of interest
volves the large-scale separations that are often encountere
internal flows in turbomachinery particularly at off-design poin
On the other hand, large-eddy simulation~LES!, in which turbu-
lent eddies of a scale larger than the computational grid are
rectly computed, has the potential to predict unsteady flows an
flow fields that include regions of large-scale separation m
more accurately than RANS-based computation does in gen
Since the first achievement of LES of a turbulent channel flow
Deardorff @10#, numerous researchers have investigated
subgrid-scale models~Germano et al.@11#, Lilly @12#, Jordan@13#,
and Hughes et al.@14#!, initial and boundary conditions~Lund
@15#, Smirnov et al.@16#!, and numerical methods~see, for ex-
ample, Piomelli@17#! for LES, by using relatively simple flow
geometries such as homogeneous turbulence or a plane ch
flow. Little work, however, can be found in the literature concer
ing industrial applications of LES, in particular for turbomachi
ery. The ultimate goal of our study is therefore to develop a pr
tical engineering tool that is based on LES, with a particu
emphasis on internal-flow simulations of turbomachinery a
simulations of aeroacoustics~Kato et al.@18,19#!.

The simulation of aeroacoustics is a promising area for L
application~Tam @20#, and Wells and Renaut@21#! since informa-
tion on the unsteady flow fields that generate sound is essentia
many applications. The work that has been published regard
low-speed wake sound, where our primary interest lies, is r
tively sparse compared to that on aeroacoustics resulting f
high-speed flows. The key issue in aeroacoustics resulting f
low-speed flows is how accurately one can compute the fluc

1;
the
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nta
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tions in the flow field that compose the source term of the aco
tics computations. After pioneering work done by Hardin a
Lamkin @22#, who computed aerodynamic sound generated fro
laminar wake of a circular cylinder by using acoustic analo
proposed by Howe@23#, several researchers~Akishita et al.@24#
Haruna et al.@25#, and Adachi et al.@26#! applied essentially the
same method as Hardin and Lamkin@22# to compute the aerody
namic sound that is generated from a turbulent wake of a w
They all used a third-order upwind finite difference scheme
compute unsteady flow fields. Although the overall tendency
the aerodynamic sound could be captured through their comp
tions, the agreement between the computed sound spectra an
measured equivalent was not very satisfactory. Kato and Ikeg
@27# first applied LES in the finite element context to simulate t
unsteady turbulent wake of a circular cylinder at a subcriti
Reynolds number. Kato et al.@28# also computed the far-field
sound that is generated from such a wake by using an aco
analogy proposed by Curle@29# ~see also Lighthill@30# in this
regard!. They compared the predicted sound-pressure spectr
their wind-tunnel measurements and obtained fairly good ag
ment up to a Strouhal frequency of about 2.0~a frequency ten
times as high as the Karman vortex shedding frequency!. But,
again, their computations were limited to a relatively simple flo
geometry such as a cylinder wake. Recently, Siegert et al.@31#
attempted to simulate aerodynamic sound generated from a m
realistic flow field, such as a flow around an automobile mirr
However, their computation indicated that considerable room
improvement remains concerning our capability to predict aero
namic sound. Our work described here therefore concentrate
improving prediction accuracy regarding the aerodynamic so
generated from a complex flow field geometry.

For turbomachinery simulations, it is necessary to deal w
moving boundary interfaces between flow fields, such as th
that appear between a rotating impeller and a stationary casin
our study, the moving boundary interface is taken into accoun
using overset grids from dual frames of reference. In this meth
the overall grid is composed of several~usually from two to five!
grid sets and appropriate transactions take place at the inte
regions. The overset-grid approach is also applied to increase
grid resolution around the body of interest for computations in
field of aeroacoustics. This is essential as a way of obtaining
accurate sound-pressure spectrum. In consideration of its app
tions to a complex geometry, the finite element method is use
discretize the governing equations of the flow field. It is imp
mented for parallel processing, therefore enabling us to comp
a large-scale flow-field computation within a practical period
computation on a current-model distributed-memory parallel co
puter.

In what follows, the governing equations of the flow field a
the acoustic field will be explained in Section 2. The numeri
method, including the overset-grid approach, the formulation
finite elements, and the implementation for parallel process
will then be described in Section 3. Finally, in Section 4, tw
numerical examples, one from turbomachinery-related comp
tion and the other from computations of aeroacoustics, will
given to demonstrate the validity of the proposed method.

2 Governing Equations

2.1 Flow-Field Computation. The governing equations o
which the present study is based are the spatially filtered cont
ity Eq. ~1! and the Navier-Stokes Eqs.~2! for the flow of an
incompressible fluid, as represented in Cartesian coordinates

]ūi

]xi
50 (1)
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where ūi ( i 51,2,3) is the grid-scale velocity component in th
xi-direction, p̄ is the grid-scale static pressure,r is the density,
andn is the kinematic viscosity.

f i is the inertial force associated with the motion of the fram
of reference. In particular, for a stationary frame of reference,

f i50 :i 51,2,3 (3)

while for a rotational frame of reference the centrifugal forces a
Coriolis forces must be added:

f 15V2x112Vū2 ; f 25V2x222Vū1 ; f 350 (4)

whereV is the angular velocity of the frame of reference, which
assumed to be rotating about the positivex3-axis.

The effects of eddies that are not resolved by the grid~subgrid-
scale eddies! are modeled after Smagorinsky@32#, and incorpo-
rated with the Van-Driest wall-damping function that represe
the near-wall effects:

2ui8uj81
1

3
d i j uk8uk85nSGSS ]ūi

]xj
1

]ū j

]xi
D (5)

nSGS5~CSf D!2~2S̄i j S̄i j !
0.5; s̄i j 5

1

2 S ]ūi

]xj
1

]ū j

]xi
D (6)

f 512expS 2
y1

A1D ; A1525.0. (7)

The model coefficientCs is fixed to 0.15, which is a standar
value for flows with large separation, and the filter sizeD is com-
puted as the cube-root of the volume of each finite element.

Detailed explanations of both the frames of reference and
boundary conditions will be given in Sections 3 and 4.

2.2 Computation of the Acoustic Field. In this study, the
aerodynamic sound is assumed to be generated by flows, at
tively low Mach numbers, around an object. The far-field sou
radiated from a flow at a low Mach number can be calcula
from Lighthill-Curle’s equation,@29,30#:

pa5
1

4p

]2

]xixj
E

V

Ti j ~y,t2r /a!

r
d3y

1
1

4p

]

]xi
E

S

nip~y,t2r /a!

r
dS (8)

wherea denotes the speed of sound in the ambient fluid,p the
static pressure in the flow field,pa the far-field sound pressure,xi
the location of the sound-observation point,y the coordinates at
the noise source,r the distance between the noise source and
sound-observation point, andnj the outward unit vector normal to
the solid boundaries. In the above expression, the assumption
the flow has a high Reynolds number makes the contribution
viscous stresses to the surface integral negligible.

Ti j in the volume integral denotes Lighthill’s acoustic tens
and can be written as

Ti j 5ruiuj1~p2a2r!d i j 1m i j (9)

m i j 5mS ]ui

]xj
1

]uj

]xi
D2

2

3
md i j

]uk

]xk
. (10)

The volume integral in Eq.~8! represents the contribution to th
sound of the vortices in the flow field~quadrupole sources!, while
the surface integral represents the contribution of the sound s
tering at the solid boundaries in the flow field~dipole sources!.
For low-frequency sound generated from a flow at a low Ma
number, which is of our primary interest, the contribution of t
quadrupole sources to the far-field sound is, in general, neglig
in comparison with the contribution of dipole sources,@29#. More-
over, if the dimensions of the body are much smaller than
JANUARY 2003, Vol. 70 Õ 33
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wavelength of the sound, as is the case in this study, the di
term can be converted to the time-derivative form as follows:

pa5
1

4pa

xi

r 2

]

]t ES
nip~y,t2r /a!dS. (11)

Thus, we can calculate the far-field sound from the fluctuat
surface pressure obtained by LES.

3 Numerical Method

3.1 Overset Grids From Multiple Dynamic Frames of Ref-
erence. In this study, a moving boundary interface in the flo
field is treated with overset grids from multiple dynamic frames
reference. The application of this method to the interaction
tween a rotating impeller and a stationary casing in a pump
schematically depicted in Fig. 1. A computational mesh that
tates along with the impeller is used to compute the flow wit
the impeller. On the other hand, a dedicated stationary comp
tional mesh for each part computes the flow in stationary part
the pump, such as the inlet whirl-stop, vaned diffuser, and
charge casing. Each mesh includes appropriate margins of ov
with its neighboring meshes upstream and downstream. At e
time-step, the velocity components and static pressure within e
such margin are the values interpolated in the computational m
of the corresponding neighbor. Element-wise trilinear functio
are used to interpolate both the velocity components and the s
pressure. When velocity components are overset, an approp
coordinate transformation must be applied to take the differen
between the frames of reference into account. For the impe
because of its rotation, the finite elements at the interface betw
the stationary and rotating parts, at which the given interpolati
take place, change for every time-step. The interaction betw
the stationary and rotating parts is thus taken into account.

Numerous methods that are able to deal with moving and
deforming boundaries in fluid flow have been proposed in
finite element context~see, for example, Tezduyar@33#!. A great
advantage of our method is its flexibility. Computational mesh
are generated for parts, and the meshes can then be combined
each other to investigate a flow field in which one has a partic
interest. In fact, the method is thus also applicable to the sim
tion of multistage turbomachinery.

The margin of overlap and the procedure for interpolation h
been discussed in detail by Ikegawa et al.@34# and Kaiho et al.
@35#.

3.2 Finite Element Formulation. The accuracy and stabil
ity of the discretizing method is of great importance in LES b
cause the motion of large eddies has to be directly computed.

Fig. 1 Schematic view of an example of overset grids from
dual frames of reference
34 Õ Vol. 70, JANUARY 2003
ole

ng

w
of
e-
is

ro-
in
uta-

of
is-
rlap
ery
ach
esh
ns
tatic
riate
ces
ller,
een
ns

een

/or
he

es
with
lar
la-

ve

e-
The

first-order upwind methods and hybrid methods that are of
used for RANS-based computations are, in general, not appro
ate for use in LES. The excessive numerical dissipation tha
associated with such schemes almost invariably dampens the
tion of large eddies. Instead, we used a streamline-upwind fi
element formulation, which was previously reported by one of
authors~Kato and Ikegawa@27#!, to discretize the governing equa
tions of the flow field. This formulation is based on the SU-P
method originally proposed by Brooks and Hughes@36# and
Tezduyar and Hughes@37#, which shifts the governing equation
in the streamwise direction by modifying the weighting functio
Our formulation combines the SU-PG method and the Tay
Galerkin method proposed by Donea et al.@38#, which recursively
uses the governing equations to modify their discretized fo
This combination results in a shift of the governing equations w
a magnitude equal to one-half of the time increment multiplied
the magnitude of the local flow velocity. This shift exactly cance
out the negative numerical dissipation that is otherwise the re
of applying the conventional first-order explicit Euler’s metho
and guarantees stability and the accuracy of solutions. The
posed formulation essentially possesses second-order accura
terms of both time and space, and has been successfully appli
the LES of external as well as internal flows~Kato et al.@18,28#!.

The pressure algorithm is based on the ABMAC method p
posed by Viecelli@39#, in which the velocity components an
static pressure are simultaneously corrected until the maxim
divergence of the flow field decreases to less than a prescr
critical value.

Details of this formulation, along with the results of validatio
studies, have been given by Kato and Ikegawa@27# and Kato et al.
@28#.

3.3 Parallel Implementation. Most flow fields encountered
in engineering applications are complex and their Reynolds n
bers are generally high~usually in the range 105-108). An LES for
such a flow field requires a huge number of grid cells. We ha
therefore, implemented the formulation described in the previ
sections as a parallel program by using the domain-decompos

Fig. 2 Example of a subdomain mesh partitioned by the RGB
method „computational mesh for flow in a cubic cavity parti-
tioned into eight subdomains …
Transactions of the ASME



Table 1 Results of benchmark tests „CPU time needed to advance by a single time-step in a cubic-cavity flow simulation on
Hitachi’s SR8000 …

Number of
Processing Nodes

Number of
Elements

Seconds Taken
by CPU per
Time-Step

Performance~GFLOPS!
Ratio

@B#/@A#Peak@A# Sustained@B#

1 1.0 M 3.45 14.4 2.03 14.1%
2 2.0 M 3.62 28.8 3.87 13.4%
4 4.0 M 3.89 57.6 7.23 12.6%
8 8.0 M 3.99 115.2 14.04 12.2%

16 16.0 M 4.06 230.4 27.60 12.0%
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programming model, so that the implementation efficiently u
the resources of a distributed-memory parallel computer an
thus suitable for computing large-scale problems.

In the domain-decomposition programming model, the glo
computational domain is partitioned into a prescribed numbe
subdomains, and each of the subdomains is assigned to a
cated processing node. Computation in the various subdomai
unified by implementing appropriate forms of inter-subdom
communication. Various partitioning algorithms~see Simon@40#
and Farhat and Lesoinne@41# for details! have been evaluated i
terms of the quality of their partitioning and of the memory a
CPU time required by the partitioning process. From this ext
sive comparative study, we have concluded that the recur
graph-bisection~RGB! algorithm is best suited to the prese
study. A simple example of the partitioning of a computation
mesh using this algorithm is shown in Fig. 2.

The communicating pairs and/or local coordinates where in
polations are taking place change at the moving-boundary in
faces for every time step, as was briefly described in Subsec
3.1. The usual~unsophisticated! parallel implementation therefor
includes broadcast communications at each time-step as the
cessing node searches for its new communication pairs. This c
munication overhead seriously degrades the overall parallel c
puting performance on most hardware platforms. In our study,
communication pairs are searched for in advance by serial c
putation and fed to the parallel flow solver as input data at e
time-step. This procedure not only avoids the otherwise inevita
communications overhead but also brings in greater flexibi
with the flow solver. By preparing appropriate input data for t
moving-boundary interfaces, the flow solver is capable of comp
ing flow fields with an arbitrary number of moving-boundary i
terfaces that move in an arbitrary~but defined! manner.

The performance of the proposed method in terms of para
computing was evaluated on various hardware platforms. Tab
shows one such example, where the method was tested on
chi’s SR8000 supercomputer, which has a theoretical peak pe

Fig. 3 Sustained parallel computing performance
Journal of Applied Mechanics
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mance of 14.4 GFLOPS per processing node. In this benchm
test, the number of finite elements per processing node was fi
to one million and the total number of finite elements was
creased to 16 million~with 16 processing nodes!. The results are
shown in terms of the time needed to advance by one time-s
the sustained overall performance, and the ratio of the susta
performance to the peak performance. As the number of proc
ing nodes increased, the ratio of the sustained performance to
peak performance gradually deteriorated. The sustained pe
mance, however, ranged from 12% to 14% of the peak per
mance. This is a fairly high value for a finite-element-based fl
solver, which generally requires the indirect and random-acc
loading of data from memory. Figure 3 is a plot of the over
sustained performance against the number of processing node
the same benchmark test. A parallel computing efficiency of o
85% was achieved on this platform, which confirmed that a lar
scale computation of flow with a grid containing more than
million divisions can be completed within a practical period
time on a high-end computer of the current generation.

4 Simulation Examples
After ensuring the validity of the LES code we developed

applying it to the calculation of basic flows of various types~Kato
and Ikegawa@27# and Kato et al.@28#!, the code is now being

Fig. 4 Cross-sectional views of the test pump „note: arrow-
heads in the figure indicate the positions where pressure fluc-
tuations were measured …
JANUARY 2003, Vol. 70 Õ 35
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tested on real-world problems. Two examples will be describ
below: one from the simulation of turbomachinery and the oth
from aeroacoustical simulations.

4.1 Simulation of Unsteady Flow in a Mixed-Flow Pump

Configuration of the Test Pump.The internal flow in a mixed-
flow pump stage that has a high specific-speed was comp
under two operating conditions: at the design point (Q/Qd
5100%) and at an off-design point (Q/Qd560%) ~Kato et al.
@18#!. Horizontal and vertical cross sections through the test pu
are shown in Fig. 4. This pump is composed of an inlet whirl-st
~not shown!, a four-blade open-shroud mixed-flow impeller, and

Fig. 5 Computational mesh for a mixed-flow pump, composed
of meshes for an inlet whirl-stop, an impeller, and a double-
volute discharge casing

Fig. 6 Computed instantaneous distributions of surface pres-
sure „QÕQdÄ100%…
36 Õ Vol. 70, JANUARY 2003
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double-volute discharge casing. The designed specific speedvs of
the pump is 2.1. Such a pump is typically used for drainage p
poses, and can pump a huge amount of water~up to 50 m3/s) from
a river at a lower level. Therefore, it is important to evaluate t
steady and unsteady fluid forces on the impeller, since they m
sometimes cause problems of vibration and/or noise. To ob
comparative data for use in validation, load cells were placed
the bearing housings to measure the axial and radial fluid for
acting on the impeller and semiconductor pressure transdu
were installed in the casing walls to measure static pressures

The Computational Mesh and Its Boundary Conditions.The
computational mesh used in this study is shown in Fig. 5. T
overall mesh is composed of the meshes for each of three part
inlet whirl-stop, a mixed-flow impeller, and a double-volute ca
ing. These are overset as described in Section 3. The actual
peller has a tip clearance of 0.1% of the impeller diameter, but
clearance was not taken into account in the simulation. The nu

Fig. 7 Computed instantaneous distributions of surface pres-
sure „QÕQdÄ60%…

Fig. 8 Comparison of head-flow characteristics
Transactions of the ASME
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bers of grid points are approximately 150,000 for the inlet wh
stop, 500,000 for the impeller, and 200,000 for the volute cas
for a total of about 850,000 grid points.

The boundary conditions were as follows. A uniform distrib
tion of velocity was assumed for the upstream boundary of
inlet-whirl-stop mesh. The pre-rotation was assumed to be z
and the boundary layer at the inlet was not considered. At
downstream boundary of the volute-casing mesh, the fluid trac
was assumed to be zero in all three directions. On the solid w
a no-slip boundary condition was prescribed, and was incor
rated with the Van-Driest damping function described in Subs
tion 2.1. Note that the wall of the casing liner of the impeller me
is moving in the negative-V direction in the rotational frame o
reference, thus the wall velocity was given in this form. The re
lution of the grid near the wall’s surface was not necessarily fi
enough for the no-slip wall boundary condition to actually
correct. However, since reliable wall-stress boundary conditi
that are applicable to the LES of complex turbulent flows have
been proposed, the no-slip wall condition was used in this stu

The time increment for the computation was set so that 4
time-steps corresponded to a single revolution of the impe
Starting from an initial flow field in which all of the velocity
components and the static pressure were set to zero, the flow
in the pump stage became statistically stable within about
revolutions of the impeller and remained in a statistical state
equilibrium after that. The total pump head, the fluctuating flu
forces, and the fluctuating static pressures were calculated by
eraging the flow field during the subsequent ten revolutions of
impeller. The computations were carried out by using four p
cessing nodes on the Hitachi SR8000 supercomputer. The req
CPU time was about one second per time-step. The total C
time for a single operating condition was thus about 22 hours

Computed Instantaneous Flow Fields.For a typical flow field,
Fig. 6 shows the instantaneous static pressure distributions o

Fig. 9 Computed fluid forces acting on the impeller „QÕQd
Ä100%…

Fig. 10 Computed power spectra of fluid forces on the impel-
ler „QÕQdÄ100%…
Journal of Applied Mechanics
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suction surface of the impeller blades and on the casing liner
the design-point case, and Fig. 7 shows the corresponding d
butions for the off-design-point case.

The static pressure is normalized by twice the dynamic pres
that corresponds to the circumferential velocityu2 at the impeller
exit diameterD. The interval between the contour lines of th
normalized values is 0.02. At the design point, the impeller bla
was almost uniformly loaded in the spanwise direction. No s
nificant differences in the flow field were seen between bla
passages. On the other hand, in the off-design case, each
was highly loaded near its tip due to the positive incidence of
incoming flow. The boundary layers on the suction side of
blades separated from the blades just after the leading edge
formed separation bubbles in that region. However, this separa
did not lead to stall conditions. This is also confirmed by t
head-flow characteristics as described below. This was prob
due to the relatively small pitch/chord ratio of this particul
pump. Note also that the pressure distributions on each blade
hibit a nonuniformity that appears to be associated with the
steady flow field in the off-design case.

Computed Head-Flow Characteristics.The computed total
pump heads, together with their measured equivalents, are plo
in Fig. 8 where they are normalized by using the circumferen
velocity u2 at the impeller exit diameter. Although only two poin
were computed in this study, the predicted pump heads quan
tively agree with the values measured at the corresponding po
which is quite encouraging.

Computed Fluctuations of Fluid Force on the Impeller.Fig-
ure 9 shows the fluid forces computed as acting on the impelle
the design point over a time period that corresponds to ten im
ler revolutions. In this figure,B is the width of the impeller’s exit,
and f x and f y , respectively, denote the fluid forces exerted on
impeller in thex andy-directions of the stationary frame of ref
erence. The power spectra of the computed fluid forces are sh
in Fig. 10, wheref R and f Z , respectively, denote the radial an
axial thrust forces. For both components, the higher harmonic
the blade passing frequency~BPF! are also computed. Table
compares, for the design-point case, the computed and meas
values of radial and axial fluid forces. Except for the tim
averaged axial thrust force, the computed fluid forces agree w
the experimental results within a maximum difference of 12

Fig. 11 Comparison of fluctuations in radial thrust force on
the impeller

Table 2 Comparisons of normalized thrust forces on impeller
„QÕQdÄ100%…

Radial Thrust Axial Thrust

Average RMS Average RMS

Measured 0.0189 0.0156 0.449 0.0117
LES 0.0178 0.0143 0.340 0.0096
JANUARY 2003, Vol. 70 Õ 37
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The large discrepancy seen in the time-averaged axial thrust f
is probably due to not including the gaps between the impell
shroud and casing wall in the computation model. Figure 11
plot of the computed and measured values for fluctuations in
dial fluid forces against the flow-rate ratio. At both flow-rate rati
~60% and 100%!, the computed and measured fluid forces are
very good agreement. This implies that the changes in the inte
flow in response to changes in the flow rate ratio have been a

Fig. 12 Computed static-pressure fluctuations at the inner tip
of the tongue „QÕQdÄ100%…
38 Õ Vol. 70, JANUARY 2003
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rately captured by these computations, and that the unsteady
ture of the flow fields has been taken into account.

Computed Fluctuations in Static Pressure at the Inner Tip of
Tongue. Figure 12 shows the computed fluctuations in sta
pressure at the inner tip of the tongue~see Fig. 4! where the
fluctuations in pressure are most pronounced. The rms value
the computed and measured pressure fluctuations are give
Table 3. The computed pressure fluctuations agree with the m
sured values, to within about 5% to 15%.

Although the data presented in this paper are limited to
computation of the flows in a particular mixed-flow pump stag
the computed results are in good agreement with the meas
values in some important respects. These results are quite en

Table 3 Comparison between measured and calculated values
of normalized fluctuations in static pressure at the inner tip of
the tongue „QÕQdÄ100%, rms values …

Bottom Midspan Top

Measured 0.0144 0.0200 0.0152
LES 0.0171 0.0187 0.0166
Fig. 13 Overset meshes for flow around an insulator „fine-mesh case …
Transactions of the ASME
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Fig. 14 Regions of instantaneous reverse flow
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aging and the proposed method thus seems promising as a c
date for use as a research and design tool for mixed-flow pum
or for turbomachinery in general.

4.2 Aeroacoustical Simulation of a Pantograph Insulator

Computational Model. To further increase the speeds of hig
speed trains, which currently run at 300 km/h in Japan, the a
dynamic noise generated by the pantograph~the electric-current
collector on the train’s roof! must be reduced, and this has becom
chanics
andi-
ps,

-
ro-

e

a matter of great concern in terms of the aerodynamic desig
the vehicle. Research has indicated that, among the various n
sources of a pantograph, the insulator provides the dominant
tribution to the overall noise level. We have therefore simula
the near-wake of flow around an insulator and the resulting
field sound, with the particular aim of identifying the primar
source of noise. We hope this will lead us to a new concept
abling further reductions in noise levels.

Figure 13 shows an overset mesh for the near-wake LES of
Fig. 15 Instantaneous distribution of streamwise-velocity in the insulator’s mid-
height plane
JANUARY 2003, Vol. 70 Õ 39
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insulator that was simulated in our study. The insulator is co
posed of a main circular cylinder with a diameter of 220 mm a
9 circular disks that guarantee an appropriate creepage dista

Two sets of overset grids with different resolution were used
the LES and the effects of grid resolution on the fluctuations in
near wake as well as on the resulting far-field sound were inv
tigated. The numbers of elements were approximately 2 mill
for the coarse mesh and 6 million for the fine mesh.

The boundary conditions correspond to the situation in a w
tunnel test where a 1:6 scale model of the actual insulato
placed on a flat plate in a uniform flow of air with a wind veloci
of 50 m/s~180 km/h!. That is, a uniform velocity with no turbu
lence components is prescribed for the upstream section of
outer-domain mesh. A no-slip wall condition, incorporated w
the Van-Driest damping function, is given for the surface of t
insulator as well as for the flat plate. The traction-free condition
applied at all of the remaining boundaries to avoid nonphys
blockage effects.

The Reynolds number based on this uniform wind velocity a
the representative diameter of the model insulator is 1.43105.
The computation was mainly carried out by using 16 process
nodes on the Hitachi SR8000 supercomputer. The CPU-time
quired was about 2.3 seconds per time-step for the fine-mesh
The total CPU-time taken for integrating 64,000 time-steps, d
ing which the time-averaged, rms, and spectral values of the
field and far-field sound were calculated, was thus approxima
40 hours for the fine-mesh case.

Instantaneous Flow Field Around the Insulator.In the follow-
ing sections, we present results from the fine-mesh LES unles
state otherwise. To illustrate the temporal wake structure, reg
of instantaneous reverse flow are shown in Fig. 14. The boun
layer that develops on the surface of the insulator separates
the surface while the flow is still laminar, but a transition to tu
bulence takes place soon after that because of the pronou
three-dimensional structure created by the circular disks.
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Figure 15 shows an instantaneous distribution of streamw
velocity in the insulator’s midheight plane. The wake still po
sesses a large vortical structure, similar to the well-known K
man vortex, but this large structure is rather weak due to
enhancement of spanwise mixing effects by the circular dis
Note also that no apparent discontinuity in the velocity is visib
in the overset region that lies about one and a half diame
downstream from the insulator.

Figure 16 shows the instantaneous distribution of surface p
sure around the insulator and base plate. The time sequence o
surface-pressure fluctuations is fed to the acoustical computa
to obtain the far-field sound-pressure fluctuation at some poin
interest. Therefore, the smallest scale that is adequately cap
in terms of the surface-pressure fluctuation essentially determ
the frequency range over which the resulting SPL may accura
be predicted. It seems that rather small-scale fluctuations in
face pressure are captured by this LES because of the relat
fine resolution of the inner grid.

Velocity Fluctuations in the Near Wake.Typical fluctuations
in streamwise velocity in the near wake and their power spec
for both the coarse and fine-mesh cases, are shown in Fig. 17
sample point isx51D, y50, z50.4D, where D denotes the
representative diameter of the insulator whilex, y, andz, respec-
tively, denote the streamwise, lateral, and spanwise coordin
from the origin, which is set at the bottom-center of the insula
The frequency range that is resolvable by the coarse-mesh
has its upper bound at a Strouhal number of approximately
~five times the usual Karman vortex frequency!. The upper bound
is extended to a Strouhal number of about 6 by the fine-m
LES. Note also that the time-averaged value is higher for
fine-mesh LES than for the coarse-mesh LES. This is because
former gives a narrower region of reverse flow than the latter,
this is probably due to the improved mixing effects in the upp
portion of the wake.
Transactions of the ASME
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Simulated Far-Field Sound and the Distribution of Sour
The fluctuations in far-field sound pressure and the power spe
of these fluctuations are shown in Fig. 18, for both the coar
mesh and fine-mesh cases, together with experimental va
measured in a low-noise-level wind tunnel. The sound was ev
ated at a point 1 m, as expressed at the model’s scale, from
center of the insulator (x50, y51 m, z50). For convenience, the
sound pressure is converted to actual values that correspond
vehicle speed of 350 km/h~97.2 m/s! by assuming Reynolds num
ber similarity of the flow fields for the model and for the actu
structure.

The sound-pressure levels predicted by the coarse-mesh
and the fine-mesh LES are surprisingly different. The fine-me
LES provides a reasonably good prediction of the sound-pres
level at frequencies up to about 2.5 kHz, which corresponds
Strouhal number of 6.4. This is approximately identical to t
resolved frequency range for the near-wake velocity fluctuatio
For the coarse-mesh LES, which successfully resolved the n
wake velocity fluctuation up to a Strouhal number of about 1
~390 Hz!, the predicted sound-pressure level deviates from
measured value throughout the frequency range. This implies
there is some threshold in terms of the resolution of a m
around an object, above which the accurate prediction of far-fi
sound becomes possible. The overset LES presented in this p
seems to be one way of meeting such criteria within a reason
computational cost.

Finally, the instantaneous sound-source distributions were
vestigated according to Powell’s equation~Powell @42#!, as shown
as follows:

Fig. 17 Fluctuations in streamwise velocity in the near wake
„upper … and the power spectra of these fluctuations „lower …
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]t2 2a2¹2D r5¹•~rv3u!. (12)

This equation directly shows the contributions to the sound g
eration from the vortical motions in the flow. Figure 19 shows t
instantaneous values for the right side of Eq.~12!, which were
obtained from the flow-field computation. By examining the
sound-source distributions, the longitudinal vortices generated
the circular disks are identified as being primarily responsible
the generation of sound by this flow.

The two examples mentioned above~and many others not given
here! have clearly indicated that LES is now beginning to ser
as a vital design tool in at least some cases of mechan
engineering.

5 Conclusions
This paper proposes a numerical method that is capable of

dicting unsteady flow fields with large-scale separations in a co
plex geometry that involves an arbitrary number of movi
boundary interfaces. The method is also applicable to the pre
tion of the fluctuations in far-field sound pressure that result fr
an unsteady turbulent wake. The flow field is computed by
large-eddy simulation~LES!, implemented with the standard Sma
gorinsky model, while the far-field sound is predicted by t
surface-pressure fluctuations obtained by the LES.

The method is based on a streamline-upwind finite element
mulation with second-order accuracy in both time and space,
incorporates the application of overset grids from multiple a
dynamic frames of reference. The overall flow field of interest
covered by using several grid sets, each of which is dedicate
the computation of some portion of the flow field and has a fra
of reference that is appropriate to that particular portion. T
method is implemented as a parallel program by a doma

Fig. 18 Computed far-field sound-pressure fluctuations „up-
per … and their power spectra „lower …
JANUARY 2003, Vol. 70 Õ 41



o

w

n

un-
ith

om-
n a
rea-
t at
the
the
n-

idate

of
low

li-

of
ck-

w

at
ta-

of
m-

w

ons
J.

dy

nt

ic

le

u-

ion
s.

-

h-
E

s,’’

of
t

rce

s,’’

r-

yl-

an

a-

ted

om

ur-

al
decomposition programming model; therefore, a large-scale fl
field computation with over ten million grid cells can be com
pleted within a reasonable period of computation on a curr
high-end distributed-memory parallel computer.

Initially, the internal flow of a high-specific-speed mixed-flo
pump stage (vs52.1) was simulated, as a way to evaluate t
validity of the proposed method, under two operating conditio
the design point (Q/Qd5100%) and an off-design point (Q/Qd

Fig. 19 Instantaneous sound-source distributions in the near
wake: centerline plane „top …, midheight plane „middle …, and a
plane one diameter downstream from the insulator „bottom …
42 Õ Vol. 70, JANUARY 2003
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560%). In both cases, the predicted total pump head and
steady fluid forces on the impeller were in good agreement w
the measured values.

The near wake and the resulting far-field sound were then c
puted for flow around an insulator that would be mounted o
high-speed train. The predicted sound-pressure level was in
sonably good agreement with the wind-tunnel measuremen
Strouhal frequencies of up to about 6. The sound sources in
near wake were analyzed according to Powell’s equation and
longitudinal vortices were identified as being primarily respo
sible for the generation of sound by this flow.

The proposed method thus seems to be a promising cand
for use as an aerodynamic/aeroacoustic design tool.
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Hierarchical Divergence-Free
Bases and Their Application to
Particulate Flows
The paper presents an algebraic scheme to construct hierarchical divergence-free
for velocity in incompressible fluids. A reduced system of equations is solved in
corresponding subspace by an appropriate iterative method. The basis is constructed
the matrix representing the incompressibility constraints by computing algebraic de
positions of local constraint matrices. A recursive strategy leads to a hierarchical b
with desirable properties such as fast matrix-vector products, a well-conditioned red
system, and efficient parallelization of the computation. The scheme has been exten
particulate flow problems in which the Navier-Stokes equations for fluid are coupled
equations of motion for rigid particles suspended in the fluid. Experimental resul
particulate flow simulations have been reported for the SGI Origin 2000.
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1 Introduction
The simulation of incompressible fluid flow is a computatio

ally intensive application that has challenged high-performa
computing technology for several decades. The ability to so
large, sparse linear systems arising from Navier-Stokes equa
is critical to the success of such simulations. Linear system
equations are typically solved by iterative methods that have
advantage of requiring storage proportional to the number of
knowns only. One can use the conjugate gradients method~CG!,
@1#, for symmetric positive definite systems and the generali
minimum residual method~GMRES!, @2#, for nonsymmetric sys-
tems. Although these methods are memory-efficient in compar
to direct methods such as Gaussian elimination, the rate of
vergence to the solution can be unacceptably slow. Often
needs to accelerate convergence by using some preconditio
strategy that computes an approximate solution at each step o
iterative method. It is well known that commonly used precon
tioning schemes such as those based on incomplete factoriz
~see, e.g.,@3#! may not be effective for indefinite linear system
with eigenvalues on both sides of the imaginary axis. Since
eigenvalue distribution of linear systems arising from the Nav
Stokes equations could produce such systems, it is a challen
devise robust and effective preconditioners for incompress
flows.

The Navier-Stokes equations governing incompressible fl
are given as follows:

r
]u

]t
1ru•¹u5rg2¹p1¹•t, (1)

¹•u50, (2)

whereu denotes fluid velocity,p denotes pressure,r denotes fluid
density,g represents gravity, andt represents the extra-stress te
sor. For Newtonian flows,t takes the form

t5m~¹u1¹uT!. (3)

1To whom correspondence should be addressed.
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, July
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Santa Barbara, CA 93106-5070, and will be accepted until four months after
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After appropriate linearization and discretization, the followin
system must be solved:

F A B

BT 0G FupG5F f
0G , (4)

whereu is the velocity vector,p is the pressure vector,BT andB
are discrete operators for divergence and gradient, respecti
The matrixA denotes the discrete operator on velocity in~1!. This
linear system is indefinite due to the incompressibility constra
on velocity which is enforced byBTu50 in ~4!.

A convenient way to circumvent the indefiniteness of the line
system due to these constraints is to restrict the fluid velocity
divergence-free subspace. There are a number of technique
construct divergence-free velocity functions. These include d
cretely divergence-free functions obtained from specially c
structed finite element spaces,@4,5#, as well as continuous func
tions derived from solenoidal functions such as those used
vortex methods. The problem is reduced to solving the momen
equation for divergence-free velocity functions without the ne
to include continuity constraints. In many cases, the resulting
duced linear systems are no longer indefinite. Furthermore, th
reduced systems can be preconditioned to accelerate the co
gence of iterative solvers.

The existing schemes for divergence-free functions are com
cated and difficult to generalize to arbitrary discretizations. In t
paper, we present an algebraic scheme to compute a basi
discretely divergence-free velocity. Our scheme constructs a b
for the null space of the matrix representing the linear constra
imposed on fluid velocity by~2!. The algebraic nature of the
scheme ensures applicability to a wide variety of methods incl
ing finite difference, finite volume, and finite elements metho
Since the choice of the basis preconditions the reduced lin
system implicitly, it is possible to compute an optimal basis th
leads to rapid convergence of the iterative solver. A more mod
target is to compute a well-conditioned basis that preconditi
the reduced system to some degree. The paper presents an
rithm to construct a hierarchical basis of divergence-free functi
that is well conditioned too.

The paper is organized as follows: Section 2 presents the a
rithm for hierarchical divergence-free basis and discusses com
tational aspects. Section 3 outlines the extension of the schem
particulate flow problems. In Section 4, we describe the beha
of our scheme on benchmark problems in particulate flows. C
clusions are presented in Section 5.

2,
the
nt of
ara,
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Fig. 1 The coarsening of a 4 Ã4 mesh to a 2 Ã2 mesh
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2 Hierarchical Divergence-Free Basis
A straightforward way to construct discretely divergence-fr

bases is to compute the null space of the discrete divergence
erator matrixBT. This null space can be computed via full Q
factorization or singular value decomposition~SVD! of BT, @6#.
For anm by n matrix (m,n), the computation is proportional to
m2n while storage is proportional tomn. For the matrixBT, the
number of rowsm corresponds to the number of pressure ba
functions and the number of columnsn corresponds to the numbe
of velocity basis functions. SinceBT is large and sparse with
nonzeros proportional tom, both QR factorization and SVD ar
unsuitable due to the prohibitive requirements of computation
storage.

The nonzero structure ofBT can be exploited to construct
null-space basis efficiently. The following outline of the algorith
to construct a hierarchical divergence-free basis follows the
scription in@7#. Suppose one can reorder the columns ofBT such
that

BT5@Bin
T Bout

T #, (5)

whereBin
T is a block diagonal matrix with ‘‘small’’ nonzero block

on the diagonal. Given the following singular value decompo
tion of Bin :

Bin5USVT5@U1 U2#FS1

0G @V1 V2#T, (6)

whereS1 is a nonzero diagonal matrix,BT can be represented a
follows:

BT5VVT@Bin
T Bout

T #FUUT

I
G5@V1 V2#FS1 0

0 0
UV1

TBout
T

V2
TBout

T G
3FUT

I
G . (7)

Since

FS1 0

0 0
UV1

TBout
T

V2
TBout

T GF 0 2S1
21V1

TBout
T

I 0

0 I
G5F0 0

0 V2
TBout

T G , (8)

the null-space basis ofBT is given by
Applied Mechanics
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P5FU

I
GF 0 2S1

21V1
TBout

T

I 0

0 I
G F I 0

0 P~1!G , (9)

whereP(1) is a null-space basis of the matrixB(1)T
5V2

TBout
T . With

this transformation, the problem of computing the null-space
the original matrixBT is reduced to a problem of smaller size. B

applying the same technique to compute the null-space ofB(1)T
,

one gets a recursive strategy for constructing the null-space ofBT.
The preceding approach is viable only if the transformation

inexpensive and the reduced matrixB(1)T
is easy to compute and

process subsequently. These criteria are met simultaneousl
exploiting the relation of the nonzero structure ofBT with the
discretization mesh. The pressure nodes in the mesh are clus
into groups of a few nodes each, and the velocity basis functi
with support within a cluster are placed inBin whereas those with
support across clusters are placed inBout . The resulting matrixBin
is block diagonal with small block sizes. Each diagonal blo
represents the divergence operator for the corresponding clust
nodes. Due to the small size of the diagonal blocks, the SVD
be computed very efficiently.

To illustrate the technique, we reproduce an example of
34 mesh from@8# ~see Fig. 1!. Pressure unknowns are defined
the nodes. Thex-component of velocity is defined on the horizo
tal edges andy-component of velocity is defined on the vertic
edges. The nodes are clustered into four groups:G15$1,2,5,6%,
G25$3,4,7,8%, G35$9,10,13,14%, and G45$11,12,15,16%. The
solid edges indicate velocity unknowns forBin and the dashed
edges indicate velocity unknowns forBout . The associated matri
ces are

Bin5F B1

B2

B3

B4

G ,

Bout5F 2C1 C2

2C1 C2

2C3 C4

2C3 C4

G , (10)
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Bi5F 21 1 0 0

0 0 21 1

21 0 1 0

0 21 0 1

G , i 51, . . . ,4, (11)

and

C15F0 1 0 0

0 0 0 1G ,C25F1 0 0 0

0 0 1 0G ,
C35F0 0 1 0

0 0 0 1G ,C45F1 0 0 0

0 1 0 0G . (12)

The SVD of each block inBin is given as

Bi5UiSiVi
T5F 21/2 1/2 21/2 1/2

1/2 1/2 21/2 21/2

21/2 1/2 1/2 21/2

1/2 1/2 1/2 1/2

GF 2

&

&

0

G
3F 1/2 2& 0 1/2

21/2 0 2& 1/2

21/2 0 & 1/2

1/2 & 0 1/2

G T

, (13)

that yields

B~1!T
5V2

TBout
T

5
1

2 F 21 21 0 0 21 21 0 0

1 1 0 0 0 0 21 21

0 0 21 21 1 1 0 0

0 0 1 1 0 0 1 1

G .

(14)

Note that the rows ofB(1)T
correspond to the nodes 6, 8, 14, a

16 of the original mesh, and the columns correspond to the cr

cluster edges. It is easy to see thatB(1)T
is a divergence matrix for

the coarse mesh shown in Fig. 1. Since columns 2j -1 and 2j are

identical for j 51, . . . 4, thecolumns ofB(1)T
can be reduced to

four nonzero columns by multiplying with an orthogonal matr
from the right. The resulting matrix is the divergence matrix o
232 mesh which has been scaled by 1/&.

In general, the nonzero structure of the matrixB(1)T
retains the

structure of a coarse mesh obtained from grouping clusters

single nodes. Furthermore,B(1)T
may be considered equivalent t

a divergence operator matrix for the coarse mesh. Thus, the re
sive strategy can be applied in a straightforward manner. S

B(1)T
can also be computed efficiently from the SVD ofBin , each

step of the recursive algorithm is very efficient.
The recursive algorithm to construct the divergence-free b

gives rise to a hierarchical basis that consists of basis funct
defined on each level of the mesh hierarchy. In the actual im
mentation of the algorithm, the null-space matrix is never co
puted explicitly. It is available only in the form of product o
matrices constructed from the SVD matrices and the equiva

divergence operator matrixB(* )T
at each level of the mesh hier

archy.
The size of meshes in the hierarchy decreases geometri

from the finest mesh to the coarsest mesh. Since the size ofB(* )T

is proportional to the mesh size at each level, the cost of com
ing and storing SVDs is also proportional to the mesh size at
corresponding level. Thus, the overall computation and storag
46 Õ Vol. 70, JANUARY 2003
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proportional to the size ofBT. This is a significant improvemen
over the QR and SVD algorithms. However, it should be no
that this reduction in computational complexity is gained at
expense of generating a basis that is not orthonormal. The re
is referred to@7# for more details of this method.

Once the divergence-free basisP has been constructed, the lin
ear system in~4! is transformed to the following reduced system

PTAPx5PTf , u5Px, (15)

which is solved by GMRES to obtainx. WhenA is symmetric and
positive definite, one can use CG instead of GMRES. Pressure
be computed correctly by solving the least-squares problem

Bp' f 2Au, (16)

which is consistent sincePT( f 2Au)50. At each iteration, one
needs to compute matrix-vector products of the formy5Px and
z5PTw. The computation follows a recursive structure in whi
matrix-vector products are computed at each level of the m
hierarchy. The computation proceeds from the coarsest mes
the finest mesh for the producty5Px and in the reverse direction
for the productz5PTw. Since the computational complexity o
each product is proportional to the size ofBT, the cost of com-
puting the matrix-vector product for the reduced system in~15! is
proportional to the number of velocity unknowns. Furthermo
the concurrency in the hierarchical structure of this algorithm c
be exploited to develop high-performance software for inco
pressible flows. Details of an efficient parallel formulation a
presented in@9#.

3 Particulate Flows
Divergence-free velocity basis can be used to solve linear

tems arising in solid-fluid mixtures that consist of rigid particl
suspended in incompressible fluids. The solution of these lin
systems is extremely computationally intensive and accounts
majority of the simulation time. The motion of particles is go
erned by Newton’s equations whereas the fluid obeys Nav
Stokes equations. Assuming no-slip on the surface of the part
the fluid velocity at any point on the particle surface is a functi
of the particle velocity. For the sake of simplicity, this discussi
assumes spherical particles. For thei th particle, the positionXi
and velocityUi is obtained by solving the following equations:

Mi

dUi

dt
5Fi , (17)

dXi

dt
5Ui , (18)

whereUi includes both translation and angular components of
particle,Mi represents the generalized mass matrix, andFi repre-
sents the force and torque acting on the particles by the fluid
well as gravity. Fluid velocity at the surface of the particle
related to the particle velocity as follows:

uj5Ut,i1r j3Ur ,i (19)

whereUt,i andUr ,i are the translation and angular velocity com
ponents, respectively, andr j is the position vector of thej th point
relative to the center of the particle.

A simple way to represent the linear system arising in parti
late flows is as follows. The systems for fluid and particles
written independently along with the constraint in~19! that forces
fluid velocity on a particle surface to be dependent on the part
velocity. Thus,

F A B 0

BT 0 0

0 0 C
G F u

p
U
G5F b

0
g
G , where u5F uf

up
G5F I

W
G Fuf

U G ,
(20)
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in which uf is the fluid velocity in the interior of the fluid andW
is the linear transformation from particle velocityU to fluid ve-
locity up on particle surface given by~19!. Using subscriptsf and
p to denote fluid interior and particle surface, respectively,
preceding system can be transformed to the following system

F I 0 0 0

0 WT 0 I

0 0 I 0
GF Af f Ap f Bf 0

Af p App Bf p 0

Bf
T Bf p

T 0 0

0 0 0 C

GF I 0 0

0 W 0

0 0 I

0 I 0

G F uf

U
p
G

5F bf

g1WTbp

0
G , (21)

which can be simplified further to obtain the following system

F Af f Ap fW Bf

WTAf p WTAppW1C WTBf p

Bf
T Bf p

T W 0
G F uf

U
p
G5F bf

g1WTbp

0
G .

(22)

Note that this system has a form similar to the linear system in~4!.
A hierarchical divergence-free basis can be computed for~22!

without any difficulty. In this case, the null-space is computed
the constraint matrix@Bf

T Bf p
T W#. The basic algorithm remain

unchanged although care has to be taken when coarsenin

Fig. 2 Particles moving in a periodic channel
Journal of Applied Mechanics
he
:

or

the

mesh with particles. The fluid nodes on the particle surface
absent from the mesh in this system. The presence of part
introduces a single node that is connected to all the fluid no
that are adjacent to the particle surface. The algebraic schem
computing the divergence-free basis ensures that the algor
applies without any change to particulate flows as well.

4 Experiments
The hierarchical divergence-free basis method has been us

solve the linear systems arising in particulate flow simulatio
The simulations involved incompressible fluid in a tw
dimensional channel with a number of rigid particles movi
freely under the action of gravitational force as well as force fro
the surrounding fluid~see Fig. 2!.

The physical system is evolved from an initial state by t
implicit backward Euler method. The first-order accuracy of th
scheme was adequate because the time step was severely
strained by particle dynamics. At each time-step, a nonlinear
tem of equations was solved by an inexact Newton’s method,@10#.
At each iteration, a linear system of the form~22! was solved for
the Jacobian of the nonlinear equations. In general, this Jaco
matrix is a saddle-point system with a nonsymmetric matrixA
which tends to be real positive for a sufficiently small Reyno
number. The hierarchical divergence-free basis approach is
to transform the system in~22! to the reduced form shown in~15!.
The reduced system is solved by the GMRES method. The a
tive tolerance proposed in@11# was used as a stopping criteria.

The differential equations are approximated by the mixed fin
elements method in which fluid velocity and pressure are rep
sented by the P2/P1 pair of elements. The choice of quadr
velocity elements is necessary to capture the behavior of clo
spaced particles. A nonuniform mesh is used to discretize the fl
domain resulting in a linear system that is large and sparse.
scheme proposed in@12# is used in an arbitrary Lagrange-Eule
~ALE! framework to accommodate moving particles.

The parallel simulation code was developed using Petsc,@13#.
Communication between processes was done by MPI,@14#. The
mesh is generated using Triangle,@15# and partitioned using Par
allel METIS, @16#. Further implementation details are available
@17#.

Simulations were conducted for rigid particles falling in a 3
in. wide and 30 in. long two-dimensional vertical channel with
solid impenetrable bottom. The particles were assumed to be
cular disks of diameter 0.25 in. and specific gravity 1.14. T
initial position of particles was specified.

4.1 Single Particle Sedimentation. This benchmark simu-
lates the sedimentation of a single particle from rest whose ce
is at a distance of 0.8 in. from the left wall and 30 in. from th
bottom of the channel. At the first time-step, the computatio
mesh had 2461 elements and 1347 nodes. The number of
knowns in the unconstrained problem was 9418. Figure 3 sh
Fig. 3 Sedimentation of a single particle: „a… mesh with 2461 elements and 1347 nodes, „b… parti-
tioning into eight domains. The gravitational force pulls the particles towards the right.
JANUARY 2003, Vol. 70 Õ 47
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the initial mesh and the associated partitioning into eight sub
mains.

To illustrate the numerical and parallel performance of the
gorithm, the experiment was restricted to the first five time-ste
starting with the particle and fluid at rest. Each time-step was 0
sec. Table 1 presents the performance of the algorithm on e
processors of the SGI Origin 2000 multiprocessor. The para
efficiency is expected to be much higher for a larger problem.
this experiment, superlinear speedup is observed due to effec
cache utilization when data on individual processors is sm
enough to fit within the cache.

4.2 Multiple Particle Sedimentation. The next benchmark
simulates the sedimentation of 240 particles arranged in a sta
ary crystal. The crystal consists of an array of 240 particles in
rows and 12 columns. The centers of the particles coincide w
the nodes of a uniform mesh with 20 rows and 12 columns. T
centers of the particles are approximately 0.06154 in. apart in e
direction. The distance between the walls and the nearest part
is also 0.06154 in. The top of the crystal is 30 in. above t
channel bottom. Figure 4 shows the initial mesh and the ass
ated partitioning into eight subdomains.

At the first time-step, the computational mesh had 8689 e
ments and 6849 nodes, giving rise to 43,408 unknowns in
unconstrained problem. The simulation was run for five time-st
starting with the particles and fluid at rest. Each time step w
0.01 sec. Table 2 presents the performance of the algorithm
eight processors of the SGI Origin 2000.

It is instructive to see the breakdown of the computational ti
into important steps. Table 3 presents the computational cos
critical steps. The nonlinear system solution time consists of
following main steps: calculation of the Jacobian matrix, applic
tion of the nonlinear operator, formation of the hierarchic
divergence-free basis, and the solution of the linear system.

Table 1 Single particle sedimentation on the SGI origin 2000.

Processors Time Speedup Efficiency

1 1819 s 1.0 1.00
2 822 s 2.2 1.11
4 502 s 3.6 0.91
8 334 s 5.3 0.66

Fig. 4 Sedimentation of multiple particles: „a… mesh with 8689
elements and 6849 nodes, and „b… partitioning into eight do-
mains. Only the region of interest is shown.
48 Õ Vol. 70, JANUARY 2003
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time to solve the linear system is dominated by matrix-vec
multiplication with the Jacobian, application of the hierarchic
basis, and orthogonalization of the Krylov subspace vectors
GMRES. The nonlinear solver takes most of the time, and
parallelization is critical to the overall performance.

4.3 Additional Remarks. The parallel implementation o
the algorithm demonstrates good parallel efficiency even
small-sized problems. The overall speedup of 5.3 on eight pro
sors shown in Table 2 includes nonparallelizable component
the code as well as preconditioning effects that slowed the c
vergence of iterative solver on larger number of processors.
detailed view in Table 3 shows that the speedup in critical step
5.9 on eight processors. The computation of divergence-free
locity in the hierarchical basis is very efficient even on the sm
problem considered here. The relatively modest speedup
matrix-vector products is due to the structure of computation
volving multiplication with the matrices of the hierarchical bas
As discussed in Section 2, this requires matrix-vector produ
with matrices defined on meshes whose size decreases geom
cally from the finest to the coarsest level. In addition, it may
noted that parallel efficiency can be increased by replacing
orthogonalization step in GMRES with a variant that has a sma
serial component.

The preceding benchmark experiments definespeedupas the
improvement in speed over thebest implementation of the algo-
rithm on a uniprocessor. This implies that although the para
algorithm demonstrates goodspeed improvementon multiple pro-
cessors, the speedup may be modest. The code attempts to ac
high parallel performance by adopting an aggressive partition
strategy which is aimed at good load balance in the overall co
putation. This particular implementation of the hierachic
divergence-free basis algorithm computes a basis that cha
with the number of processors. This has resulted in weaker
conditioning which has caused a growth in the number of ite
tions when the number of processors is increased. The deter
tion in numerical efficiency of the algorithm can be eliminated
using thesamebasis on multiple processors. In this case, howev
there is a marginal decrease in parallel efficiency which is off
by superior numerical convergence. The reader is referred to@9#
for a scalable parallel implementation of this approach.

5 Conclusions
This paper describes an algorithm to compute discr

divergence-free velocity functions for incompressible fluid flo
problems. The proposed scheme computes a basis for the
space of the constraint matrix used to enforce incompressibilit
the linearized Navier-Stokes equations. A multilevel recursive
gebraic transformation of this constraint matrix yields a hierarc
cal basis for the required divergence-free functions. The algeb
nature of the scheme allows easy extension to particulate
problems in which rigid particles are coupled with the surroun
ing fluid by no-slip condition on the particle surface. The pap
outlines the extension of the hierarchical basis method for part
late flow problems. The effectiveness of the proposed schem
demonstrated by a set of benchmark experiments with single
multiple sedimenting particles. The algorithm is designed to
parallelizable. The resulting implementation on the SGI Orig
2000 parallel computer demonstrates good parallel performa

Table 2 Multiple particle sedimentation on the SGI origin 2000

Processors Time Speedup Efficiency

1 3066 s 1.0 1.00
2 1767 s 1.7 0.85
4 990 s 3.0 0.75
8 570 s 5.3 0.66
Transactions of the ASME



Table 3 Parallel performance of important steps in the nonlinear solver for multiple particle sedimentation

Simulation Step

PÄ1 PÄ8

Time Percent Time Percent Speedup

Matrix assembly 224 11 33 10 6.8
Hierarchical Basis 1010 49 143 41 7.1
Matrix-vector multiplication 452 22 86 25 5.3
GMRES orthogonalization 360 18 83 24 4.3
Total 2046 100 345 100 5.9
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even on small sized problems. For larger problems, the algori
is expected to have significantly better parallel performance.
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Aerodynamic Interactions
Between Parachute Canopies
Aerodynamic interactions between parachute canopies can occur when two sep
parachutes come close to each other or in a cluster of parachutes. For the case o
separate parachutes, our computational study focuses on the effect of the sepa
distance on the aerodynamic interactions, and also focuses on the fluid-structure int
tions with given initial relative positions. For the aerodynamic interactions between
canopies of a cluster of parachutes, we focus on the effect of varying the numbe
arrangement of the canopies.@DOI: 10.1115/1.1530634#
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1 Introduction
The performance of a parachute might be influenced by

aerodynamic and fluid-structure interactions of its canopy w
other parachute canopies. In this paper, we describe our com
tional model for such interactions, and present numerical res
from simulations for two different types of interactions. In the fir
case, our investigation focuses on the aerodynamic and fl
structure interactions between the canopies of two separate
chutes coming close to each other. We study how the aerodyn
interactions depend on the horizontal distance between the p
chutes. We also study how such interactions are influenced w
our computational model includes the fluid-structure interacti
~FSI! between the parachute canopy and the surrounding
field. For this, we start with given initial relative positions. In th
second case, we investigate the aerodynamic interactions bet
the canopies of a cluster of parachutes. We simulate the inte
tions for clusters with three, four, five, and six canopies, and
vestigate how such interactions depend on the number of cano
as well as the spatial arrangement of these canopies.

These simulations, in addition to providing some initial resu
for the aerodynamic and fluid-structure interactions between p
chute canopies, show how the computational methods descr

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 2
2001; final revision, Mar. 18, 2002. Associate Editor: W. T. Wheeler. Discuss
on the paper should be addressed to the Editor, Prof. Robert M. McMeek
Department of Mechanical and Environmental Engineering University of Californ
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months after final publication of the paper itself in the ASME JOURNAL OFAPPLIED
MECHANICS.
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can be used for parachute applications. The interaction betw
the parachute canopy and the surrounding flow field is an esse
component of a realistic parachute simulation, and thus the ab
to predict parachute FSI is recognized as an important challe
within the parachute research community,@1–5#. In our follow-on
studies, we plan to take more extensively into account the c
plex FSI involved at various stages of parachute systems, f
initial deployment to landing.

For the cases simulated in this paper, the parachutes are
ating at sufficiently low speeds, and, therefore, the aerodynam
is governed by the Navier-Stokes equations of incompress
flows. For the problems where we limit our attention to the ae
dynamic interaction between the parachute canopies, the cano
are not experiencing any shape changes or relative moti
Therefore, in those simulations, the fluid dynamics computati
are based on a stabilized semi-discrete finite element formula
@6#. For the cases that involve fluid-structure interactions, on
other hand, the canopies undergo shape changes. In such c
because the spatial domain occupied by the fluid is varying~i.e.,
deforming! with respect to time, we use the Deforming-Spatia
Domain/Stabilized Space-Time~DSD/SST! formulation, @6–8#,
which was developed for flow problems with moving boundar
and interfaces. Both the semi-discrete and space-time met
have been implemented for parallel computing, and the res
presented here are from simulations carried out on a CRAY T
1200 supercomputer.

2 Computational Model

2.1 Fluid Dynamics. Let V t,Rnsd be the spatial fluid me-
chanics domain with boundaryG t at time tP(0,T), where the

3,
ion
ing,
a–
four
2003 by ASME Transactions of the ASME
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subscriptt indicates the time-dependence of the spatial dom
and its boundary. The Navier-Stokes equations of incompress
flows can be written onV t and;tP(0,T) as

rS ]u

]t
1u•“u2fD2“•s50, (1)

“•u50, (2)

wherer, u, andf are the density, velocity, and the external forc
respectively. The stress tensors is defined as

s~p,u!52pI12m«~u!. (3)

Herep, I , andm are the pressure, identity tensor, and the visc
ity, respectively. The strain rate tensor is defined as

«~u!5
1

2
~~“u!1~“u!T!. (4)

Both Dirichlet and Neumann-type boundary conditions are
counted for:

u5g on ~G t!g , n•s5h on ~G t!h . (5)

Here (G t)g and (G t)h are complementary subsets of the bound
G t , n is the unit normal vector at the boundary, andg andh are
given functions. A divergence-free velocity field is specified as
initial condition.

2.2 Structural Dynamics. Let V t
s,Rnxd be the spatial do-

main bounded byG t
s , wherenxd52 for membranes andnxd51

for cables. The boundaryG t
s is composed of (G t

s)g and (G t
s)h .

Here, the superscript ‘‘s’’ corresponds to the structure. The equ
tions of motion for the structural system are

rsS d2y

dt2
1h

dy

dt
2fsD2“•ss50, (6)

wherey is the displacement,rs is the material density,fs are the
external body forces,ss is the Cauchy stress tensor, andh is the
mass-proportional damping coefficient. The damping provides
ditional stability and is used for problems where time accurac
not important.

We use a total Lagrangian formulation of the problem. Th
stresses are expressed in terms of the second Piola-Kirchoff s
tensorS, which is related to the Cauchy stress tensor throug
kinematic transformation. Under the assumption of large displa
ments and rotations, small strains, and no material damping
membranes and cables are treated as Hookean materials wit
ear elastic properties. For membranes, under the assumptio
plane stress,S becomes

Si j 5~ l̄mGi j Gkl1mm@Gil Gjk1GikGjl # !Ekl , (7)

where for the case of isotropic plane stress

l̄m5
2lmmm

~lm12mm!
. (8)

Here,Ekl are the components of the Cauchy-Green strain ten
Gi j are the components of the contravariant metric tensor in
original configuration, andlm and mm are Lame´ constants. For
cables, under the assumption of uniaxial tension,S becomes

S115EcG
11G11E11, (9)

whereEc is the cable Young’s modulus. To account for stiffnes
proportional material damping, the Hookean stress-strain relat
ships defined by Eqs.~7! and~9! are modified, andEkl is replaced
by Êkl , where

Êkl5Ekl1zĖkl. (10)

Here,z is the stiffness proportional damping coefficient andĖkl is
the time derivative ofEkl .
Journal of Applied Mechanics
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2.3 Semi-Discrete Formulation of Fluid Dynamics. Let us
consider a fixed spatial domainV and its boundaryG, where
subscriptt is dropped from bothV t and G t . The domainV is
discretized into subdomainsVe, e51,2,¯ ,nel , wherenel is the
number of elements. For this discretization, the finite element t
function spacesS u

h for velocity andS p
h for pressure, and the cor

responding test function spacesV u
h andV p

h are defined as follows:

S u
h5$uhuuhP@H1h~V!#nsd,uh8gh on Gg%, (11)

V u
h5$whuwhP@H1h~V!#nsd,wh80 on Gg%, (12)

S p
h5V p

h5$qhuqhPH1h~V!%. (13)

HereH1h(V) is the finite-dimensional function space overV. The
stabilized formulation is written as follows: FinduhPS u

h and ph

PS p
h such that;whPV u

h andqhPV p
h :

E
V

wh
•rS ]uh

]t
1uh

•“uh2f hDdV

1E
V

«~wh!:s~ph,uh!dV2E
Gh

wh
•hhdG

1E
V

qh
“•uhdV

1(
e51

nel E
Ve

1

r
@tSUPGruh

•¹wh1tPSPG¹qh#

3@Ł ~ph,uh!2rf h#dV

1(
e51

nel E
Ve

tLSIC“•whr“•uhdV50, (14)

where

Ł ~qh,wh!5rS ]wh

]t
1uh

•“whD2“•s~qh,wh!. (15)

In this formulation,tSUPG, tPSPG, andtLSIC are the stabilization
parameters,@6,9#.

2.4 DSDÕSST Formulation of Fluid Dynamics. In discreti-
zation of the space-time domain, the time interval (0,T) is parti-
tioned into subintervalsI n5(tn ,tn11), wheretn and tn11 belong
to an ordered series of time levels 05t0,t1¯,tN5T. Let Vn
5V tn

andGn5G tn
to simplify the notation. The space-time sla

Qn is defined as the domain enclosed by the surfacesVn , Vn11 ,
and Pn , wherePn is the lateral surface ofQn described by the
boundaryGn as t traversesI n .

The Dirichlet and Neumann-type boundary conditions a
specified over (Pn)g and (Pn)h . For this discretization, the finite
element trial function spaces (S u

h)n for velocity and (S p
h)n for

pressure, and the corresponding test function spaces (V u
h)n and

(V p
h)n are defined as follows:

~S u
h!n5$uhuuhP@H1h~Qn!#nsd,uh8gh on ~Pn!g%, (16)

~V u
h!n5$whuwhP@H1h~Qn!#nsd,wh80 on ~Pn!g%, (17)

~S p
h!n5~V p

h!n5$qhuqhPH1h~Qn!%. (18)

Here H1h(Qn) is the finite-dimensional function space over th
space-time slabQn . Over the element domain, this space
formed by using first-order polynomials in both space and tim
The interpolation functions are continuous in space but disc
tinuous in time.

The DSD/SST formulation is written as follows: Given (uh)n
2 ,

find uhP(S u
h)n and phP(S p

h)n such that;whP(V u
h)n and qh

P(V p
h)n :
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E
Qn

wh
•rS ]uh

]t
1uh

•“uh2f hDdQ

1E
Qn

«~wh!:s~ph,uh!dQ2E
(Pn)h

wh
•hhdP

1E
Qn

qh
“•uhdQ

1E
Vn

~wh!n
1
•r~~uh!n

12~uh!n
2!dV

1 (
e51

(nel)n E
Qn

e

tLSME

r
Ł ~qh,wh!•

@Ł ~ph,uh!2rfh#dQ

1(
e51

nel E
Qn

e
tLSIC“•whr“•uhdQ50. (19)

This formulation is sequentially applied to all space-time sla
Q0 ,Q1 ,Q2 , . . . ,QN21 . The computation starts with

~uh!0
25u0 , “•u050 on V0 . (20)

HeretLSME is the stabilization parameter~see@9,10#!. For an ear-
lier, detailed reference on this formulation see@6#.

2.5 Structural Dynamics Formulation. The semi-discrete
finite element formulation for the structural dynamics is based
the principle of virtual work:

E
V0

s
rs

d2yh

dt2
•whdVs1E

V0
s
hrs

dyh

dt
•whdVs1E

V0
s
Sh:dE~wh!dVs

5E
V t

s
~ t1rsf s!•whdVs. (21)

Here the weighting functionwh is also the virtual displacemen
The air pressure force on the canopy surface is represente
vector t. The pressure term is a ‘‘follower force’’~since it ‘‘fol-
lows’’ the deforming structural geometry! and thus increases th
overall nonlinearity of the formulation. The left-hand-side term
of Eq. ~21! are referred to in the original configuration and t
right-hand-side terms for the deformed configuration at timet.

Upon discretization using appropriate function spaces, a non
ear system of equations is obtained at each time-step. In sol
that nonlinear system with an iterative method, we use the follo
ing incremental form:

F M

bDt2 1
~12a!gC

bDt
1~12a!K GDdi5Ri , (22)

where

C5hM1zK . (23)

Here M is the mass matrix,K is the consistent tangent matri
associated with the internal elastic forces,C is a damping matrix,
Ri is the residual vector at thei th iteration, andDdi is the i th
increment in the nodal displacements vectord. In Eq. ~22!, all of
the terms known from the previous iteration are lumped into
residual vectorRi . The parametersa,b,g are part of the Hilber-
Hughes-Taylor, @11#, scheme, which is used here for tim
integration.

2.6 Mesh Update Method. How the mesh should be up
dated depends on several factors, such as the complexity o
moving boundary or interface and overall geometry, how unste
the moving boundary or interface is, and how the starting m
was generated. In general, the mesh update could have two
52 Õ Vol. 70, JANUARY 2003
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ponents: moving the mesh for as long as it is possible, and fu
partial remeshing~i.e., generating a new set of elements, a
sometimes also a new set of nodes! when the element distortion
becomes too high.

In mesh moving strategies, the only rule the mesh motion ne
to follow is that at the moving boundary or interface the norm
velocity of the mesh has to match the normal velocity of the flu
Beyond that, the mesh can be moved in any way desired, with
main objective being to reduce the frequency of remeshing
three-dimensional simulations, if the remeshing requires cal
an automatic mesh generator, the cost of automatic mesh ge
tion becomes a major reason for trying to reduce the frequenc
remeshing. Furthermore, when we remesh, we need to projec
solution from the old mesh to the new one. This introduces p
jection errors. Also, in three-dimensional, the computing tim
consumed by this projection step is not a trivial one. All the
factors constitute a strong motivation for designing mesh upd
strategies which minimize the frequency of remeshing.

In some cases where the changes in the shape of the com
tional domain allow it, a special-purpose mesh moving meth
can be used in conjunction with a special-purpose mesh gener
In such cases, simulations can be carried out without calling
automatic mesh generator and without solving any additio
equations to determine the motion of the mesh. One of the ear
examples of that, two-dimensional computation of sloshing in
laterally vibrating container, can be found in@6#. Extension of that
concept to three-dimensional parallel computation of sloshing
vertically vibrating container can be found in@12#.

In general, however, we use an automatic mesh mov
scheme,@13#, to move the nodal points, as governed by the eq
tions of linear elasticity, and where the smaller elements en
more protection from mesh deformation. The motion of the int
nal nodes is determined by solving these additional equatio
with the boundary conditions for these mesh motion equati
specified in such a way that they match the normal velocity of
fluid at the interface. In computation of fluid-structure interactio
of parachute systems reported here we use this automatic m
moving technique.

3 Numerical Examples
For fluid dynamics equations we use tetrahedral meshes.

parachute canopy surface is representative of a C-9 parachut
cases with only aerodynamic interactions, and a T-10 parac
for cases with fluid-structure interactions. In simulation of t
aerodynamic interactions between two parachutes, the parac
model consists of the canopy and a paratrooper. For the fl
structure interactions of two parachutes and for the aerodyna
interactions in clusters of parachutes, we only consider the ca
pies. Figure 1 shows the parachute canopy surface mesh and
the paratrooper. The simulations are carried out at a Reyn
number ~based on the canopy diameter! of approximately 5
million.

Fig. 1 Aerodynamic interactions of two parachutes. Parachute
canopy „left …, paratrooper „right ….
Transactions of the ASME
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Fig. 2 Aerodynamic interactions of two parachutes. Velocity „left …, vorticity
„right ….
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3.1 Aerodynamic Interactions of Two Parachutes. A se-
ries of simulations are carried out for the aerodynamic interacti
between two separate parachutes, where each parachute co
of a round canopy and a paratrooper. The horizontal spaci
defined to be along thex-axis, range from zero to five~inflated!
parachute radii. Vertical spacings are held constant at appr
mately 3.3 feet between the apex of the lower canopy and the
of the paratrooper. The parachute model is representative
28-foot diameter and 28-gore C-9 personnel parachute. Repre
tation of the canopy geometry comes from a separate struc
dynamics simulation with a prescribed pressure distribution. S
face representations for the paratrooper and other boundari
the fluid dynamics model are obtained using a variety of in-ho
modeling tools. Separate unstructured volume meshes are g
ated for each case studied. For each of the examples, the
paratrooper and canopy systems are identical, with 8288 trian
lar faces describing both the upper and lower canopy surfaces
hanics
ns
nsists
gs,

oxi-
feet
f a

sen-
ural
ur-
s in
se
ner-
two
gu-
and

11,714 triangular faces representing the paratrooper. The siz
the volume meshes varies from case to case. For the case
horizontal spacing of 0.5 radii, we have approximately 1.8 milli
elements and 300,000 nodes, resulting in approximately 1.2
lion coupled equations. In each of the meshes, the mesh re
ment is controlled around the paratroopers and canopies and i
wake and interaction regions, so that we have a larger conce
tion of elements in these regions. Descent velocities of 22 ft/s
represented by imposing a uniform upstream boundary condi
at the lower boundary. Other boundary conditions are, no-
conditions on the paratrooper and canopy surfaces, zero no
velocity and zero shear stress conditions at the side bounda
and traction-free conditions at the outflow boundary.

The simulations show a strong, adverse interaction between
upper and lower parachutes for spacings of 1.0 radius and les
these cases, the upper canopy ‘‘loses its wind,’’ and experien
negative drag for spacings of 0.5 radii and less. This indicate
JANUARY 2003, Vol. 70 Õ 53
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Fig. 3 Aerodynamic interactions of two parachutes. Influence of horizontal
spacing on drag, D .
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potential for parachute collapse. The flow fields for horizon
spacings of 0.5, 2.0, and 5.0 radii are shown in Fig. 2, with
velocity vectors on the left and the vorticity on the right. F
horizontal spacing of 0.5 radii, we clearly see that the up
canopy is caught in the wake of the lower one. For horizon
spacing of 5.0 radii, on the other hand, very little interaction
seen between the two parachute flow fields. The 2.0 radii sep
tion case shows a clear interaction between the two parach
but without the upper canopy being trapped in the wake of
lower one.

The interaction between the two parachutes for different h
zontal spacings is further understood when we look at the aer
Y 2003
tal
he
r
er
tal
is
ara-
tes,

the

ri-
dy-

namic forces acting on the individual canopies. Time-avera
force values were obtained for each horizontal spacing o
equivalent time periods, and after the flow fields were fully est
lished. Figure 3 shows, for the lower and upper canopies and
spacings ranging from 0.0 to 5.0 radii, the time-averaged d
(D). The forces shown in these figures are scaled from the c
puted values based on the C-9 physical dimensions, the presc
descent velocity, and the air density~these scalings differ from the
scaling that was initially presented,@14#!. For both canopies, the
drag values are fitted to a curve using cubic splines and assum
that the curve~a! is symmetric at zero horizontal spacing and~b!
approaches a constant value as the horizontal spacing bec
Fig. 4 Aerodynamic interactions of two parachutes. Influence of horizontal
spacing on Fx .
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large. At large horizontal spacings, the drag for the lower can
is expected to approach the same value as the drag for the u
canopy. We see that the drag on the upper parachute can be
negative for severe interactions between the parachutes, su
for spacing of 0.5 radii and less. For the 2.0 radii separation c
the drag on the upper canopy remains positive. However, in
case there is a clear interaction between the two parachutes, w
could possibly lead to severe structural responses in the fl
structure interactions of the upper parachute. For the 5.0 r
separation, minimal interaction is seen in the drag history pl
with minor difference in drag for the two parachutes. The pro
imity of the parachutes to the side and outflow boundaries
some role in the presence of these differences. Extending
boundaries further out and carrying out the computations fur
in time would make the differences in the time-averaged value
D for the two parachutes even smaller.

Figure 4 shows the time-averaged values of the horizontal fo
component,Fx . Again, the force histories are fitted to a curv
using cubic splines to only show the qualitative trends for
horizontal forces acting on the two parachutes as function of t
horizontal separation. For cases with no interaction between
two canopies, the average value ofFx is expected to be zero. Th
horizontal forces acting on the two canopies are mostly attract
and are more substantially so for spacings of 2.0 radii and l
For the spacings of 3.0 radii and more, the interaction beco
less evident and the difference betweenFx for the upper and lower
canopies begins to decrease. The flow field in the wake of e
parachute is very unsteady and shows no discernible time-per
behavior. For these larger spacings, extending the boundaries
ther out and carrying out the computations further in time wo
bring the time-averaged values ofFx closer to zero.

3.2 Fluid-Structure Interactions of Two Parachutes. In
this simulation, initially the two parachutes have a horizon
spacing of 42 ft, which is approximately 3~inflated! radii, and a
vertical spacing of 56 ft. Here, the parachute model is represe
tive of a standard U.S. Army T-10 personnel parachute. The T
is a ‘‘flat extended skirt canopy’’ composed of a 35-foot diame
canopy and 30 suspension lines each 29.4 ft long. The cano
called a ‘‘flat extended skirt canopy’’ because in its constructed~or
unstressed! configuration it is composed of a main circular secti
with a circular vent at the apex and an inverted flat ring secti
which lies under the main section and is connected to the m
section at the outer radius. The lines connect to four risers wh
attach the payload~or paratrooper!. The suspension lines continu
as 30 gore-to-gore reinforcements through the parachute ca
and meet at the apex. For the T-10, the vent diameter and the
width are both 3.5 ft.

Here the lower canopy is treated as a rigid body, while

Fig. 5 Fluid-structure interactions of two parachutes. T-10
parachute structural model.
Journal of Applied Mechanics
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upper canopy is allowed to deform due to the response of
parachute structure to the fluid dynamics forces. The struct
dynamics model is divided into six distinct material groups;
membrane group, three cable groups, a truss group, and a con
trated mass group. The parachute canopy is composed of
biquadratic membrane elements. We have distinct cable group
the suspension lines, the canopy radial reinforcements, and
risers. The truss and concentrated mass groups define the pay
which has a total weight of 250 pounds. The structure is allow
to fall completely unconstrained.

The parachute canopies are represented as interior surfac
the fluid mesh~with 17,490 triangular faces on both the upper a

Fig. 6 Fluid-structure interactions of two parachutes. Vorticity
at four instants.

Fig. 7 Fluid-structure interactions of two parachutes. Struc-
tural motion and differential pressure distribution at tÄ0.00,
0.64, 1.27, and 1.91 seconds.
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Fig. 8 Aerodynamic interactions in parachute clusters. Vorticity.
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lower canopy surfaces!. The typical size of the volume mesh
approximately 3.5 million elements and 580 thousand nodes
sulting in approximately 4.6 million coupled equations with t
DSD/SST formulation. The automatic mesh update method
scribed earlier is employed to handle the canopy shape chan
with occasional remeshing of the fluid domain. The surface for
upper canopy is assigned a no-slip boundary condition, with
locities coming from the structural dynamics solution. The bou
Y 2003
s
re-
e
de-
ges,
the
ve-
d-

ary conditions for the lower canopy and at the outer bounda
are identical to the conditions used in the previous example.

The coupling is achieved iteratively, by transferring the info
mation between the fluid and structure with a least-squares
jection. Figure 5 shows the parachute structural model used a
start of the simulation.

Figure 6 shows, at four instants during the simulation, the v
ticity field surrounding the two parachutes. The deformation a
Transactions of the ASME
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motion of the upper canopy is evident. Figure 7 shows, at
same four instants, the structural dynamics of the upper parac

3.3 Aerodynamic Interactions in Parachute Clusters. A
series of simulations are carried out for the aerodynamic inte
tions between the canopies in a cluster of parachutes, for thre
six canopies. For these simulations, the parachute model is re
sented by a set of identical C-9 canopies that are positioned
oriented relative to a prescribed confluence point. Two types
configurations are prescribed. First, 3, 4, and 5-canopy cluster
defined with the canopies uniformly distributed at a prescrib
angle about the azimuthal axis. Secondly, 4, 5, and 6-canopy c
ters are defined with a single canopy in the center and the rem
ing canopies distributed uniformly at a prescribed angle about
azimuthal axis. The size of the volume mesh varies from cas
case. For the 5-canopy cluster with a parachute in the center
have approximately 2.5 million elements and 450,000 nodes
sulting in approximately 1.9 million coupled equations. Mesh
finement is controlled around the canopies and in the wake
interaction regions. As with the previous example, descent vel
ties of 22.0 ft/s are represented by imposing a uniform upstre
boundary condition at the lower boundary, and no-slip conditio
are imposed on the canopy surfaces.

The computed flow fields at the end of the simulations fro
these preliminary simulations are shown in Fig. 8, with the clus
configurations in the middle column and the corresponding v
ticity magnitudes in two cutting planes (x50 andy50) in the
left and right columns. These initial simulations qualitatively de
onstrate the interactions between the canopies in different clu
arrangements. Further analysis is needed to better understan
other effects influencing the interactions in clusters, such as
preferred arrangements for the canopies, blockage effects du
the finite computational domain, and ultimately the FSI effec
For the examples presented, blockage effects are evident an
crease with the number of canopies in the cluster. Experime
studies have been conducted to provide empirical correction
tors for blockage effects,@15#. However, these data are depende
on the type of parachute, FSI, and other factors. Further sim
tions are now being carried out to numerically obtain correct
factors for the cases studied.

Additionally, the examples presented neglect the structural
sponse between the canopies in the clusters. The DSD/
method is now being used to study the dynamics interactions
tween the canopies in the cluster, treating the individual cano
as rigid bodies. Numerical simulations,@16#, have been conducte
previously to predict the equilibrium configuration for clusters
three half-scale C-9 parachutes in comparison with experime
data,@17#. In these simulations, equilibrium configurations we
determined using a quasi-static approach and imposing a sym
try configuration for the three canopies. The DSD/SST formu
tion, along with an appropriate mesh-update strategy, allows u
study the interaction of canopies in a cluster in a dynamic fash
Follow-on simulations will be carried out to predict equilibriu
configurations for the 3-canopy cluster with and without an i
posed symmetry. Additional simulations will be carried out
study the interactions for the 4, 5, and 6-canopy clusters. Initia
these studies will treat the canopies as rigid bodies, with la
simulations including FSI effects.

4 Concluding Remarks
We have described our computational methods for simula

of aerodynamic and fluid-structure interactions between parac
canopies. We considered two different types of problems. In
first case, we focused on the aerodynamic and fluid-structure
teractions between the canopies of two separate parachut
close proximity to one another. We studied the dependence o
aerodynamic interactions on the horizontal distance separating
two parachutes. In this study we observed significant interact
Journal of Applied Mechanics
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when the horizontal spacing between the parachutes is two ca
radii or less. We also studied how the interactions between the
parachutes are influenced when we include in our computatio
model the fluid-structure interactions~FSI!. The significant
amount of structural response we observe in this study for
upper parachute makes it clear that the FSI play a key role
making this class of simulations more realistic. In the second c
we focused on the aerodynamic interactions between the cano
of a cluster of parachutes, and investigated the nature of th
interactions for three, four, five, and six canopies. In this study,
were able to see the dependence of these interactions not on
the number of canopies but also on the spatial arrangemen
these canopies.

This class of simulations can provide a better understandin
the interactions between parachute canopies and help identify
scenarios under which the interactions are most severe. In
cases of severe interactions, more sophisticated fluid-structur
teraction models would be required to accurately represent
response of the parachute structure.
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Mesh Moving Techniques
for Fluid-Structure Interactions
With Large Displacements
In computation of fluid-structure interactions, we use mesh update methods consist
mesh-moving and remeshing-as-needed. When the geometries are complex and th
tural displacements are large, it becomes even more important that the mesh m
techniques are designed with the objective to reduce the frequency of remeshing. T
end, we present here mesh moving techniques where the motion of the nodes is go
by the equations of elasticity, with selective treatment of mesh deformation base
element sizes as well as deformation modes in terms of shape and volume chang
also present results from application of these techniques to a set of two-dimension
cases.@DOI: 10.1115/1.1530635#
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1 Introduction
Computation of flows with fluid-structure interactions was o

of the objectives in development of the Deforming-Spati
Domain/Stabilized Space-Time~DSD/SST! formulation, @1–3#,
for flows with moving boundaries and interfaces. This is
interface-tracking technique, and as such requires that the me
updated to track the moving interfaces as the spatial domain
cupied by the fluid is varying~i.e., deforming! with respect to
time. In computations with the arbitrary Lagrangian-Euleri
method, which is another interface-tracking method, one faces
same requirement. In general, mesh update consists of movin
mesh for as long as it is possible, and full or partial remesh
~i.e., generating a new set of elements, and sometimes also a
set of nodes! when the element distortion becomes too high.

As the mesh moves, the normal velocity of the mesh at
interface has to match the normal velocity of the fluid. With th
condition met, our main objective in designing a mesh upd
technique becomes reducing the remeshing frequency. This is
important in three-dimensional computations with complex geo
etries, because remeshing in such cases typically requires ca
an automatic mesh generator and projecting the solution from
old mesh to the new one. Both of these steps involve large c
putational costs.

In selecting a category of mesh moving techniques, geome
complexity is one of the major determining factors. Sometim
the overall problem geometry, including the interface geometry
simple enough so that the mesh can be generated by a sp
purpose mesh generation technique. In such cases, the mes
be updated by using a special-mesh moving technique, with
calling an automatic mesh generator and without solving any
ditional equations to determine the motion of the mesh. This
proach involves virtually no mesh update cost, and one of
earliest examples, two-dimensional computation of sloshing
laterally vibrating container, can be found in@1#.

In most practical problems, such as the parachute fluid-struc
interactions, the overall problem geometry would be too comp
to use a special-purpose mesh generation technique. The
produced with an automatic mesh generator would require an

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec.
2001; final revision, Mar. 4, 2002. Associate Editor: L. T. Wheeler. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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Fig. 1 Two-dimensional test mesh
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tomatic mesh moving technique. We use the technique introdu
in @4#, where the motion of the nodes is governed by the equat
of elasticity, and the mesh deformation is dealt with selectiv
based on the sizes of the elements and also the deformation m
in terms of shape and volume changes. The motion of the inte
nodes is determined by solving these additional equations.
boundary condition, the motion of the nodes at the interface
specified to match the normal velocity of the fluid at the interfa
Mesh moving techniques with comparable features were in
duced in@5#.

In the technique introduced in@4#, selective treatment of the
mesh deformation based on shape and volume changes is im
mented by adjusting the relative values of the Lame´ constants of
the elasticity equations. The objective would be to stiffen
mesh against shape changes more than we stiffen it against
ume changes. Selective treatment based on element sizes, o
other hand, is implemented by simply altering the way we acco
for the Jacobian of the transformation from the element domai
the physical domain. In this case, we would like the smaller e
ments to be stiffened more than the larger ones.

In this paper, we augment the method described in@4# to a more
extensive kind, where we introduce a stiffening power that de
mines the degree by which the smaller elements are rend
stiffer than the larger ones. When the stiffening power is se
zero, the method reduces back to an elasticity model with
Jacobian-based stiffening. When it is set to one, the metho
identical to the one introduced in@4#. Our studies here include
seeking optimum values of this stiffening power with the obje
tive of reducing the deformation of the smaller elements, typica
placed near solid surfaces. In this context, by varying the stiff
ing power, we generate a family of mesh moving techniques,

Fig. 2 Translation tests. Deformed mesh for xÄ0.0,1.0,2.0.
Journal of Applied Mechanics
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test these techniques on fluid meshes where the structure u
goes three different types of prescribed motion or deformation

2 Mesh Moving Model

2.1 Equations of Linear Elasticity. Let V,Rnsd be the
spatial domain bounded byG, wherensd is the number of space
dimensions. Corresponding to the Dirichlet and Neumann-t
boundary conditions, the boundaryG is composed ofGg andGh .
The equations governing the displacement of the internal no
can then be written as

“"s1f50 on V, (1)

wheres is the Cauchy stress tensor andf is the external force. For
linear elasticity,s is defined as

s5ltr~«~y!!I12m«~y!, (2)

wherey is the displacement, tr~ ! is the trace operator,l andm are
the Laméconstants,I is the identity tensor, and«~y! is the strain
tensor:

«~y!5
1

2
~“y1~“y!T!. (3)

Fig. 3 Translation tests. Mesh quality as function of stiffening
power.
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The Dirichlet and Neumann-type boundary conditions are rep
sented as

y5g on Gg ,

n"s5h on Gh . (4)

2.2 Finite Element Formulation. In writing the finite ele-
ment formulation for Eq.~1!, we first define the finite element tria
and test function spacesS h andV h:

S h5$yhuyhP@H1h~V!#nsd,yh8gh on Gg%, (5)

V h5$whuwhP@H1h~V!#nsd,wh80 on Gg%. (6)

Here, H1h(V) is the finite-dimensional function space overV.
The finite element formulation for Eq.~1! is then written as fol-
lows: find yhPS h such that;whPV h

E
V

«~wh!:s~yh!dV2E
V

wh"fdV5E
Gh

wh"hdG. (7)

By assigning appropriate values to the ratiol/m, we can pro-
duce to a certain extent the desired effect in terms of volume
shape changes for the elements during the mesh motion.
approach becomes more clear if we rewrite the term that gene
the stiffness matrix as

«~wh!:s~yh!

5S l1
2

nsd
m D tr~«~wh!!tr~«~yh!!12m«8~wh!:«8~yh!, (8)

where

Fig. 4 Rotation tests. Deformed mesh for xÄ0.0,1.0,2.0.
60 Õ Vol. 70, JANUARY 2003
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«8~yh!5«~yh!2
1

nsd
tr~«~yh!!I . (9)

The two terms on the right-hand side of Eq.~8! can be recognized
as those corresponding, respectively, to the volume and sh
change components of the stiffness matrix. In this context,
relative values of (l1 2/nsdm) and 2m can be adjusted to pro
duce to a certain extent the desired effect in terms of stiffening
mesh against volume or shape changes.

Although a selective treatment of the mesh deformation can
incorporated also into the force vectorf by providing an appropri-
ate definition for the forcing function, in our case we set it equ
to zero.

2.3 Jacobian Options. A selective treatment of the mes
deformation based on the element sizes can be implemente
simply altering the way we account for the Jacobian of the tra
formation from the element domain to the physical domain. T
method was first introduced in@4#, where the Jacobian is droppe
from the finite element formulation, resulting in the smaller e
ments being stiffened more than the larger ones. Here we augm

Fig. 5 Rotation tests. Mesh quality as function of stiffening
power.
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that method to a more extensive kind. To describe this appro
we first write the global integrals generated by the terms in Eq.~8!
as

E
V

@ . . . #dV5(
e
E

J
@ . . . #eJedJ, (10)

where@ . . . # symbolically represents what is being integrated,J
is the finite element~parent! domain, and the Jacobian for eleme
e is defined as

Je5detS ]x

]jD
e

. (11)

Here x represents the physical coordinates, andj represents the
element~local! coordinates.

We alter the way we account for the Jacobian as follows:

E
J

@ . . . #eJedJ °E
J

@ . . . #eJe S J0

JeD x

dJ, (12)

wherex, a non-negative number, is the stiffening power, andJ0,
an arbitrary scaling parameter, is inserted into the formulation
make the alteration dimensionally consistent. Withx50.0, the
method reduces back to an elasticity model with no Jacob
based stiffening. Withx51.0, the method is identical to the on
first introduced in@4#. In the general case ofxÞ1.0, the method
stiffens each element by a factor of (Je)2x, andx determines the
degree by which the smaller elements are rendered stiffer than
larger ones.

Fig. 6 Bending tests. Deformed mesh for xÄ0.0,1.0,2.0.
Journal of Applied Mechanics
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3 Test Cases
The test cases are all based on a two-dimensional unstruct

mesh consisting of triangular elements and an embedded stru
with zero thickness. The mesh spans a region ofuxu<1.0 and
uyu<1.0. The structure spansy50.0 anduxu<0.5. A thin layer of
elements~with ,y50.01) are placed along both sides of the stru
ture, with 50 element edges along the structure~i.e., ,x50.02).
Figure 1 shows the mesh and its close up view near the struc

The test cases involve three different types of prescribed mo
or deformation for the structure: rigid-body translation in t
y-direction, rigid-body rotation about the origin, and prescrib
bending. In the case of prescribed bending, the structure defo
from a line to a circular arc, with no stretch in the structure and
net vertical or horizontal displacement. The tests are carried
with the Jacobian-based stiffening technique defined by Eq.~12!,
wherex ranges from 0.0~no stiffening! to 2.0.

3.1 General Test Conditions and Mesh Quality Measures
In all test cases the maximum displacement or deformation
reached over 50 increments. The mesh over which the elast
equations are solved is updated at each increment. This upda
based on the displacements calculated over the current mesh

Fig. 7 Bending tests. Mesh quality as function of stiffening
power.
JANUARY 2003, Vol. 70 Õ 61
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has been selectively stiffened. That way, the element Jacob
used in stiffening are updated every time the mesh deforms. A
result, the most current size of an element is used in determi
how much it is stiffened. Also as a result, as an element
proaches a tangled state, its Jacobian approaches zero, a
stiffening becomes very large.

To evaluate the effectiveness of different mesh moving te
niques, two measures of mesh quality are defined based on t
used in@6#. They areelement area change( f A

e) andelement shape
change( f AR

e ):

f A
e5U logS Ae

Ao
eD / log~2.0!U, (13)

f AR
e 5U logS ARe

eD / log~2.0!U. (14)

ARo
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Here subscript ‘‘o’’ refers to the undeformed mesh~i.e., the mesh
obtained after the last remesh! and ARe is the element aspec
ratio, defined as

ARe5
~ l e

max!
2

Ae , (15)

where l e
max is the maximum edge length for elemente. For a

given mesh, global area and shape changes (f A and f AR) are de-
fined to be the maximum values of the element area and sh
changes, respectively.

3.2 Test Results. In the translation tests, the prescribe
translation is in they-direction, with the displacement magnitude
ranging fromDy50.05 to 0.5. Figure 2 shows the deformed me
for the maximum translation ofDy50.5. It is evident that the
small elements near the structure respond poorly forx50.0, re-
Transactions of the ASME
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sulting in severe stretching of the row of elements adjacent to
structure, and tangling of elements near the structure tips. Fx
51.0 andx52.0, the small elements near the structure exp
ence no tangling and significantly less deformation. Forx52.0,
the small elements near the structure undergo almost rigid-b
motion. However, the behavior of the larger elements deterior
as the smaller elements are stiffened. This is most apparen
x52.0 where the larger element tangle near the upper boun
of the mesh. Figure 3 shows the values off A and f AR as functions
of x and for different magnitudes of translation. The bold cur
crossing the contours denotes the value ofx that results in mini-
mum global mesh deformation. For example, for a displacem
of 0.05 the optimal value off A is obtained whenx is approxi-
mately 0.5. For larger displacements, the optimal value ofx is
slightly greater. The optimal value off AR is obtained atx'0.8 for
a displacement of 0.05 and atx'0.7 for a displacement of 0.5.

In the rotation tests, the rotation magnitudes range fromDu
50.025p to 0.25p. For x50.0 the mesh experiences significa
stretching and tangling near the structure tips. No tangling is s
for the cases with element stiffening, but forx52.0 the large
elements near the outer boundaries experience significant di
tion. Figure 4 shows the deformed mesh for the maximum rota
of p/4. Figure 5 shows the values off A and f AR as functions ofx
and for different magnitudes of rotation. The minimum deform
tion of the mesh is seen for values ofx around 0.8. The mesh
quality deteriorates more rapidly asx decreases from 1.0 tha
whenx increases from 1.0.

In the bending tests, the bending magnitudes range fromu
50.1p to p, whereu denotes the arc length~in radians! for the
deformed structure. Figure 6 shows the deformed mesh when
structure bends to a half-circle~i.e., u5p). For x50.0, we see
tangling near the structure tips. As the element stiffening
creases, tangling at the tips disappears, but severe element d
tion arises in the interiors. Figure 7 shows the values off A and
f AR as functions ofx and for different magnitudes of prescribe
bending. The minimum deformation of the mesh is seen for val
of x around 1.1.

Figure 8 shows, for different deformation modes, the conto
of f A

e for stiffening power ofx50.0, 1.0, and 2.0. The contour
corresponding tof A

e50.5, 1.0, and 2.0 are denoted with dotte
dashed, and bold lines, respectively.

4 Concluding Remarks
We have presented automatic mesh moving techniques

fluid-structure interactions with large displacements. In these te
Journal of Applied Mechanics
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niques, the motion of the nodes is governed by the equation
elasticity, and deformation of the elements are treated selecti
based on element sizes as well as deformation modes in term
shape and volume changes. Smaller elements, typically pla
near solid surfaces, are stiffened more than the larger ones. Th
implemented by altering the way we account for the Jacobian
the transformation from the element domain to the physical
main. The degree by which the smaller elements are stiffe
more than the larger ones is determined by a stiffening po
introduced into the formulation. When the stiffening power is s
to zero, the method reduces back to a model with no Jacob
based stiffening. The two-dimensional test cases we prese
here for three different structural deformation modes show that
stiffening power approach substantially improves the deform
mesh quality near the solid surfaces, even when the displacem
are large. The test cases also show that the optimal stiffen
power is somewhat problem-dependent. It is higher for the be
ing tests (x'1.1) than it is for the rotation (x'0.8) and transla-
tion (x'0.7) tests.
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A Method for Particle Simulation
This paper extends a recent approach to the direct numerical simulation of particle fl
to the case in which the particles are not fixed. The basic idea is to use a local ana
representation valid near the particle to ‘‘transfer’’ the no-slip condition from the partic
surface to the adjacent grid nodes. In this way the geometric complexity arising from
irregular relation between the particle boundary and the underlying mesh is avoided
fast solvers can be used. The results suggest that the computational effort increase
slowly with the number of particles so that the method is efficient for large-scale sim
tions. The focus here is on the two-dimensional case (cylindrical particles), but the
procedure, to be developed in forthcoming papers, applies to three dimensions (sph
particles). @DOI: 10.1115/1.1530636#
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1 Introduction
The importance of direct numerical simulation in the study

fluid flows with suspended particles has long been recogniz
The computational task is considerable and the earlier mo
treated the particles as points~see, e.g., Refs.@1–3#!. This ap-
proximation is justified for dilute systems such as dusty gas
particle-laden gas jets, and other situations in which the major
of the particle interaction with the fluid takes place through dr
and possibly lift, forces. In concentrated systems, or liqu
particle flows, however, the fact that the particles have a finite
plays a determinant role in the physics of the problem and can
be neglected. For this reason, the last few years have se
greater effort in this direction. Examples are the early calculati
of Joseph and collaborators~see, e.g., Refs.@4–6#! the more re-
cent work of this group~see, e.g., Refs.@7–9#!, the ‘‘immersed
boundary’’ approach of Refs.@10#, @11#, the finite element calcu-
lations of Refs.@12#, @13#, the CHIMERA method~see, e.g., Refs
@14#, @15#!, and others. Other recent methods are based on lat
Boltzmann formulations,@16–18#.

The present paper extends a recent method, PHYSALIS, b
on an approach rather different from the ones used before,@19,20#.
Very briefly, the basic idea can be explained in the followi
terms. Because of the boundary conditions on its surface, a
ticle induces a specific structure in the neighboring flow wh
manifests itself in certain nonlocal relations among the flow fie
~velocity, pressure, vorticity!. Rather than solving the problem
with the particle in place, one can therefore impose this relati
ship directly on the nodes of a fixed regular grid and effectiv
remove the particle. Thus, the actual boundary of the particle, w
its usually complex relation to the underlying regular grid, can
principle be replaced by a simpler boundary consisting of g
nodes although, in practice, it is possible to eliminate entirely
internal boundary by exploiting the iterative nature of the alg
rithm. With this step, all internal boundaries are eliminated and
the external boundary of the computational domain is regular,
solvers can be used. It should be stressed that the procedure
way implies approximating the particle shape, as in some o
approaches~see, e.g., Ref.@18#!. In particular, unlike other meth
ods, the no-slip condition at the particle surface is enforced
actly and, as the number of degrees-of-freedom per particl
increased, the error decreases faster than algebraically.

1Also, Faculty of Applied Physics and Twente Institute of Mechanics, Univers
of Twente, AE 7500 Enschede, The Netherlands, and Burgerscentrum, The N
lands.
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Another useful feature of the method is that, for a given co
putational domain, the computation time is only weakly depe
dent on the total number of particles, which permits relative
large computations to be carried out with modest computatio
resources. A preliminary analysis of the convergence propertie
this approach is presented in Ref.@21#.

In past work we have demonstrated PHYSALIS for potent
flow past spheres,@19#, and Navier-Stokes flow past fixed cylin
ders,@20#, with some preliminary examples of Navier-Stokes flo
past spheres,@22#. In all these examples the particles were statio
ary. It is the purpose of the present paper to illustrate the per
mance of the method in the presence of moving cylindrical p
ticles. The three-dimensional case of spheres can be tre
analogously.

2 Reduction to the Rest Frame
The method requires the consideration of the flow in the nei

borhood of each particle separately. LetU be the flow velocity in
the inertial frame, andw, V the translational and angular velocit
of a particle. The first step is to express the Navier-Stokes eq
tions in the particle rest frame, where the flow velocityu is related
to U by

U5u1w1V3x, (1)

in which x is the position relative to the particle center. In th
frame the momentum equation is

rF]u

]t
1~u•“ !u12V3uG52“p1m¹2u1rg

2r@ẇ1V̇3x1V3~V3x!#,

(2)

to be solved subject to the incompressibility constraint and to
boundary conditionu50 on the particle surface. In~2! r andm are
the fluid density and viscosity,p is the pressure, andg the body
force; dots denote Lagrangian time derivatives following the p
ticle.

The change of variables

u5ũ1
r 42a4

8nr 2 V̇3x, p5 p̃1
1

2
r~VÃx!22r~ẇ2g!•x,

(3)

brings ~2! into the form

rF]u

]t
1~u•“ !u12V3uG52“ p̃1m¹2ũ, (4)

with ũ50 on the particle surface. Sinceu50 on the particle sur-
face, by continuity, it will be small near the particle and, therefo

ity
ther-

1;
the
art-
nta
after
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Fig. 1 Example of cage around a particle: crosses: pressure
nodes; diamonds: vorticity nodes; arrows: velocity nodes

Fig. 2 Two particles falling „left to right … between two parallel
plates separated by four particle diameters with final Reynolds
numbers of 1.03 „dotted line and squares … and 8.33 „continuous
line and crosses …. The lines are the present results and the
symbols the results of Ref. †6‡.

Table 1 Comparison among three different calculation of the
force on a line of cylinders held between two moving walls

L/D a/Dx
Nodes per
Cylinder Present

f c
Ref. @18# Ref. @25#

11.8 10.8 10 1.034 1.053 0.966
6.1 20.8 10 1.224 1.251 1.158
2.09 60.8 20 2.079 2.093 2.067
Journal of Applied Mechanics
there is a region adjacent to the particle where the left-hand
of ~4! is small. Thus, locally, (ũ,p̃) approximately satisfy

2¹ p̃1m¹2ũ50, “•ũ50, (5)

i.e., the Stokes equations. Naturally, the extent of the spatial
gion where~5! are a good approximation to~4! becomes smaller
and smaller as the Reynolds number increases but, for any fi
Reynolds number, there is a nonvanishing region where~5! are
applicable with but a small error.

The general solution of the Stokes Eqs.~5! subject to the con-
dition of vanishing velocity on the particle surface is readily fou
in terms of a dimensionless stream functionc, defined so that
ũ5“3~nc k! ~with k the unit vector normal to the flow plane an
n is the kinematical viscosity!, and is

c5n~s222 logs21!A01n(
n51

`

@cn~An cosnu1Ãn sinnu!

1c̃n~Bn cosnu1B̃n sinnu!#, (6)

where

c15s322s1
1

s
, c̃15s log s2

s

2
1

1

2s
(7)

cn5nsn122~n11!sn1s2n, c̃n5ns2n122~n21!s2n2sn,
(8)

with s5r /a. An important point to stress is that, thanks to the
yet undetermined coefficientsAn , Bn , Ãn , B̃n ~different for each
particle!, the stream function~6! is able to accommodate any~lo-
cally Stokes! flow in the neighborhood of the particle. Thus, n
assumptions or restrictions about this flow~in particular, about its
behavior far from the particle! have been introduced. These coe
ficients will be determined iteratively by matching the veloci
field given by ~6! to the numerically computed flow away from
the particle.

The pressure and vorticity fields corresponding to~6! are

p̃5p01
mn

a2 H 8s~2A1 sinu1Ã1 cosu!1
2

s
~B1 sinu2B̃1 cosu!

1(
n52

`

@4n~n11!sn~2An sinnu1Ãn cosnu!

14n~n21!s2n~B̃n cosnu2Bn sinnu!#J , (9)

wherep0 is a constant, different for each particle, and

ṽ5
n

a2 H 24A028s~A1 cosu1Ã1 sinu!2
2

s
~B1 cosu

1B̃1 sinu!2(
n52

`

@4n~n11!sn~An cosnu1Ãn sinnu!

14n~2n11!s2n~Bn cosnu1B̃n sinnu!#J . (10)

In the original inertial frame, the hydrodynamic forceF and
coupleL ~per unit length! acting on the particle are

F5rv~ẇ2g!14p
mn

a
~B̃1 ,2B1!, L528pmnA0k1rva2V̇.

(11)

3 Implementation
The general idea described in the Introduction can now be m

more precise.
JANUARY 2003, Vol. 70 Õ 65



6

Fig. 3 Vertical velocity versus time for two particles aligned vertically and released: while the distance is large enough the
fall velocity is nearly equal. As the upper particle gets caught in the wake of the lower one it accelerates „drafting …; the two
particles interact „kissing …, until they tumble and separate. The calculation shown on the left was done with 19.2 nodes per
particle diameter, that on the right with 28.8 „courtesy of Prof. T. W. Pan, University of Houston ….
s

a
des

at a
ble
The entire domain, irrespective of the presence of the bodie
covered by a regular finite difference grid. Each cylinder is s
rounded by a cage of cells straddling the body surface; an
ample is shown in Fig. 1 and the algorithm used to construct
cage is described later. We use a standard staggered grid arr
ment, with pressure at cell centers~crosses! and velocities at the
midpoints of cell sides~arrows!. Vorticity is calculated from
6 Õ Vol. 70, JANUARY 2003
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v i j 5
1

DxDy R u•dl.
v i 11,j2v i , j

Dx
2

ui , j 112ui , j

Dy
, (12)

whereDx andDy are the mesh spacings, and, therefore, it resi
on the grid nodes~diamonds!.

The procedure can be summarized as follows. Suppose th
provisional estimate of velocity and pressure fields is availa
Fig. 4 Position versus time for the two particles of the previous figure as calculated with the finer discretization „courtesy of
Prof. T. W. Pan, University of Houston …
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Fig. 5 Snapshots of the two falling cylinders of Figs. 6 and 7 at times tÄ1.312, 2.272, 2.521, and 2.971 s
as given by the present method
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~this could be, for example, the velocity field at the previous tim
step!. Then, after truncating the summations in~6!, ~9!, and~10! to
a finite number of termsNc and calculating the vorticity from
~12!:

1 For each particle, let 1, 2, . . . , Np be the pressure nodes an
1, 2, . . . , Nv the vorticity nodes of the cage; match the prov
sionalp̃ andṽ to the analytic expressions~9! and~10! to generate
a linear system for the coefficientsAn , Bn , Ãn , B̃n of the particle.
In principle, the maximum number of coefficients that can
determined in this way equals the number of cage nodes, altho
in practice we use fewer and solve this system in a least sq
sense~see below!.

2 Using the values of the coefficients determined at the pr
ous step, compute from the analytic formulas the velocity at
velocity points 1, 2, . . . , Nv of the cage surrounding the particle
Applied Mechanics
e-

d
i-

be
ugh
are

vi-
the
.

3 Solve the full Navier-Stokes equations on the finite diffe
ence grid imposing this velocity field as boundary condition
the velocity nodes of the cage of each particle.

4 Calculate the corresponding vorticity, return to Step 1, a
repeat until convergence.

As will be explained in the next section, in executing Step 3
is efficient to solve for the flow field over the entire grid, disr
garding the presence of the particles. The velocity field outside
cages is the one that is desired. The field inside the cages is
correct solution of another flow problem, in which the flow
driven by the imposed velocity on the cage nodes: This solutio
not unphysical—it is simply irrelevant for the purposes of t
calculation and can be disregarded. The final flow field is given
the finite difference solution outside the cages, and by the ana
representation in the thin region between each particle and
JANUARY 2003, Vol. 70 Õ 67



Fig. 6 Vertical „left … and horizontal „right … velocity versus time for the two particles of Fig. 3 as computed by the present
method with DtÄ1 ms
t

xi-
the
ning
and

n

surrounding cage. It should be stressed that the solution proce
is devised in such a way that, other than for satisfying a comm
velocity boundary conditions at the cage nodes, the solutions
side and outside the cages are completely unrelated, so tha
‘‘contamination’’ of the latter by the former is avoided. In particu
lar, there is no continuity or other relation satisfied by the stres
across the cage surface.
68 Õ Vol. 70, JANUARY 2003
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A possible criticism of the method is its reliance on an appro
mate solution in the fluid regions between the particle and
surrounding cage. The associated error can be reduced by refi
the grid, which has the effect of putting the cage nodes closer
closer to the particle surface. Another possibility~which we have
not yet explored! would be to improve on the Stokes flow solutio
by approximating the solution of the full nonlinear Eq.~4! by a
Fig. 7 Vertical „left … and horizontal „right … position versus time for the two particles of Fig. 4 as computed by the present
method with DtÄ1 ms
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Fig. 8 Fall of a cluster of ten particles as computed with the present method at
nt ÕaÄ0, 3.0, and 4.0
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rac-

cu-

nal

,
that
flow
regular perturbation expansion. It may be noted, however, tha
practice some control of the error is built into the procedure
convergence requires that all the flow fields be described by
sameset of coefficients (Ak ,Bk). In the presence of strong non
linear effects, which are not accounted for in the analytic solut
~6!, this condition would not be satisfied and the iterative pro
dure would not converge as we have indeed found by purpo
putting the cage nodes too far from the particle surface.

A rough idea of the grid sizeD necessary for a good numeric
accuracy may be found by noting that the grid points should
inside the boundary layer for the Stokes approximation to
valid. If the boundary layer thickness is estimated asa/ARe,
echanics
t in
as
the
-
on
e-
ely

l
be
be

where Re is the Reynolds number expressed in terms of a cha
teristic velocity and the cylinder diameter, we thus have thatND

52a/D should be sufficiently larger thanARe. This limit is not
different from that applicable to a standard finite difference cal
lation.

We now turn to some details of the implementation; additio
information can be found in@20#.

3.1 Flow Solver. As is clear from the previous description
each computational cycle consists of two steps: an inner one
updates the coefficients, and an outer one that calculates the
field for a given set of coefficients.
JANUARY 2003, Vol. 70 Õ 69
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Fig. 9 Continuation of the previous figure showing the ten falling particles at
nt ÕaÄ5.0, 6.0, and 6.62. The terminal velocity of the leading particle „No. 10… corre-
sponds to Re ¶14, while the maximum Re reached in the simulation is about 17.
t
a
l

The outer step is executed by a suitably modified first-ord
accurate projection method which rests on writing the tim
discretized Navier-Stokes equation as

un112un

Dt
5N~un!2

1

r
“pn11, (13)

whereN stands for all the terms that need not be shown explici
the superscriptsn, n11 denote time levels and we assume th
everything is known at time leveln. The modification to the usua
procedure is rendered necessary by the fact that the velo
RY 2003
er-
e-

ly;
t-

city

Table 2 Dimensionless force components for flow past a cyl-
inder at Re Ä30 in dependence of the number ND of points per
cylinder diameter and number of modes Nc

ND Nc aFx/4pmn aFy/4pmn

20 4 41.019 20.0131
30 4 41.089 0.00302
40 2 41.374 0.0379
40 4 41.081 0.00331
40 6 41.094 20.000493
40 8 41.093 0.000127
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boundary condition on the cages depends on the coefficients o
expansions which are only determined as part of the iteration
cedure. Denote byk the index of this iteration, and write, fo
brevity, uk, pk, and Ak in place of un11,k, pn11,k, and
(Ak

k ,Bk
k ,Ãk

k ,B̃k
k). As in the usual method, we defineu

*
k at interior

nodes by

u
*
k 2un

Dt
5N~un!, (14)

Fig. 10 Dimensionless force component aFx Õ4pmn in the di-
rection of the flow versus time at Re Ä30 in dependence of the
number Nc of modes retained in the summations in „6…, „9…, and
„10…; the number of points per cylinder diameter is NDÄ40

Fig. 11 Dimensionless force component aFx Õ4pmn in the di-
rection of the flow versus time at Re Ä30 in dependence of the
number of points per cylinder diameter; the number of modes
is NcÄ4
Journal of Applied Mechanics
f the
ro-
and, since approximate valuesAk21 of the coefficients are avail-
able, we use these values to setu

*
k on the cage nodes~see below

for a further note on this step!.
Before taking the divergence of~13! as in the usual implemen

tation of the projection method, we multiply this equation by t
characteristic functionx of the domain external to the cages. Ne
the generic particlea we may takex5H(Sa), whereH is the
Heaviside distribution andSa(x)50 is the cage surrounding par
ticle a, with Sa.0 outside the cage. The result is

H¹2pk111“H•“pk115
r

Dt
@H“•u

*
k 1~un112u

*
k !•“H#.

(15)

Thanks to the factor“H, the last term of the equation only con
tributes on the cage where, at convergence,un115u* ; thus we
drop this term and further approximate~15! by evaluating the
second term at iteration levelk rather thank11:

H¹2pk115
r

Dt
H“•u

*
k 2“H•“pk. (16)

The solution of this equation gives a new estimatepk11 of pn11,
which enables us to calculateuk11 from

uk112u
*
k

Dt
52

1

r
“pk11, (17)

from which new coefficientsAk11 can be found by matching, an
so on.

If ~16! were solved as it stands, it would be necessary to imp
ment a procedure to skip the nodes inside the inner cage, wh
would prevent the use of a fast solver. This potential source
inefficiency can, however, be avoided as explained in@20#.

After convergence, the positiony, velocity w, and angular ve-
locity V of each particle are updated from

Fig. 12 Vertical velocity of the leading particle for the simula-
tion of Fig. 5 as computed with DtÄ0.5, 1, and 2 ms
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wn115wn1
Dt

2m
~Fn111Fn!, yn115yn1

Dt

2
~wn111wn!,

(18)

Vn115Vn1
Dt

2I
~Ln111Ln!, (19)

where m and I are the particle mass and moment of inertia.
should be noted that this procedure is onlyO(Dt) accurate as the
flow fields used to calculateFn11 andLn11 are based on the old
~at timetn) position and velocity of the particles. Use of~18! and
~19! enhances stability.

3.2 Matching. According to Step 1 of the procedure d
scribed before, onceuk11 has been determined, it is necessary
update the coefficients (Ak ,Bk ,Ãk ,B̃k). This step involves solv-
ing a linear system and, in principle, one could retain as m
coefficients as there are pressure and vorticity points in the c
In practice, however, on a finite difference discretization w
cells of sideD, the shortest feature that can be resolved ha
length scale;2D so that, retaining modes with a shorter wav
length, would contaminate the calculation with aliasing err
rather than increase accuracy. Truncating the summation in~6! at
Nc is equivalent to allowing a shortest wavelength of the orde
2a/Nc . Thus we expect that a near-optimal choice would
2a/Nc.2D, or Nc.1/2ND , whereND52a/D is the number of
mesh lengths per diameter. Since the number of available
points is of the order of 2pa/D.6ND , and the number of coef
ficients.4Nc , in a typical calculation there are about three tim
as many grid points as coefficients. The system determining
coefficients has therefore a rectangular matrix, and we solve i
the Singular Value Decomposition algorithm, which is equivale
to a least-squares procedure when all singular values are reta
~see, e.g., Refs.@23,24#!.

It is apparent that the accuracy of the method can be incre
arbitrarily by increasing the number of nodes~with the effect,
among others, of reducing the extent of the region where app
bility of the Stokes equations is assumed! and the number of co-
efficients in the exact solution. It may also be noted that, fo
smooth velocity field, the analytic expansion~6! converges faster
than algebraically and therefore the present method makes a
ficient use of the degrees-of-freedom retained for each part
Another significant advantage is that the force and torque on e
particle are found directly from~11! once the low-order coeffi-
cientsA0 , B1 , B̃1 are known. This avoids the difficulty encoun
tered with some other methods which require high-order extra
lations to obtain the stress distribution on the particle.

3.3 Cage. The algorithm used to generate the particle ca
is as follows. For each particle, at each time-step, the grid n
closest to the particle centery is identified. A square centered a
this node, with sides equal to the number of grid nodes per
ticle plus 1~so as to make sure that the particle is entirely co
tained in it!, is then constructed. All the cells contained in th
square are then examined in turn, and the fraction of their a
occupied by the particle is computed: if this fraction is betwe
50% and 100%, the cell is assigned to the cage; note that, in
way, the pressure point at the center of the cell is guaranteed
inside the particle. For each cage cell, the node farthest from
particle center is taken as vorticity point, while the velocity nod
are taken at the midpoints of the cell sides closest to the par
center. Additional vorticity nodes are then inserted to ensure
no gaps are left. This construction is repeated each time a par
is moved.

Many of the points used in the algorithm thus fall inside t
particle, but this does not create any difficulty—practical
conceptual—as, in principle, the functions defined by~6!, ~9!, and
~10! are defined forr both greater and smaller than the partic
radius ~provided, of course, thatr .0). As a matter of fact, the
72 Õ Vol. 70, JANUARY 2003
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possibility of placing the cage mostly inside the particle perm
two particles to come in very near contact as will be demonstra
below.

4 Some Examples
Our first example is reproduced from@20#. It consists of the

flow induced by a line of stationary cylinders held between t
parallel walls both moving with velocityU; the Reynolds number
is defined as Re52aU/n, wherea is the particle radius. This cas
was simulated in Ref.@25# by a finite element method and in Re
@18# by a lattice-Boltzmann method. The cylinders are spaced b
distanceL, D denotes the spacing between the walls, andf c

5uFu/2prU2a, with F the total fluid-dynamic force. Table 1 il-
lustrates the near-perfect agreement among the three computa
for a case with Re51. Here the column labeleda/Dx refers to the
computations of Refs.@18# and@25#; the third column denotes the
conditions for the present computation. Note that in the last t
cases our results have been obtained with 1/2 and 1/3 of the n
of the lattice-Boltzmann calculation, respectively. For these sim
lations we tookNc54, and periodicity boundary conditions wer
applied to the boundaries of the computational domain perp
dicular to the moving planes, and no-slip conditions on the plan
Other examples of this type are given in@20#. We now turn to
cases with moving particles which were not considered in
earlier papers. We first compare our results with those obtaine
others, and conclude with an example with many particles.

Reference@6# reports results of a simulation in which a cylinde
falls under the action of gravity between two parallel vertic
walls spaced byL58a. Our results for two of their cases ar
shown in Fig. 2, in which gravity acts from left to right. For th
first case~dotted line and squares! the particle to fluid density is
rP /rL51.003 and the final Reynolds number 1.03; for the oth
case~solid line and crosses! rP /rL51.03 with a final Reynolds
number 8.33. The figure compares the trajectories of the cente
the cylinder when it is released from a distance 0.255L and 0.19L
from the lower wall as computed by the present method~lines!
with the results of Ref.@6# ~symbols!. The two calculations are in
close agreement. Here, as in Ref.@6#, the computational domain
had a total length of 80a; for Re58.33 we usedDx5Dy
50.125, and 2a/Dx516 with 643640 nodes, a time-step
nDt/a250.002, andNc54. For the smaller Reynolds numbe
case we found that our method required a somewhat finer disc
zation, 2a/Dx520, with nDt/a250.001. No-slip boundary con
ditions were applied on all boundaries.

Figure 3 is the ‘‘drafting, kissing, and tumbling’’ example o
Fig. 3 of Ref.@8# as kindly recalculated for us by Prof. T. W. Pa
Here two particles are allowed to fall along the centerline o
domain having a widthL520a and height 80a. The particles
have a radius of 1 mm and are released at distances 72a and 68a
above the horizontal bottom of the domain. The liquid kinema
viscosity is 0.01 cm2/s, the liquid densityrL51 g/cm3, and the
particle densityrP51.01 g/cm3. The two figures differ in the dis-
cretization: 19.2 nodes per particle diameter for the figure on
left, and 28.8 for that on the right; in both cases the time-step
1 ms. The higher particle falls faster and catches up with the lo
one ~drafting!, after which the two particles fall with nearly th
same velocity~kissing!, until they tumble and separate. It can b
seen upon comparing the two figures that the duration of
‘‘kiss’’ is longer with the finer discretization; also, the resul
shown here differ rather markedly from those in Fig. 3 of Ref.@8#.
The problem is that, with mathematically smooth particles a
infinite-precision arithmetic, the two particles would rema
aligned indefinitely approaching without ever touching. In the n
merical calculation, due to the necessarily finite time-step, i
necessary to introduce an artificial repulsion force to prevent
particles from overlapping and, depending on how this force
specified and on the details of the numerics, the results may
rather widely as can be seen by comparing the two results in
3 and with those in Fig. 3 of Ref.@8#. The horizontal and vertica
Transactions of the ASME
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positions of the particle centers with the finer discretization
shown in Fig. 4. Another numerical effect is apparent here:
particles drift sideways~x-direction!, in spite of the fact that, a
this relatively low Reynolds number, single-particle wakes
symmetric and steady. This effect is probably due to the use
grid of similarly oriented triangles~see@7#!.

In our simulation, we imposed no-slip conditions on all t
bounding surfaces and took 2a/Dx52a/Dy520. In order to pre-
vent particle collisions, we use the same procedure as sugges
Ref. @7#: It is assumed that a repulsive forceFp exists between the
particlesi and j given by

Fc5H 0 d.2a1d

ep
21~yi2yj !~2a1d2d!2 d<2a1d

(20)

whered5uyi2yj u is the distance between the particle centers,d is
the thickness of a ‘‘security zone’’~equal to two mesh sizes for th
calculations of Figs. 3 and 4! around the particles, andep specifies
the magnitude of the force. Our results have been obtained
20 nodes per particle diameterd/a50.2 and ep58
31025 cm3s2/g; the time-step was initially set at 1 ms, decreas
to 0.6 ms during the time the force~20! was active, and then agai
increased to 1 ms after the particles separated. We also r
simulation with a 0.5 ms time-step finding very nearly the sa
results.

Qualitatively, one notes oscillations during the particle-parti
interaction, a feature which is also present in Fig. 10 of@7#, who
used~20!, but not in Fig. 3 where a slightly different form wa
used:

Fc5H 0 d.2a1d

ep
21~yi2yj !~~2a1d!22d2! d<2a1d

, (21)

with ep51023. The sensitivity to the precise form of the force ca
be explained by noting that, while they interact, the particle
havior is similar to a damped nonlinear oscillator and, if t
damping is not sufficiently strong with respect to the restor
force, oscillations will be produced. Indeed, we have found t
these oscillations are strongly affected by the magnitude ofd and
ep ; for example, in preliminary calculations in which, followin
the lead of Ref.@9#, the interaction force is turned on only whe
the particles touch, they disappear. The strong effect of the c
sion force is also apparent from the very significant differen
among the results of@8# and those of Fig. 3 of Professor Pa
Unfortunately, this state of affairs appears to be inherent in
type of simulations: mathematically, the particle interaction is
result of an instability while, physically, it is the result of impe
fections of the particle surface. Thus, even in principle, there
little hope of ever developing the ‘‘right’’ interaction force. On th
other hand, if interest lies in the simulation of many particles
may be expected that, on average, the behavior of the sy
would be rather robust and insensitive to such details. On a m
positive note, it may be noted that this type of calculations is s
in its infancy and much still remains to be learned.

The maximum vertical velocity in our calculation is reach
somewhat later than in Fig. 3; it exceeds by about 10% the re
of Fig. 3 and by about 5 percent that of@8#. Figure 5 shows four
snapshots of the falling cylinders at timest51.312, 2.272, 2.521
and 2.971 s; initially the cylinders are located aty57.2 cm and
6.8 cm, both withx51 cm.

A significant point worth stressing is that the PHYSALIS alg
rithm works well even when the particles get closer than one m
length. For Figs. 6 and 7 the minimum distance between the
ticle surfaces was 0.0376a, i.e., less than 1/3 of the mesh lengt

As a final example, we show in Figs. 8 and 9 a simulation of the
falling of ten cylinders; here the particle diameter is 1 cm,rP

51.05,r51 g/cm3, andn51 cm2/s; time is given ast* 5nt/a2.
The domain width and length were 8 and 40 particle diamet
respectively, with no slip boundary conditions applied on
boundaries; 16 nodes per cylinder diameter were used,Nc54,
Journal of Applied Mechanics
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Dt52 ms, andd/a50.4. In the last frame of Figs. 9, the leadin
particle~No. 10! has a terminal velocity corresponding to Re.14,
while the maximum Re reached in the simulation was about 1

As long as there are no collisions, the particle arrangem
remains symmetric about the midplane of the channel, which
plies an absence of bias in the numerics. Symmetry is lost a
the particles start undergoing collisions, as a consequence o
instability mentioned before.

The computational times for this multiparticle simulation a
the single-particle simulation of Fig. 2 were comparable. In
latter case the domain was half the width as in the former, but
computation was stopped at a value oft* twice as large as for the
multiparticle simulation. The time-step and number of nodes
particle were the same in the two cases, and the Reynolds n
bers were similar. Thus, the very weak dependence of the com
tational time on the number of particles that we have reported
@20# is confirmed by the present results.

5 Some Considerations on Convergence
The numerical results depend on the number of nodes per

ticle diameter,ND , the number 4Nc12 of coefficients retained in
the summations~6!, ~9!, and ~10!, and the time-stepDt. It was
argued earlier that the avoidance of aliasing errors in the sum
tions puts an upper limit onNc of about 1/2ND and thatND should
be sufficiently larger thanARe to have adequate resolution in th
boundary layer.

To illustrate the dependence of our results on these param
we show in Table 2 the calculated force components on a peri
system of cylinders separated by 12a along a line perpendicular to
an incoming uniform flow with Re530 ~x-axis!. The cylinder cen-
ter is on the midplane of the computational domain at a dista
of 10a from the upstream boundary; the length of the compu
tional domain in the direction of the flow is 40a. By symmetry,Fy
should be zero and, therefore,Fy /Fx may be taken as a measu
of the error on the total force. The results are all very close to e
other and appear to be more sensitive toNc than to the other
parameters.

The time evolution of the dimensionless forceaFx/4pmn in the
flow direction for different parameter values is shown in Figs.
and 11. Att50 the cylinder is placed in a steady uniform flow
which then adjusts in time to the presence of the bodies. Figur
is for 40 nodes per cylinder diameter withNc52, 4, 6, 8 modes,
i.e. 10, 18, 26, and 34 coefficients. Only the curve correspond
to the smallest number of modes can be distinguished. The e
of the number of nodes, withNc54, is shown in Fig. 11. The
curves are all very close to each other and only that correspon
to ND520 can be distinguished.

Finally, to illustrate the effect of the time-step, we return to t
drafting, kissing, and tumbling example of Fig. 6 and show in F
12 the vertical velocity of the leading particle as computed w
Dt50.5, 1, and 2 ms during the initial stages of the proce
Convergence of the results is clear from this example.
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Shear Buckling of Sandwich,
Fiber Composite and Lattice
Columns, Bearings, and Helical
Springs: Paradox Resolved
As shown three decades ago, in situations where the initial stresses before bucklin
not negligible compared to the elastic moduli, the geometrical dependence of the ta
tial moduli on the initial stresses must be taken into account in stability analysis, and
stability or bifurcation criteria have different forms for tangential moduli associated w
different choices of the finite strain measure. So it has appeared paradoxical tha
sandwich columns, different but equally plausible assumptions yield different form
Engesser’s and Haringx’ formulas, even though the axial stress in the skins is negl
compared to the axial elastic modulus of the skins and the axial stress in the co
negligible compared to the shear modulus of the core. This apparent paradox is expl
by variational energy analysis. It is shown that the shear stiffness of a sandwich co
provided by the core, generally depends on the axial force carried by the skins if that
is not negligible compared to the shear stiffness of the column (if the column is short)
Engesser-type, Haringx-type, and other possible formulas associated with different
strain measures are all, in principle, equivalent, although a different shear stiffness o
core, depending linearly on the applied axial load, must be used for each. The Har
type formula, however, is most convenient because it represents the only case in wh
shear modulus of the core can be considered to be independent of the axial force
skins and to be equal to the shear modulus measured in simple shear tests (e.g., to
test). Extensions of the analysis further show that Haringx’s formula is preferable f
highly orthotropic composite because a constant shear modulus of the soft matrix c
used for calculating the shear stiffness of the column, and further confirm that Harin
buckling formula with a constant shear stiffness is appropriate for helical springs
built-up columns (laced or battened).@DOI: 10.1115/1.1509486#
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1 Introduction
During the 1960s, there used to be lively polemics among

proponents of different three-dimensional stability formulatio
associated variationally with different finite strain measures~see,
e.g., the preface of Biot’s book@1#!, different objective stress
rates, and different incremental differential equations of equi
rium ~proposed by Hadamard, Biot, Trefftz, Truesdell, Pears
Hill, Biezeno, Hencky, Neuber, Jaumann, Southwell, Cotter, R
lin, Engesser, Haringx, etc.—see@2# ~p. 732 and Chap. 11! and
@3#!. These polemics were settled in 1971 by the demonstrat
@4#, that all these formulations are equivalent because the tan
tial elastic moduli of the material cannot be taken the same
must rather have different values in each formulation. It was a
concluded that these differences matter only if the initial stres
at the critical state of buckling are not negligible compared to
elastic moduli~@2#, Sec. 11.4!, @4#.

For most buckling problems, the differences between vari
stability criteria are insignificant because the initial stresses
negligible compared to the tangential moduli. One exception is
buckling of rubber and other elastomers. Others are the buck
of composites with a highly orthotropic fiber reinforcement and
very soft matrix, or built-up columns~battened or lattice col-

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, Jan. 30, 20
final revision, May 9, 2002. Associate Editor: A. Needleman. Discussion on the p
should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departme
Mechanics and Environmental Engineering, University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication in the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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umns!, large regular frameworks treated in a smeared manner
continuum, and elastomeric bearings used for bridges and for s
mic isolation of buildings.

For sandwich plates, which are very sensitive to bucklin
@5–11#, the initial axial stress in the skins of a sandwich column
negligible compared to the elastic modulus of the skins, and
initial axial stress in the foam core is zero. Consequently, it ma
first seem that the shear stiffness of the core should not depen
the axial force in the skins, which would imply that there shou
be no differences among the critical load formulas associated
different finite strain measures.

So, it came as a surprise that the Engesser-type,@12–14#, buck-
ling formula for sandwich columns, which is associated with t
Doyle-Ericksen finite strain tensor of orderm52, @2#, gave, for
short sandwich columns, much smaller critical loads than
Haringx-type, @15,16#, formula, which is associated with th
Doyle-Ericksen tensor of orderm522. The discrepancy was ve
hemently debated at several recent symposia on composites~es-
pecially at those sponsored by ONR at the ASME Congresse
Orlando~2000! and in New York~2001!!. Using constant and the
same shear stiffness values for both formulas, Kardomateas@17–
22# and Simitses and Shen@23# showed that the Haringx-type
buckling formula gave results closer to the experiments on sa
wich columns and to three-dimensional finite element simulatio
But, in view of the smallness of stresses in both the core and
skins, the reason for the difference has been seen as a parado
explain it, is the purpose of this paper. The explanation will a
clarify the shear stiffness to be used for buckling of highly orth
tropic composites and explain why Haringx’s formula is the c
rect buckling formula for helical springs.
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Fig. 1 Sandwich column in „a… initial state and „b… deflected state; „c,d … cross-section
rotation, shear angle and shear force due to axial load
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In applications to built-up~battened or laced~latticed!! columns
and to fiber composites, the difference between the Engesse
Haringx shear buckling formulas has been discussed for abou
years; e.g.,@2,4,24–34#. Ziegler@27#, for example, tended to favo
Engesser’s formula and Reissner,@28,29#, Haringx’s formula.
However, no consensus on the theory has yet emerged,@25,26#,
although the experiments on helical springs,@16#, elastomeric
bearings,@35#, and latticed columns,@32#, clearly favor Haringx’s
formula.

2 Tangential Moduli Associated With Different Finite
Strain Measures

To discuss buckling with shear, we need to recall the dep
dence of the tangential stiffness tensor of a material on the ch
of the finite strain measure~Bažant @4#!. A broad class of equally
admissible finite strain measures which comprises practically
of those ever used is represented by the Doyle-Ericksen ten
e5(Um2I )/m ~also called Hill’s family of strains, see, e.g.,@2#,
Section 9.1!!; m can be any real number,I5unit tensor, and
U5right-stretch tensor. The second-order approximation of th
tensors is, in component form,

e i j
~m!5ei j 1

1

2
uk,iuk, j2aekiek j , eki5

1

2
~uk,i1ui ,k!,

a512
1

2
m. (1)

Hereei j is the small~linearized! strain tensor; the subscripts refe
to Cartesian coordinatesxi , i 51, 2, 3! and repetition of tensoria
subscripts implies summation. In all the formulations up to no
22<m<2.

It was shown in@4# and, didactically, in@2#, Sec. 11.4, that the
stability criteria expressed in terms of any of these strain meas
are mutually equivalent if the tangential moduli associated w
different m-values are related as follows:

Ci jkl
~m!5Ci jkm1

1

4
~22m!~Sikd j l 1Sjkd i l 1Sil d jk1Sjl d ik! (2)

~@4# and @2# p. 727!. HereCi jkl are the tangential moduli assoc
ated with Green’s Lagrangian strain (m52), and Si j 5current
stress~Cauchy stress!. Obviously, the differences among theCi jkl

(m)

values for differentm are insignificant if the~suitable! norms

iSi j ~x!i!iCi jkl
~m!~x!i ~ for every x; m bounded! (3)

where x5coordinate vectors of points in the structure. This
equality is satisfied for sandwich columns, which is why the d
crepancy between the two existing sandwich buckling formu
has seemed paradoxical.
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3 Classical Paradox in Buckling of Columns Weak in
Shear

Engesser in 1889@12–14# and Haringx in 1942@15# presented
different formulas for the first critical load in buckling of column
exhibiting significant shear deformations~Fig. 1~a,b!!. They read

Pcr5
PE

11~PE /GA!
~Engesser! (4)

Pcr5
GA

2 SA11
4PE

GA
21D ~Haringx! (5)

~see also@24#!; E,G5elastic Young’s and shear moduli,PE

5(p2/ l 2)EI5Euler’s critical load,l5effective buckling length,
and EI,GA5bending stiffness and shear stiffness of the cro
section ~note that, in general,A5kA0 where A05actual cross-
section area andk5Timoshenko’s shear correction factor, whic
is greater than but close to 1; for a sandwichk'1!. Each of these
two formulas can be regarded as a different and equally plaus
generalization of the Timoshenko beam theory~@36#!, which does
not deal with finite strain effects and applies only to beams ca
ing negligible axial force.

The discrepancy between these two formulas used to be,
1971, regarded as a paradox. Then it was shown,@2,4#, that this
classical paradox is caused by a dependence of the tange
shear modulusC12125G on the axial stressS1152P/A, which
inevitably is different for different choices of the finite strain me
sure, i.e., for differentm. It turns out that Engesser’s formul
corresponds to Green’s Lagrangian strain tensor (m52), and Har-
ingx’s formula to the Lagrangian Almansi strain tensor (m
522). Properly the shear moduli in~4! and~5! should be labeled
asG(2) andG(22), respectively, and~2! indicates that

G~2!5G~22!1P/A. (6)

Equation~2! further indicates a difference in theE-values, how-
ever, that difference can be neglected because the axial stre
always negligible compared toE. ReplacingG in Engesser’s for-
mula withG1Pcr /A and solvingPcr from the resulting equation
one obtains Haringx’s formula~@2#, p. 738!, which makes the
equivalence blatant.

Equation~6! shows that if the shear modulus is constant~inde-
pendent of stress2P/A) for one formula, it cannot be considere
constant for the other formula. For a homogeneous material
which these two buckling formulas give different results, the ca
of a constant shear modulus would be one chance among infin
many possible stress-dependences of the shear modulus, and
constant shear modulus is highly unlikely for either formula.

The difference in shear moduli in~6!, of course, becomes sig
nificant only if the axial stressS1152P/A is not negligible com-
pared toG. Such a situation arises for built-up columns~consist-
Transactions of the ASME
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ing either of a regular pin-jointed lattice or a regular mome
resisting framework! approximated by a homogenizin
continuum, or for highly orthotropic columns, e.g., columns ma
of a fiber composite with a very soft matrix. With a proper de
nition of the dependence ofG on the axial stress, both formula
are equivalent. However, even though the equivalence of b
formulas along with~6! was demonstrated three decades ago
false perception of contradiction between these formulas has
widespread.

The relationship between theG values for two differentm is
linear in stressS052P/A. Thus, if the dependence ofG(m) on S0

is linear, there must exist onem value for whichG(m) is constant.
The formulation for thism is the the most convenient one fo
practical use. On the other hand, if the dependence ofG on S0

were nonlinear, there would exist nom for which G could be
constant.

4 New Apparent Paradox for Sandwich Buckling
In this study, we focus attention on elastic sandwich colum

for which a similar but not identical paradox has arisen as a c
sequence of various recent studies,@19–23,32#, and was debated
at several recent conferences~especially the ASME congresses
Orlando in 2000, and in New York in 2001!. Explanation of this
new apparent paradox is the objective of our analysis.

Let L denote the length of the column,l its effective length, and
P the axial force. The core has thicknessh and shear modulusG.
The skins have thicknesst and are, in general, orthotropic, wit
axial elastic modulusE ~Fig. 1~a!!. Since Young’s modulus of the
core is negligible compared toE for the skins, the entire axia
force and bending moment are carried by the skins. On the o
hand, since we may generally assume thatt!h, the entire shear
force is carried by the core. Therefore, one may substituteEI
5Ebt(h1t)2/21Ebt3/6'Ebth2/25bending stiffness of the
sandwich (t!h), and GA5Gbh5shear stiffness of the sand
wich, b being the cross section width in they-direction. With these
substitutions, the Engesser and Haringx formulas become

Pcr5
PE

11~PE /Gbh!
~Engesser type! (7)

Pcr5
Gbh

2 FA11
4PE

Gbh
21G ~Haringx type! (8)

wherePE is the Euler load,

PE5
p2

l 2 EI'
p2

l 2

Ebth2

2
. (9)

Similar to ~6!, one may check that, by making the replacemen

Gcore←Gcore2
2t

h
sskins (10)

where sskins52Pcr/2bt and G5Gcore5shear modulus of the
core, the Engesser-type formula~7! gets transformed into the
Haringx-type formula~8!.

Although the foregoing replacement works, it is, howev
purely formalistic, with no physical basis. It is certainly parado
cal that the shear modulus in thecore should depend on the axia
stress in theskins. Therefore, the reason for the discrepancy b
tween these two formulas cannot be caused by the difference
the shear modulusG of the core material, as given by~6!. Besides,
there is no reason for theG-moduli associated with different strai
measures to differ because the axial stress in the core is negli
compared to the shear modulus of core.

We thus have a different kind of paradox, which we must e
plain. To this end, we must not limit consideration to the mate
level, as in~10!. Rather, we must consider from the outset a sa
wich column constrained by the hypothesis that~in slender
enough columns! the cross sections of the core must remain pla
Journal of Applied Mechanics
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5 Adaptation of Previous General Analysis to Sand-
wich Column

To clarify the differences between the Engesser-type
Haringx-type formulas, Bazˇant’s @4# general analysis of a column
with shear needs to be adapted to a sandwich column. In stab
analysis, the incremental potential energy of the column mus
expressed accurately up to the second order in displacement
dients. Since the critical axial stressS0 is not small, finite strain
expressions that are accurate up to the second order must be
in the incremental energy expression.

To check whether there is any difference between
Pcr-values for axial loadsP applied under load control~e.g., grav-
ity! and under displacement control~i.e., with a prescribed axia
displacementu0 at column top!, it is convenient to consider a
general loading in whichP is applied through a spring of stiffnes
C, attached on top~Fig. 1~a!!. We introduce Cartesian coordinate
xi ( i 51,2,3, x15x, x25y, x35z), positioned so thatx15axial
coordinate of column~Fig. 1~a!!. The components of the incre
mental displacements from the stressed initial undeflected s
are ui ; u35w(x)5small lateral deflection~displacement of the
neutral axis in the direction of coordinatex3), and
u15u(x,y,z)5small incremental axial displacement;c a small
rotation of the cross section, assumed to remain plane but ge
ally not normal to the deflected beam axis~Fig. 1~c,d!!. The shear
angleg5u2c ~Fig. 1~c,d!! whereu5w85slope of the deflection
curve ~the primes denote derivatives with respect tox!.

Obviously, the incremental axial strain in the neutral axis
distributed uniformly along the column;e11

0 5u0 /L. The second-
order incremental potential energyd2W for small deflections
w(x) and small axial displacementsu(x) is

d2W5E
0

LE
A
FS0~y,z!~e11

~m!2e11!1
1

2
E~m!~y,z!e11

2

1
1

2
G~m!~y,z!g2GdA dx

1E
A
E

0

L 1

2
E~m!~y,0!~u0 /L !2dA dx1

1

2
Cu0

2 (11)

where the factor (e11
(m)2e11) is justified in @2# ~Chap. 11!; y5x2

andz5x35coordinates of the cross section whose area isA; dA
5dydz; S0(y,z)5initial axial normal stress in the straight colum
before deflection;E(m)(y,z) andG(m)(y,z) are the tangential elas
tic moduli at point (y,z); E(m)(y,z)5axial elastic modulus~taken,
in the case of a sandwich, to be nonzero only for the skins, wh
normally are orthotropic!, G(m)(y,z)5shear modulus~taken into
account, for a sandwich, only for the core!; and E(m)

(y,0) is the value at the neutral plane~midthickness of core!. The
superscript(m) indicates that, for differentm, these values may in
general be different, as implied by~2!.

Since the skin thicknesst!h, we consider the skins to posse
only axial stiffness; the bending and shear stiffnesses of the s
are negligible, and we may also considerg50 within the skins.
Accordingly,

u5u152zc, u1,352c, u85u1,15e1152zc8, (12)

u1,352c, u3,15w85u, 2e1352e315u1,31u3,15g5w82c
(13)

e11
~m!2e115

1

2
~u1,1

2 1u3,1
2 !2a~e11

2 1e31
2 !

5
1

2
~z2c821w82!2aFz2c821

1

4
~w82c!2G (14)

~since we consider deflections from the initial state of loaded c
umn before buckling, the expressionu152zc does not include
JANUARY 2003, Vol. 70 Õ 77
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the axial displacement at column axis, corresponding to displa
mentu0 at the top!. After these substitutions,~11! becomes

d2W5
1

2 E0

LE
A
H @~m21!S0~y,z!1E~m!~y,z!#z2c82

1S0~y,z!w82

1FG~m!~y,z!2
1

4
~22m!S0~y,z!G~w82c!2J dAdx

1E
0

LE
A

1

2
E~m!~y,z!~u0 /L !2dAdx1

1

2
Cu0

2. (15)

Note that none of the terms containingdu0 contains alsow(x).
Thus it is clear that the stiffness of the spring will have no eff
on the critical load for lateral buckling. So we will from now o
ignore the terms containingC, which is equivalent to considering
C→`, or to settingu05du050. As the displacement contro
~Fig. 2! of axial loading of the column is equivalent toC→` and
the load control toC50 ~Fig. 1~a,b!!, it follows that the critical
loads of lateral buckling are the same for both types of load c
trol ~which is, in principle, well known!.

Now we may integrate~15! over the cross section. Noting tha
the elastic modulusE(m) is negligibly small within the core, tha
the G(m) of the skins may be neglected because they carry a n
ligible portion of the shear force, and that the bending stiffness
the skins is negligible, we obtain in the integration process
following cross-section stiffness expressions and resultants:

E
A
E~m!~y,z!z2dA5R~m!5E~m!

1

2
bth2,

E
A
G~m!~y,z!dA5H ~m!5G~m!bh (16)

E
A
S0~y,z!dA52P, E

A
S0~y,z!z2dA52

1

2
Ph2. (17)

Here E(m) is the value for the skins andG(m) the value for the
core; R(m) and H (m) are the bending and shear stiffnesses of
cross section. A simplification can be obtained by noting that

u~m21!S0~y,z!u!E~m! (18)

because the magnitude of the axial compressive stress in the
is always negligible compared to the axial elastic modulus of
skin. Setting alsoa512m/2, we thus obtain

Fig. 2 Column loaded „a… under load control „e.g., by gravity …

and „b… displacement control
78 Õ Vol. 70, JANUARY 2003
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d2W5
1

2 E0

LH R~m!c821FH ~m!1
1

4
~22m!PG~w82c!2

2Pw82J dx. (19)

The necessary condition of stability loss and bifurcation is t
the first variation of the second-order workd2W during any kine-
matically admissible deflection variationsdw(x), du(x), du0
must vanish~Trefftz condition@2#!. So,

d~d2W!5E
0

LH R~m!c8dc81FH ~m!1
1

4
~22m!PG~w82c!

3~dw82dc!2Pw8dw8J dx50. (20)

Now we may integrate the first term by parts to eliminate t
derivative of the variationdc(x);

d~d2W!5E
0

LH FH ~m!1
1

4
~22m!PG~w82c!2Pw8J dw8~x!dx

2E
0

LH R~m!c91FH ~m!1
1

4
~22m!PG

3~w82c!J dc~x!dx

1@ . . . #0
L (21)

where the boundary terms,@ . . . #0
L , need not be written out in

detail for our purpose. The last variational equation must be
isfied for any kinematically admissible variationsdc(x) and
dw8(x). This condition requires that

Pw82FH ~m!1
1

4
~22m!PG~w82c!50 (22)

R~m!c91FH ~m!1
1

4
~22m!PG~w82c!50. (23)

Consider now simple supports at ends~in which casel 5L; Fig.
2!. Upon adding the last two equations, we may integrate th
and, in view of the boundary conditions of simple supports,
get:

R~m!c81Pw50. (24)

This equation together with~22! represents a system of two linea
homogeneous first-order ordinary differential equations forw(x)
and c(x). They can further be reduced to one second-order
mogeneous equation by differentiating~22! and substitutingc8
expressed from~24!. The result is

w91k2w50 (25)

where

k25

PFH ~m!1
1

4
~22m!PG

R~m!FH ~m!2
1

4
~21m!PG . (26)

The solution of differential Eq.~25! satisfying the boundary
conditions of a simply supported column~Fig. 1~b!! is w(x)
5a sinkx wherea is any real number. The boundary condition
require thatk25p2/L2 for the first critical load. If we substitute
this into ~26!, we acquire the following equation for the first crit
cal loadP at which buckling takes place:

1

4
~22m!P21FH ~m!1

1

4
~21m!PE

~m!GP2H ~m!PE
~m!50

(27)
Transactions of the ASME
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wherePE is the Euler load, i.e.,

PE
~m!5p2R~m!/L2. (28)

Equation~27! is a quadratic equation, which has form52 and
m522 the following positive solutions analogous to Engesse
and Haringx’s formulas:

for m52: Pcr5
PE

~2!

11~PE
~2!/H ~2!!

with PE
~2!5

p2

l 2 R~2!

for m522: Pcr5
H ~22!

2 FA11
4PE

~22!

H ~22! 21G (29)

with PE
~22!5

p2

L2 R~22!. (30)

It has been shown in 1971,@4#, ~and with more detailed explana
tions in @2#! that the casem52 is associated by work with Trues
dell’s objective stress rate, and the casem522 with Cotter and
Rivlin’s ~convected! objective stress rate.

One could further obtain from~27! an infinite number of sand
wich buckling formulas, each associated with any chosen valu
m. Curiously, however, no investigators proposed critical load f
mulas associated with otherm values, although many investiga
tors ~e.g., Biot @1#, Biezeno, Hencky, Neuber, Jaumann, Sou
well, Oldroyd, Truesdell, Cotter, and Rivlin—see@2#, Chap. 11!
introduced formulations for objective stress rates, thr
dimensional stability criteria, surface buckling, internal bucklin
and incremental differential equations of equilibrium associa
with m51, 0 and21.

6 Paradox Resolution: Shear Stiffness Definition for
Stressed Sandwich

In analogy to~6! and in similarity to~10!, one may expect the
shear stiffnesses for the Engesser’s and Haringx’s formulas t
related as

H ~2!5H ~22!1Ph/2t. (31)

Indeed, when this relation is substituted into~29! and the resulting
equation is solved forP5Pcr , formula ~30! results. However,
unlike homogeneous columns weak in shear, the foregoing tr
formation cannot be physically justified in the sense of~10!, i.e.,
on the basis of the general transformation of tangential modu
~2! nor its special case in~6!. The reason is that the axial stressS0

in the core in much less thanE(m) in the core and negligible. From
this viewpoint, the transformation appears illogical: Why shou
the shear modulus of the core be adjusted according to the
stress in the skins?

This has become a new apparent paradox, which must be
solved. To this end, we need take a closer look at the definitio
the shear stiffnessH of a sandwich, which we do next.

Let us imagine a homogeneous pure shear deformation o
elementDx of the sandwich column;

u15u1,15u1,35e1150, u3,15g, e135e315g/2. (32)

After substitution into~11!, the second-order incremental potent
energy of the element is obtained as

d2W5DxE
A
F2

P

2bt S 1

2
uk,1uk,12aek1ek1D1

1

2
Gmg2GdA

(33)

or

d2W5bhDxS G~m!2
21m

4

P

bhD g2

2
. (34)

In particular, for m52 ~Engesser type! and m522 ~Haringx
type!,
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d2W5H bhDx @G~2!2~P/bh!#g2/2 ~Engesser typeG!

bhDx G~22!g2/2 ~Haringx type G!
.

(35)

Since the foam core in an axially loaded sandwich column c
ries no appreciable axial stresses, it is convenient to use that
nition of G(m) for which the shear stiffness of the core requires
correction for the effect of the axial forceP carried by the skins.
As we see, that is the latter, Haringx-type, expression~for m5
22). In that case, the shear modulusG(22) is the same as tha
obtained in a pure shear test without normal stress, for exampl
the torsion test of thin-wall tube made of the rigid foam.

The solutions formÞ22, including the Engesser-type formula
are of course equivalent. But if they are used the shear modulu
the core must be corrected for the effect of the axial forcesF
5P/2 carried by the skins. It would be wrong to use in them t
G value measured in a pure shear test of the foam, in which
normal force acts on the shear plane.

Intuitive understanding can be gained from Fig. 3, which sho
two kinds of shear deformation of an element~of heightDx51)
of a sandwich column. In the first kind~Fig. 3~a!!, corresponding
to the deformation described by~32!, small shearing of the ele
ment is accompanied by a second-order small axial extensio
the skins, equal to 12cosg'g2/2 ~per unit height!. If the initial
forcesF were negligible, this second-order small extension wo
make no difference but since they are not, one must take
account the work of the initial forces ofF on this extension, which
is (2Fg2/2)bh or 2bhS0(2g2/2) ~per unit height,Dx51). This
work must be added to the work of the shear stresses, (Gg2/2)bh,
in order to obtain the complete second-order work expression
the second kind of shear deformation~Fig. 3~b!!, the initial forces
F do no work. So, the incremental second-order work express
for these two kinds of shear deformation, respectively, are

d2W5H bh~G~2!1S0!g2/2 ~case a!

G~22!g2/2 ~case b!.
(36)

These two cases~Fig. 3! give the same incremental second-ord
work if G(2)5G(22)2S0 or G(2)5G(22)12F/bh. We see that
these relations coincide with~6!.

From the foregoing comparisons and the discussion of Fig.
is now obvious that a constant shear modulusG, equal to the shear
modulus measured in a shear test of the foam~e.g, a torsional test
of a hollow tube!, can be used only in the Haringx-type formu
(m522).

Recently Simitses and Shen@23#, Kardomateas@19,20,22# and
Kardomateas and Huang@21#, studied the differences between th
Engesser-type and Haringx-type formulas experimentally and

Fig. 3 Shear deformation of an element of sandwich column
under initial axial forces FÄPÕ2; „a… with second-order axial
extension g2Õ2, and „b… at no axial extension
JANUARY 2003, Vol. 70 Õ 79
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finite element analysis. They concluded that the Haringx-type
mula gives better predictions. Since they tacitly adopted a c
stant value of incremental modulusG, this is indeed the conclu
sion that they should have obtained. The present theore
analysis explains why.

When can the differences between the column solutions
different m, and particularly between the formulas of Enges
and Haringx, be ignored? They can if

P!H ~m!5G~m!bh. (37)

7 Ambiguity in Deriving Differential Equations of
Equilibrium

The Engesser and Haringx formulas can also be derived f
the differential equations of equilibrium. This is discussed fo
homogeneous column weak in shear on p. 738 in@2#, and we will
now indicate it for a sandwich. Fig. 1~c,d! shows two kinds of
cross sections of a sandwich column in a deflected position:~a!
the cross section that is normal to the deflected column axis
which the shear force due to axial load is

Q5Pw8 (38)

and~b! the cross section that was normal to the column axis in
initial undeflected state, on which the shear force due to axial l
is

Q̄5Pc. (39)

From equilibrium, for a simply supported~hinged! column, the
bending moment isM52Pw in both cases. The force
deformation relations areM5Ebth2c8/2 and Q or Q̄5Gbhg
5Gbh(w82c) in case a or b, respectively. EliminatingM, g, c
and Q or Q̄ from the foregoing relations, we get a differenti
equation of the formw91k2w50, same as~25!, where

k25
GbhP

E~bth2/2!~Gbh2P!
(40)

or

k25
P21GbhP

E~bth2/2!Gbh
, (41)

respectively. Setting againk5p/ l and solving forP, we find the
former equation to lead to Engesser’s formula~4! and the latter to
Haringx’s formula~5!.

We see that Engesser’s formula (m52) is obtained when the
shear deformationg is assumed to be caused by the shear fo
acting on the cross section that is normal to the deflected ax
column, and Haringx’s formula (m522) when caused by the
shear force acting on the rotated cross section that was norm
the beam axis in the initial state.

The foregoing equilibrium derivation, however, does not sh
that the values of shear stiffness in both formulas must be dif
ent. Especially, it does not show that the shear stiffness in
direction of the rotated cross section can be kept constant, w
the shear stiffness in the direction of normal to the deflected
must be considered to depend on the axial force. This has be
perennial source of confusion. To dispel it, the work of the sh
forces must be considered. So, an energy approach is approp

8 Implications for Highly Orthotropic Composites
Orthotropic composite plates or columns, reinforced by fib

in one or two directions, can have a shear modulusG much
smaller then the axial elastic modulusE ~typically 25 times
smaller!. The shear modulus of the composite can be determi
in two ways:~1! by calculation from the measured shear and ax
moduli Gp , Ep of the polymeric matrix and the elastic modulu
Ef of the fibers, or~2! by direct testing of the composite in tensio
and torsion.
80 Õ Vol. 70, JANUARY 2003
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In the former way, moduliGp , Ep , and Ef may be taken as
constant because the stresses in the matrix and fibers are too
compared to the respective moduli. Since in Fig. 3~a,b! we can
imagine the skins acting like two adjacent fibers in an elemen
a composite column, and the core like the matrix between th
fibers, the situation is similar to that analyzed for the sandwich
immediately follows that Haringx’s formula~5!, with a constant
value ofGp , is the appropriate one. Engesser’s formula~4! could
nevertheless be used to get identical results ifGp of the matrix
were transformed as a linear function of the initial stressSf in the
fibers, similar to formula~36a! or ~10!.

In the latter way, the incrementalG(m) value of the composite
depends in general on the initial axial force in the tube be
tested, if any is applied. However, the special case of Haring
formula (m522) employs aG modulus that corresponds, as a
ready shown, to the shearing in torsion at constant length of t
~Fig. 3~a!!, in which the axial stressSf in the fibers does no work
So, in that special case, the incrementalG(m)(m522) should be
independent ofSf .

Therefore, theG value in Haringx’s formula~5! for an ortho-
tropic composite can be taken as constant. On the other hand
G value in Engesser’s formula must be considered to depend
Pcr ~linearly, in the manner of~31!!. This makesPcr an unknown,
and so the formula becomes an equation~a quadratic one! for
Pcr . The solution of course leads to the Haringx-type formula

9 Remarks on Helical Springs, Built-Up Columns, and
Bridge Bearings

As another obvious ramification, the present analysis expla
why Haringx’s formula, @15#, is the correct one for helical
springs, which were the objective of Haringx’s original study.
suffices to note that, in the case of springs, the rotated, initi
normal, cross section lies symmetrically within a single pitch
the spiral, halving the separation between the pitches at the p
diametrically opposite to the point of intersection of the cro
section with the deformed spiral~see ‘‘Haringx’’ in Fig. 4!. The
stiffness for this cross section can be calculated easily. By c
trast, a cross section normal to the deflected axis of the helix d
not exhibit this kind of symmetry and may even cut through mo
than one pitch of the helix~see ‘‘Engesser’’ in Fig. 4!. The shear
stiffness for such a cross section must depend on the axial f
in the spring. Its calculation would be messy and unsuitable
practice.

In bridge bearings that consist of a stack of horizontal st
plates separated by bonded elastomeric layers~Fig. 4 right!, the
shear force that determines the shear deformation of each el
meric layer is parallel to the steel plate, and thus to the cr
section that was horizontal before deflection, and not to the c
section that is normal to the current deflected axis of the bear
This again implies that a constant shear modulus can be used
with Haringx’s formula ~provided, of course, that the layers o
elastomer behave elastically!.

The built-up columns are normally approximated in a smea
manner as continuous columns~Fig. 5!. They can consist of~i! a
single-bay regular rectangular frame~flanges joined by battens!,
which resists the shear force predominantly through the bend
of the flanges and the batten in each repetitive cell of the colu
or ~ii ! a lattice, which is idealized as pin-jointed and resists
shear force predominantly by axial forces in the members of e
lattice cell.

For both cases, the equivalent shear stiffnessH of the con-
tinuum approximation of a built-up column may be calculat
from the shear deformation of one repetitive cell of the colum
~@2#, p. 739, Fig. 11.6b,c!. A constant shear stiffness can be used
the shear deformation of the cell is calculated at constant lengt
the vertical flange, as shown in Fig. 5~bottom!. In that case,
Haringx’s formula is appropriate.

On the other hand, if the shear stiffness of the cell is calcula
from the shear deformation in Fig. 5, the work that forcesF5
Transactions of the ASME
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Fig. 4 „a… Lateral view of a helical spring and cross sections on which the
shear force is defined in Haringx and Engesser theories; „b… shear buckling of
an elastomeric bridge bearing
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2P/2 in the flanges do on the second-order axial extensiong2/2
must be taken into account. This leads to Engesser’s formula.
the shear stiffness in that formula must of course be considere
depend onP.

Haringx’s formula with a constant effective shear stiffness
obviously also appropriate for the overall shear buckling of la
regular multi-bay multi-story frames as used in tall buildin
~Section 2.9 in@2#!.

10 Summary and Conclusions

1. In the case where the initial stresses before buckling are
negligible in comparison to the elastic moduli, the depe
dence of the tangential moduli on the initial stresses mus
taken into account in stability analysis, and the stability
bifurcation criteria have different forms for tangenti
hanics
But
d to

is
ge
s

not
n-
be

or
l

moduli associated with different choices of the finite stra
measures,@4#. It has been regarded as paradoxical that sa
wich columns apparently defy this condition—equilibriu
analyses based on different but equally plausible assu
tions yield different formulas~Engesser’s and Haringx’ for-
mulas! even though the axial stress in the skins is negligi
compared to the axial and shear moduli of the skins and
axial stress in the core is negligible compared to the ax
and shear moduli of the core. Here it is shown by variatio
energy analysis that the aforementioned condition for
stress dependence of the tangential moduli needed for st
ity analysis is only a sufficient condition but not a necess
one. Another condition applies to sandwich structures—
the normal stress in a stiff component of the cross sect
the skins, is not negligible compared to the she
Fig. 5 Left: Column with battens and pin-jointed lattice column. Middle: Shear-
ing of a cell of batten column. Right: Shearing of a cell of lattice column. Top:
Shearing with second-order axial extension. Bottom: Shearing with no axial
extension.
JANUARY 2003, Vol. 70 Õ 81
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modulus in an adjacent soft component, the foam core, t
this stress influences the shear stiffness of the sandw
cross section.

2. The shear stiffness of the core is in general a linear func
of the axial forces carried by the skins, and this function
different for stability theories associated with different fini
strain measures. The corresponding definitions of the sh
force caused by the applied axial load are also different.

3. The Engesser-type buckling formula and the Haringx-ty
buckling formula are both, in principle, correct and mutua
equivalent. But a different shear stiffness of the core of
sandwich column, in general depending linearly on the
plied axial load, must be used in each.

4. The Haringx-type formula represents a special case in wh
the shear modulus of the foam core can be taken as inde
dent of the axial force in the skins and equal to the sh
modulus measured in a simple shear test~e.g., the torsional
test of a thin-wall foam tube!. For the Engesser-type for
mula, the shear stiffness of the core must be considere
depend on the unknown axial force. Therefore, the Harin
type formula is more convenient for practice.

5. The foregoing conclusion is in agreement with the rec
findings of Simitses, Kardomateas and co-workers who u
a constant shear modulus for the core of sandwich colum
in both the Engesser-type and Haringx-type buckling form
las and found that the latter gave results closer to exp
ments as well as three-dimensional finite element calc
tions.

6. An extension of the analysis further shows that Haring
formula is preferable for highly orthotropic composites.
and only if, that formula is used, a constant shear modulu
the soft matrix can be used for calculating the shear stiffn
of column. For Engesser’s formula, the shear modulus of
matrix must be considered to depend on the axial stres
the fibers.

7. As further ramifications, the effective shear stiffness of
lical springs, elastomeric bridge bearings, built-up~battened
or laced! columns and multi-bay multi-story frames can b
considered to be constant only if Haringx’s formula is use

8. The difference between the Engesser-type and Haringx-
formulas for a sandwich~or orthotropic fiber composite! can
be ignored only when the axial force carried by the skins~or
the fibers! is much less then the shear stiffness of the c
~or the matrix!.

9. For orthotropic materials whose tangential shear modulu
a nonlinear function of the normal stress, both the Enges
type and Haringx-type formulas necessitate the use of a v
able shear stiffness, and in that case none of them is m
convenient than the other.

10. For general structures, condition~3! is only a necessary on
for making the differences among various choices of
finite strain measuree (m) irrelevant. A condition that is suf-
ficient is

max
~x!

iSi j ~x!i!min
~x!

iCi jkl
~m!~x!i ~m bounded!. (42)

This condition appears to be both sufficient and necess
when the maximum and minimum are taken within a
single cross section of a slender beam, but not neces
for a general body with the maximum and mimimum tak
over the whole body. The reason that the inequa
iSi j (x)i!iCi jkm

(m) (x)i for a material point is insufficient is
the interaction within the cross section, reflected in the
pothesis of cross sections of slender beams remain
plane.
82 Õ Vol. 70, JANUARY 2003
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Residual Stress-Induced Center
Wave Buckling of Rolled Strip
Metal
In this paper computational and analytical treatments of the center wave buckling
nomenon in thin strips under in-plane loads which typically appear during cold rolling
sheet metal, are presented. Buckling due to self-equilibrating residual stresses, cau
the rolling process, in conjunction with global tensile stresses (due to the traction f
acting on the strip) is considered. The shape of the distribution of the residual stre
over the width of the strip influences the buckling mode. Furthermore, it is shown th
increasing global tension force leads not only to increased critical residual stress in
sities but also to shorter buckling waves concentrated towards the center of the
Taking these facts into account, a proper combination of the information gained
measuring the global tensile force at which buckling appears, the wave length, and
characteristic shape parameters of the buckling pattern allows the estimation o
intensity and the type of the residual membrane force distribution in the strip. By in
ducing dimensionless quantities, diagrams are provided which can be used for the
mination of critical loading combinations, wave lengths, and shape parameters.
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1 Introduction
It is well known in the metal forming community that residu

stresses can lead to buckling of the strips during the rolling p
cess. Such residual stresses can be caused by thickness redu
which are not exactly homogeneous over the width of the strip
the thickness reduction is more pronounced in the middle of
width of the strip, then compressive residual stresses will app
there, and center wave buckling can be expected. Conseque
thickness reductions which are larger in the edge areas than i
middle region more likely cause edge wave buckling. Certain
these thickness reductions are the result of large plastic defo
tions. However, the resulting residual stresses—even in comb
tion with the global traction force—are typically in the elast
range. In most situations, particularly for thin strips, if bucklin
happens it is an elastic bifurcation process. Even very small
sidual stresses~with magnitudes less than some MPa’s! may lead
to buckling and to considerably high amplitudes of the transve
deformations in the post-buckling pattern if the global tracti
force is reduced. Since during this post-buckling processes
residual stresses are released by the transversal deflection
whole deformation history; i.e., buckling and post-buckling, c
be treated as an elastic process.

A survey of the literature dealing with these phenomena can
found in@1#. Further treatments of buckling during rolling of she
metal are presented for instance in@2,3# and, more recently, in
@4,5#. The character and the shape of the buckling mode a
consequently, the post-buckling pattern depend on the shape o
distribution of the residual membrane force over the width of
strip and on the ratio between the intensity of the residual m
brane forces and that of the traction force at which the trivial, i
plane, configuration loses its stability; see Fig. 1.

In @4,5# the authors presented the principal features of th

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan.
2001; final revision, July 26, 2002. Associate Editor: N. Triantafyllidis. Discuss
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
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buckling phenomena; moreover, analytical approaches were
rived and discussed. In those papers results have been pres
only for situations in which so-called edge wave buckling appea
This paper deals with center wave buckling.

2 Formulation of the Mathematical Model
The formulation of the mathematical model follows in its prin

cipal features what has been presented in@5#. However, in this
paper the combination of analytical and finite element analysi
of particular importance: The buckling modes obtained from
genvalue analyses in finite element computations were crucial
determining proper trial functions in the Ritz-Ansatz approxima
ing the buckling pattern for the analytical approach. The analyti
approach achieved this way is generally applicable and no fur
finite element analysis is required. Because the analytical res
can be achieved in a dimensionless form, the analytical proced
leads to a tool which can be easily used in practice.

6,
on
part-
nta
after
Fig. 1 Center wave buckling of a rolled strip metal „courtesy
of VOEST ALPINE Industrieanlagenbau, Linz, Austria …
2003 by ASME Transactions of the ASME
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2.1 Description of the Residual Stress Field. A strip of
infinite length~representing a sheet metal in the rolling path! with
the widthB and a plate bending stiffnessK5Et3/12(12n2) ~with
E being Young’s modulus,n Poisson’s ratio,t the thickness!, is
loaded by a self-equilibrating residual membrane force distri
tion Rnxx(y)5Nĝ(y) and a constant global tension forceN0 ; see
Fig. 2. Independent of the longitudinal coordinatex, the mem-
brane force distribution is given by

nxx~y!5Nĝ~y!1N0 . (1)

The following dimensionless quantities are introduced:

h5y/B, with 2B/2<y<B/2, 21/2<h<1/2,

ĝ~y!→g~h!, nxx→nxx~h!5Ng~h!1N0 , (2)

Ñ5
NB2

Kp2 , Ñ05
N0B2

Kp2 .

(Ñ0 values within the range up to 1000 are typically of interest
cold rolling of metal strips.!

BecauseRnxx must be self-equilibrated, the following conditio
must hold:

E
21/2

11/2

g~h!dh50,

i.e., for symmetricalg~h!: E
0

1/2

g~h!dh50.

(3)

In order to capture a wide range of symmetrical residual me
brane force distributions which typically lead to ‘‘center wav
buckling,’’ i.e., a buckling pattern showing waves with maximu
wave heights at the center of the strip, the following distributio
are assumed:

a. Cosine distribution:

gc~h!512Cm cosm ph with m51,2, . . .

and 21/2<h <1/2. (4)

The equilibrium condition forRnxx(h) leads to

Cm5
1

2 FE
0

1/2

cosm ph dhG21

. (5)

Fig. 2 The strip under residual membrane force distribution
and global tension
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b. Polynomial distribution:

gp~h!5
1

m
@~m11!~2uhu!m21# with m51,2, . . . .., (6)

which also fulfils the equilibrium condition~3!.

Here and in the following the superscripts ‘‘c’’ and ‘‘ p’’ refer to
the cosine and the polynomial residual membrane force distr
tions, respectively.

Due to the variable exponentm in gc(h) and gp(h), respec-
tively, the required large variability of residual stress distributio
can be provided, see Fig. 3.

From this figure one can see that by consideration of cos
distributions withm511 andm51 as well as polynomial distri-
butions withm511 the field of very much and moderately co
centrated as well as smoothly distributed compressive resi
membrane forces, respectively, is captured. This is the reason
the results for these cases are presented in the figures of this p

Both distributions, i.e., the cosine and the polynomial one, le
to

g~h561/2!51. (7)

This means that a positive value ofN in Eq. ~1! corresponds to
tensile residual membrane forces in the edge regions and c
pressive residual membrane forces in the center regions of
strip. In other words, the residual membrane force intensityN is
expressed by the tensile residual membrane force at the edg
the strip.

2.2 Determination of Proper Trial Functions for the
Buckling Pattern. In order to apply the Ritz approach as d
scribed in@4,5# we have to find a proper Ritz-Ansatz, i.e., tri
functions, for the buckling pattern. For center wave buckling t
task is not as easy as in the case of edge wave buckling.

In order to find appropriate trial functions an extensive fin
element study of the problem under consideration was perform
Strips of sufficient length having a widthB51.5 m, and a thick-
ness t50.5 mm, made of aluminum (E573104 N/mm2, n
50.33) were discretized by finite shell elements. The differ
kinds of nominal residual membrane force distributions, i.e.,
sine or polynomial~according to Eqs.~4! or ~6!!, were introduced
via fictitious temperature loads. Additionally, different values
the global tensile forceN0 were applied. Linear eigenvalue analy
ses led to the critical values of the membrane force intensityN as
functions of the global tensile forceN0 and to the corresponding

Fig. 3 Schematic representations of typical residual stress
distributions; top: according to Eq. „4…, bottom: according to
Eq. „6…
JANUARY 2003, Vol. 70 Õ 85
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Fig. 4 Buckling modes for cosine-distributed residual membrane forces „with
mÄ1 and mÄ11… and for polynomially distributed residual membrane forces
„with mÄ11…
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buckling modes. For cosine residual membrane force distribut
the exponentm was chosen to be 1 and 11 and for polynom
distributionsm511 was considered. These three cases capture
most characteristic cases within the wide field of varieties.

Figure 4 shows some typical results for cosine-distributed~with
m51 andm511) as well as for polynomial distributions~with
m511) for two values of the global tensile force, expressed
dimensionless quantities according to Eqs.~2!. For reasons of
comparison, sections of equal length are cut out from the typic
longer finite element models.

From the results of the finite element buckling analyses so
principal features of the buckling pattern can be drawn: T
higher the global tensile forceÑ0 the more the buckles are con
centrated at the center of the strip and the smaller is their w
length. For small values ofÑ0 two cases have to be distinguishe
one in which the amplitude values of the buckling waves at
center and at the edges are opposite to each other, and o
which these signs are the same. Higher values ofÑ0 lead to buck-
ling modes with straight edges of the strip. Furthermore, trans
sal distributions of the amplitude function of the buckling mo
with and without points of inflexion were found. In the case
center wave buckling just symmetric buckling modes appear. W
these results the following two alternative trial functions for t
Ritz-Ansatz approximating the buckling pattern were chosen:
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w~x,h!5qwa~x,h!, wa~x,h!5cos~aph!cosS px

l D (8)

or

w~x,h!5qwn~x,h!, wn~x,h!5~1212h2116h3!ncosS px

l D .

(9)

By these trial functions the whole field of varieties of bucklin
modes is approximated to a high degree of accuracy, provided
the parametersuau,2.0 in Eq.~8! andn>1.0 in Eq.~9! are prop-
erly chosen. The finite element results show that buckling mo
according to Eq.~8! are only relevant for values of the globa
tensile membrane forceN which are too small to be of practica
relevance. This statement is confirmed also by the results of
analytical model as described below. Therefore, the main emp
sis is laid on the solutions with trial functions according to Eq.~9!.

Both the half-wave lengthl and the parametera or the exponent
n, respectively, have to be determined such that the Ritz appro
leads to the relevant, i.e., the minimum, critical membrane fo
intensity as a function of the global tension force:Nc(N0) or
Np(N0) for a given exponentm in Eq. ~4! or ~6!, respectively.
Transactions of the ASME
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3 Analysis
The Ritz approach in combination with the concept of minim

zation of the total potential energyf determines the buckling load
as that eigenvalue of the residual membrane force intensit
which a nontrivial equilibrium path bifurcates from the trivial, i.e
the flat, one.

Just for consistency’s sake the principal features of this ene
approach are repeated from,@5#: The total potential energyf of a
thin plate deformed in a nontrivial way, i.e., also in the directi
normal to the middle surface, and subjected to a membrane f
stateRnxx1N0 can be taken from the literature~see, e.g.,@6#! and
reads, specialized for the considered situation, as follows:

fB5
K

2 E
V
H S ]2w

]x2 1
]2w

]y2 D 2

22~12n!F]2w

]x2

]2w

]y2 2S ]2w

]x]yD 2G J dV, (10)

fM5
1

2 EV
~Rnxx1N0!S ]w

]x D 2

dV, (11)

fN0
52

N0
2LB

2Et
, f5fB1fM1fN0

. (12)

The application of Gauss’ theorem leads to the following modifi
formulation offB :

fB5
K

2 E
V
S ]2w

]x2 1
]2w

]y2 D 2

dV1K~12n!E
]V

]w

]x

]

]y S ]w

]s Dds.

(13)

fB is the contribution tof due to bending,fM that due to the
membrane forces, andfN0

is the potential energy of the bounda
force N0 at x50 andx5L@B.

Since we are dealing with single-term shape functions we h
just one degree-of-freedom, which is related to the amplitudeq of
the buckling mode; see Eq.~8! or ~9!.

Stationarity off(qwi) requires]f/]q50, which immediately
leads to the equation

fB~wi !1fM~wi !50. (14)

wi stands for the trial function withi 5a if Eq. ~8! is used andi
5n if Eq. ~9! is used.

If we now insert the membrane state according to Eq.~4! or ~6!,
respectively, which depends on a positive constantN, see Eq.~1!,
the Eq.~14! can be rewritten with the dimensionless entities d
fined by Eq.~2!:

ÑfM ,N8 ~wi !1Ñ0fM ,N0
8 ~wi !1fB~wi !50, (15)

wherefM ,N8 andfM ,N0
8 are the contributions tofM due toÑ51

andÑ051, respectively. This leads to

Ñi52
fB~wi !1Ñ0fM ,N0

8 ~wi !

fMN8 ~wi !
(16)

as critical residual membrane force intensity corresponding to
Ritz-Ansatz with parametera or exponentn, respectively.

The right-hand side of Eq.~16! contains a further unknown
quantity, namely the half-wave lengthl in the x-direction. Since
we look for the minimum possible value of the buckling para
eter Ñi ~i becomesa or n!, we find l by minimizing Ñi with
respect to this quantity:

dÑi

dl
50. (17)
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This additional relation allows to findl min and, as a consequenc
Ñamin(Ñ0) andÑnmin(Ñ0) for given values ofa andn, respectively.
In the following text these quantities will be used without th
subscript ‘‘min’’. The relevant parametera or exponentn will be
determined below.

For the more relevant case, i.e., based on Eq.~9!, the depen-
dence of the half-wave length of the relevant buckling mode
the exponentn is shown in Fig. 5. This result holds true indepe
dent of the shape of the residual membrane force distribution,
Eqs.~4! or ~5!. Certainly, the relevant exponentn depends on this
distribution shape, and, thus, alsol does.

Similar to the solution obtained in@5# for edge wave buckling,
l /B as a function ofn shows a maximum. In the case under co
sideration this maximum is atn* '1.1. Forn.n* increasingn
leads to decreasingl. The interval@1.0,n* # appears to be un-
physical; however, it is of no relevance because the solutions w
nP@1.0,n* # lead to larger critical residual membrane force inte
sities than those obtained with trial functions according to Eq.~8!,
and are therefore not relevant.

Equation~16! in combination with~17! leads to the following
solution for the critical residual membrane force intensity for
given exponentm in Eqs.~4! or ~6!:

Ñi
k~Ñ0!5F1

k~ i !1F2
k~ i !Ñ0 . (18)

The indexk denotes the character of the residual membra
forces: cosine-distributed (k5c) or polynomially (k5p), while
the index~or the variable! i indicatesa or n, depending on the
choice of the trial function~8! or ~9!.

The functionsF1 andF2 are determined in analytical form.
For a given type of residual membrane force distribution~char-

acterized by Eq.~4! or ~6! and a given value of the exponentm!
the critical intensityÑi(Ñ0) represents for every parametera or
exponentn a straight line in theÑ2Ñ0-diagram~Eq. ~18! is a
linear relation!. These straight lines intersect each other. As d
cussed in detail in@5# for the case of edge wave buckling, th
relevant value ofÑ(Ñ0), i.e.,

Ñ~Ñ0!5min
i

Ñi~Ñ0! (19)

is represented by the inner envelope as formed by the manifol
straight linesÑi(Ñ0) with a continuously varying parametera or
exponentn.

Fig. 5 Half-wave length of the relevant buckling mode as a
function of n in Eq. „9…
JANUARY 2003, Vol. 70 Õ 87
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This envelope is, for givenm, implicitly described by

G~Ñ,Ñ0 ,i !5Ñ2F1~ i !2F2~ i !Ñ050. (20)

Therefore, the condition for the envelope

]G

] i
52

dF1

di
2

dF2

di
Ñ050, (21)

yields

Ñ052
dF1

di Y dF2

di
5Ñ0~ i !. (22)

This way the critical intensity can be expressed as a functioni
( i 5a or n! only instead ofÑ(Ñ0):

Ñ~ i !5F1~ i !2F2~ i !S dF1

di Y dF2

di D . (23)

Finally, Ñ(Ñ0) can be determined by evaluating Eqs.~22! and
~23! for continuously varyingi. In this way also the relevant val
ues of the parametersi 5a, n are found.

Fig. 6 Functions Ñi„Ñ0…, iÄa,n , for small values of Ñ0 . The
notation i – k denotes the combinations of buckling modes and
membrane force distribution. iÄa means cosine mode accord-
ing to Eq. „8…, and iÄn stands for Hermitean based mode ac-
cording to Eq. „9…; kÄc points to cosine and kÄp to polyno-
mial distributions of the residual membrane forces.
88 Õ Vol. 70, JANUARY 2003
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Equations~22! and ~23! require the first derivatives ofF1( i )
andF2( i ), which can be calculated numerically.

For every membrane force distribution two envelopes exist
the Ritz-Ansatz approximating the buckling pattern:Ña(Ñ0) for
the buckling mode according to Eq.~8!, andÑn(Ñ0) for the buck-
ling mode approximated by Eq.~9!. Of course, the minimum of
Ñi(Ñ0), i 5a,n, is physically relevant. Thus,Ña(Ñ0) is the rel-
evant curve until it crosses theÑn(Ñ0)-curve at a certain value of
Ñ05Ñ0* ; see Fig. 6. To allow a comparison, finite element so
tions, obtained as described in Section 2.2, are also include
Fig. 6.

For Ñ0>Ñ0* the Ñn(Ñ0)-curve is relevant. Certainly, the non
smooth transition from the one curve to the other does not re
indicate a mode-jump but reflects the approximate character of
Ritz approach used in the estimations. This becomes also obv
if one compares the trial functions, determined by minimizing t
eigenvalues resulting from the Ritz approach as described ab
with the corresponding finite element solutions—see Fig. 7.
Fig. 8 just the relevant curves are included.

This figure shows transversal amplitude functions of the bu
ling modes, derived on the basis of Eqs.~8! or ~9! with the ap-
propriately determined parametersi 5a for cosine distributed
buckling pattern—Eq.~8!, and i 5n for Hermitean buckling
pattern—Eq.~9!. Finite element solutions are also presented. W

Fig. 8 Dependence of the critical residual membrane force in-
tensity Ñ on the global strip tension Ñ0 for different distribu-
tions of the membrane forces. Comparison between analytical
and finite element results.
Fig. 7 Transversal amplitude functions of the buckling modes. Analytical and
finite element solutions. „a… Polynomially „mÄ11… distributed membrane force,
Ñ0Ä10, „b… cosine „mÄ1… distributed membrane force, Ñ0Ä10, „c… cosine „m
Ä1… distributed membrane force, Ñ0Ä100.
Transactions of the ASME



n

u

t

.

g

t

dual
re

ng
sile
s of
e-

in
olu-

ons

tical
half-
ore

s in
d—
ss

har-
ave
k-
cted
ions.

la-

w-
e

id-
nd
e

the exception of the region of transition between the two kinds
buckling mode,Ñ0'Ñ0* ~Fig. 7~b!, which represents the situatio
corresponding to the triangular symbol in Fig. 6!, the determined
trial functions correspond considerably well with the finite el
ment solutions~Fig. 7~a, c!, representing situations which corre
spond to the lowest cross symbol and to the highest triang
symbol, respectively, in Fig. 8!.

As mentioned earlier, very small values ofÑ0 are only of lim-
ited practical relevance. Therefore, the authors did not put
much effort into improving the trial functions in the transitio
regime aroundÑ0'Ñ0* .

Figure 8 shows the critical residual membrane force intensi
Ñ(Ñ0) for the practically relevant regime ofÑ0 . The correspon-
dence between the analytically obtained solutions and the fi
element solutions is excellent.

In Fig. 8 also the asymptotic solution forF2
k(n), k5c,p is

included by showing the inclination of the tangent to the curv
approximated byF2

k(n) for large values ofÑ0 , i.e., large values
of n. From this one can see that in many cases the relationÑi(Ñ0)
becomes nearly linear for large values ofÑ0 . Asymptotic consid-
erations for bothF1

k(n) andF2
k(n) can be found in the Appendix

Figure 9 shows how the half-wave lengthl /B decreases with
increasingÑ0 for different kinds of distributions of residual mem
brane forces. As expectable and also indicated by the finite
ment analyses, the residual membrane force distribution w
compressive stresses almost over the complete width of the s
i.e., p, m511, the polynomial one with exponentm511, leads to
rather large wave lengths, while residual membrane forces wh
have their compressive stresses concentrated in the center re
of the strip, i.e. cosm(ph), m511, have comparably short bucklin
waves. The analytical solutions obtained with trial functions a
cording to Eq.~9!, i.e., Hermitean-type functions, correspond we
with finite element results as long asÑ0 is sufficiently large. For
smallerÑ0-values the analytical determination ofl /B would have
to be carried out with trial functions according to Eq.~8!, which
has not been done because of the irrelevance for prac
applications.

Fig. 9 Dependence of the half-wave length l ÕB on the global
strip tension Ñ0 for different distributions of the residual mem-
brane force
Journal of Applied Mechanics
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4 Conclusions
This paper deals with buckling phenomena caused by resi

membrane force distributions in rolled metal strips which a
symmetrical with respect to the midaxis of the strip, showi
longitudinal compressive forces in the center regions and ten
forces in the edge regions. It has been shown that the intensitie
different residual stress distributions which are critical with r
spect to center buckling of the strip metal can be determined
dependence of the global tension force based on analytical s
tions. A wide range of characteristic residual stress distributi
has been considered.

Increased global strip tension leads to an increase of the cri
membrane force intensity accompanied by a decrease of the
wave length and to buckling waves concentrated more and m
towards the center of the strip. The derived analytical solution
dimensionless form provide diagrams which—on the one han
allow a simple and quick estimation of the critical residual stre
intensities, and—on the other hand—allow to estimate the c
acter of the residual stress distribution by measuring the half-w
length in combination with that global strip tension at which buc
ling appears. The finite element solutions computed for a sele
set of parameters prove the correctness of the analytical solut

Appendix

The Mathematical Structure of Ñ—Asymptotic
Considerations. For not too small values ofÑ0 only Ñ(n), i.e.,
the solution for Hermitean based trial functions, is relevant. Re
tion ~18!,

Ñ~n!5F1~n!1F2~n!Ñ0 , (A1)

is the starting equation. Forn@1 an asymptotic relation forF1(n)
can be found after some mathematical operations as

f 1~n!5
48

p2 SA11

4
1

1

2D S 1

gk~0! D ; F1~n!5 f 1n. (A2)

For gk(0) andm, see Eqs.~4! and ~5!:

k5c:, m51: gc~0!5p/221,

k5c:, m511: gc~0!5~693/512!p21, (A3)

k5p:, gp~0!51/m.

F2(n) does not allow a similar mathematical treatment. Ho
ever, starting withn;1, a surprisingly accurate curve fitting of th
numerical results can be presented as

F2~n!51/gk~0!1 f 2 /na (A4)

k5c, m51: f 250,6277, a51,

k5c, m511: f 250,4638, a51,

k5p, m51: f 250,8571, a50,68,

k5p, m511: f 250,0962, a53,72. (A5)

According to Eqs.~21!, ~22!, and ~23!, Ñ can finally be ex-
pressed with~A2! and ~A4! as

Ñ5~ f 1b11 f 2 /b1
a!Ñ0

1/~a11!1Ñ0 /gk~0!, b15a f 2 / f 1 .
(A6)

Relation~A6! can be used for practical applications and cons
ered as an approximation of the lines in Fig. 8. However, to fi
f 2 anda for anyk andm, it is necessary to perform the extensiv
numerical analysis as outlined in Chap. 3.
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Finally, also an approximation forl /B can be found according
to Eq. ~17! as

l /B5
p

2A6

1

Ab1

Ñ0
21/2~a11! . (A7)

References
@1# Tarnopolskaya, T., and de Hoog, F. R., 1998, ‘‘An Efficient Method for St

Flatness Analysis in Cold Rolling,’’ Math. Eng. Indust.,7, pp. 71–95.
@2# Tomita, Y., and Shao, H., 1993, ‘‘Buckling Behavior in Thin Sheet Me

Subjected to Nonuniform Membrane-Type Deformation,’’Advances in Engi-
90 Õ Vol. 70, JANUARY 2003
ip

al

neering Plasticity and Its Applications, W. B. Lee, Elsevier, Amsterdam, pp
923–930.

@3# Komori, K., 1998, ‘‘Analysis of Cross and Vertical Buckling in Sheet Met
Rolling,’’ Int. J. Mech. Sci.,40, pp. 1235–1246.

@4# Fischer, F. D., Rammerstorfer, F. G., Friedl, N., and Wieser, W., 2000, ‘‘Bu
ling Phenomena Related to Rolling and Levelling of Sheet Metal,’’ Int.
Mech. Sci.,42, pp. 1887–1910.

@5# Rammerstorfer, F. G., Fischer, F. D., and Friedl, N., 2001, ‘‘Buckling of Fr
Infinite Strips Under Residual Stresses and Global Tension,’’ ASME J. Ap
Mech.,68, pp. 399–404.

@6# Yuan, S., and Jin, Y., 1998, ‘‘Computation of Elastic Buckling Loads of Re
angular Thin Plates Using the Extended Kantorovich Method,’’ Comp
Struct.,66, pp. 861–867.
Transactions of the ASME



VFs)
nate
imply
This
ures.
ar but
s the
orm.
sional
ain-
A. M. Puzrin1

School of Civil and Environmental Engineering,
Georgia Institute of Technology,

Atlanta, GA 30332

M. F. Randolph
Center for Offshore Foundation Systems,

The University of Western Australia,
Nedlands, WA 6907, Australia

Generalized Framework
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A new method is proposed for deriving kinematically admissible velocity fields (KA
for three-dimensional upper bound limit analyses in a Tresca material using coordi
transformations. The method allows the incompressibility condition to be satisfied s
by imposing certain requirements on the analytical form of velocity magnitudes.
allows for new classes of velocity fields to be derived solely using standard proced
These new classes of fields include: KAVFs with new streamline shapes; new plan
non-plane-strain KAVFs; new radial but nonaxisymmetric KAVFs. The method allow
expression of local dissipation of plastic work in any field to be derived in a closed f
The proposed method makes an attempt to expand the applicability of three-dimen
upper bound limit analysis by introducing more realistic shapes of KAVFs, while m
taining simplicity and clear engineering meaning.@DOI: 10.1115/1.1507764#
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1 Introduction
Three-dimensional upper bound limit analysis is a power

tool for solving bearing capacity problems in perfectly plastic m
dia. Ingenuity is required in this approach from the need to dev
velocity fields satisfying kinematic admissibility conditions an
yet producing a sufficiently low value for the upper bound of t
collapsed load. In spite of the power of modern finite elem
techniques, upper bound limit analysis still has certain advanta
particularly with respect to identifying failure mechanisms a
conducting parametric studies for different loading combinatio
or where the material is nonhomogeneous. In many cases
approach can lead to much simpler mathematical calculations
though this will depend on the choice of kinematically admissi
velocity field ~KAVF ! and coordinate system. The aim in th
paper is to demonstrate how careful choice of these can lea
easily calculable expressions for dissipation of plastic work.

Most velocity fields presented so far in the literature for upp
bound analysis consist of rigid blocks and distortional shear zo
with either straight or circular velocity fields. With a few exce
tions ~e.g., Murff and Hamilton@1#! the mechanisms are eithe
plane strain~e.g., Shield and Drucker@2#! or axisymmetric~e.g.,
Levin @3#!. Although Levin proposed an ingenious method f
construction of more general nonsymmetrical KAVFs in cylind
cal coordinates, he was not able to present any results apart
for the axisymmetric case because of limited computational
sources at that time.

Advances in finite element analysis, particularly for thre
dimensional problems, suggest a new paradigm for limit analy
whereby velocity fields are deduced from the kinematic fie
from the finite element analysis~e.g., Bransby and Randolph@4#!.
The velocity fields may then be used as a basis to explore eff
of geometry variations, or heterogeneity of material propert
using upper bound limit analysis. An appealing approach to av

1Formerly at Department of Civil Engineering, Technion–Israel Institute of Te
nology.
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complex velocity fields is to make use of existing~simple! fields
that are applicable to specific conditions, superimposing differ
fields in order to obtain improved solutions for the general ca
This can lead to rounding of the corner where two separate up
bound solutions intersect~@5,6#!. However, new, more complex
velocity fields are also needed, but how can we make sure
these are~i! kinematically admissible, and~ii ! calculable?

The present paper addresses this question by developing a
eralized framework for the construction of three-dimensional
locity fields that are both kinematically admissible and easily c
culable. This will allow for much greater flexibility in the
generation of new KAVFs, and the approximation of veloc
fields obtained from finite element analysis. A key feature of
approach is to adopt a local curvilinear coordinate system wh
one axis is directed along the streamline of the velocity field.

2 Upper Bound Limit Analysis With Tresca’s Crite-
rion

A general method for determining the upper bound collap
load for assemblages of rigid and elastic-perfectly plastic bod
was developed by Drucker et al.@7# and Shield and Drucker@2#.
The term ‘‘collapse’’ is used to describe conditions for which pla
tic flow would occur under constant loads if the accompany
change in the geometry of the body were disregarded. The u
bound limit analysis approach in the form required in the pres
study is briefly outlined here.

Consider an assemblage of rigid and elastic-perfectly pla
bodies under the action of a set of surface tractions. Strain r
can be derived from any given velocity field. Considering t
strain rates as purely plastic, the internal rate of plastic work
be calculated.~Note, we have deliberately avoided using the wo
‘‘dissipation,’’ since plastic work is often referred to as dissipati
of energy, which is an incorrect term. Energy never dissipates
postulated by the First Law of Thermodynamics; it simply tran
forms from one form into another. In our case, mechanical pla
work is ‘‘dissipated’’ as heat.!

A velocity field is said to be kinematically admissible for plast
deformation governed by Tresca’s yield criterion if
• the velocity components satisfy the incompressibility conditio
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• the velocity components satisfy any imposed velocity bound
condition.

A kinematically admissible velocity field may contain discon
nuities in the tangential velocities across fixed surfaces. This t
of discontinuity is an idealization of a continuous large variati
in velocity across a thin transition layer.

In the absence of inertial effects, the rate at which the app
tractions do work~determined by the velocities at their points
application! must equal the rate of internal plastic work. The fo
lowing theorem has been formulated for the case where all sur
tractions increase proportionally~@2#!:

The Upper Bound Theorem. Collapse will occur under the
smallest values of the surface tractions for which it is possible
find a kinematically admissible velocity field.

This theorem provides a method for determining upper bou
for the limiting values of surface tractions. For Tresca’s yie
criterion of constant maximum shearing stress,cu , Shield and
Drucker@2# showed that the upper bound solution for the surfa
traction T5$Tx ,Ty ,Tz%

T is calculated from the following equa
tion:

E
S
TTvdS5W~T,v!5D~v!5E

V
2cuu«̇umaxdV1E

SD

cuuDvudS

(1)

where
v 5 $vx ,vy ,vz%

T–the kinematically admissible velocit
field;

W(T,v) 5 rate of work done by the surface tractions;
D(v) 5 rate of internal plastic work;
u«̇umax 5 absolutely largest principal component of the plas

strain rate;
Dv 5 velocity jump across any discontinuity;

S 5 surface that bounds the body or the assemblage of
bodies;

V 5 volume of the assemblage of the bodies; and
SD 5 surfaces of all discontinuities.

Any variation in the maximum shearing stress,cu , between the
bodies in the assemblage, within the volume of the bodies,
along discontinuities, must be taken into account in the evalua
of plastic work in Eq.~1!. Obviously, rigid bodies in the assem
blage contribute nothing to the volume integration since the st
rate is zero for a rigid body.

3 General Framework

Consider a velocity fieldv5$U,V,W%T in orthogonal Cartesian
coordinates~X, Y, Z!, such that the velocity components of th
field are defined through the following equations:

U5U~X,Y,Z! V5V~X,Y,Z! W5W~X,Y,Z!. (2)

This velocity field defines a family of streamlines. Let us narro
our analysis to a class of velocity fields, where each of the stre
lines results from the intersection of two perpendicular surfa
~examples will be given later!:

H y~X,Y,Z!5yi5const
z~X,Y,Z!5zi5const. (3)

The orthogonality of these two surfaces is expressed by the
lowing condition:

y,Xz,X1y,Yz,Y1y,Zz,Z50 (4)

where the notationa,b5]a/]b is adopted.
Each pair of constants (yi ,zi) defines a different streamline

Next, consider the third surface:
92 Õ Vol. 70, JANUARY 2003
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x~X,Y,Z!5xi5const (5)

which is perpendicular to all the streamlines, so that

H x,Xy,X1x,Yy,Y1x,Zy,Z50
x,Xz,X1x,Yz,Y1x,Zz,Z50 . (6)

Intersection of thei th streamline with the surfacex(X,Y,Z)5xi
5const will produce a point. Coordinates of this point in th
Cartesian system$X, Y, Z% are obtained by solving Eqs.~3! to-
gether with Eq. ~5!. However, the three constants (xi ,yi ,zi)
would also define the position of this point uniquely, and theref
they can be used as alternative coordinates, defined in the fol
ing curvilinear orthogonal coordinate system:

H x5x~X,Y,Z!

y5y~X,Y,Z!

z5z~X,Y,Z!.
(7)

The original velocity field, when presented in curvilinear coord
nates ~x, y, z!, will have a different set of componentsv
5$u,v,w%T in coordinate directionsx, y andz, respectively:

u5u~x,y,z! v5v~x,y,z! w5w~x,y,z!. (8)

An important property of the curvilinear orthogonal coordina
system defined above is that the coordinate linex coincides with
the streamline. Therefore, the only nonzero component of velo
in the ~x, y, z! coordinate system isu. Components of the smal
strain rate tensor in general orthogonal curvilinear coordinates
given by the following expressions~@8#!:

«̇x5
1

a S u,x1a ,y

v
b

1a ,z

w

g D 2«̇xy5
a

b S u

a D
,y

1
b

a S v
b D

,x

«̇y5
1

b S b ,x

u

a
1v ,y1b ,z

w

g D 2«̇yz5
b

g S v
b D

,z

1
g

b S w

g D
,y

(9)

«̇z5
1

g S g ,x

u

a
1g ,y

v
b

1w,zD 2«̇xz5
a

g S u

a D
,z

1
g

a S w

g D
,x

where

a5A~X,x!
21~Y,x!

21~Z,x!
2

b5A~X,y!21~Y,y!21~Z,y!2

g5A~X,z!
21~Y,z!

21~Z,z!
2. (10)

These equations are derived by calculating the rate of increme
change of length of the deformed element in two different co
dinate systems~Cartesian and curvilinear! and comparing the cor-
responding components.

FunctionsX5X(x,y,z), Y5Y(x,y,z) andZ5Z(x,y,z) are de-
fined by solving Eqs.~7!. Substitution of the special propertyv
5w50 of our curvilinear coordinate system into expressions~9!
yields the following expression for the strain rate tensor:

«̇53
u,x

a

a

2b S u

a D
,y

a

2g S u

a D
,z

a

2b S u

a D
,y

b ,x

b

u

a
0

a

2g S u

a D
,z

0
g ,x

g

u

a

4 . (11)

The incompressibility condition is equivalent to the following di
ferential equation:

u,x

a
1

b ,x

b

u

a
1

g ,x

g

u

a
50 (12)
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which, upon integration, yields the following functional form fo
the velocity componentu:

u~x,y,z!5
f ~y,z!

bg
(13)

wheref (y,z) is an arbitrary function ofy andz. It follows that the
incompressibility condition does not place any restrictions
variation of the velocity withy andz-coordinates, but its variation
with the x-coordinate depends on the functional form ofb andg.

The characteristic equation for the strain rate tensor~11!, satis-
fying condition ~12!, is

«̇32p«̇2q50 (14)

where

p5s2F S b ,x

b D 2

1
b ,x

b

g ,x

g
1S g ,x

g D 2

1S a

2b

s,y

s D 2

1S a

2g

s,z

s D 2G
(15)

q5s3F S b ,x

b D 2 g ,x

g
1S a

2b

s,y

s D 2 g ,x

g
1S g ,x

g D 2 b ,x

b
1S a

2g

s,z

s D 2 b ,x

b G
(16)

s5
u

a
5

f ~y,z!

abg
. (17)

The absolutely largest value of the principal strain rate is obtai
in closed form after solving the cubic Eq.~14! ~@9#!:

u«̇umax52Ap

3
cosS 1

3
arccos

3)uqu

2Ap3 D . (18)

By substituting this expression into Eq.~1! and expressing an
infinitesimal volume in curvilinear orthogonal coordinates

dV5abgdxdydz (19)

we can calculate the volume integral in Eq.~1! using simple nu-
merical or analytical integration.

The surface integral in Eq.~1! is taken over the discontinuity
surfaces. In many cases these discontinuity surfaces coincide
the coordinate surfacesx, y, or z, in which case the infinitesima
area of the discontinuity is given by one of the following thr
expressions:

dSx5bgdydz dSy5agdxdz dSz5abdxdy (20)

wheredSx , dSy , anddSz are the infinitesimal areas of the coo
dinate surfacesx, y, and z, respectively. The velocity jumpDv
across the discontinuity is calculated as a vector difference
tween the tangential components of the two velocity vectors
both sides of discontinuity. In a case where the discontinuity
incides with the coordinate surfacex, one of these two vectors i
perpendicular to the discontinuity and its tangential componen
zero. In cases where the discontinuity coincides with the coo
nate surfacey or z, one of these two vectors lies entirely within th
discontinuity; its tangential component is parallel to t
x-coordinate line and has a lengthu, defined by expression~13!.
This simplifies the calculation foruDvu in the surface integral in
Eq. ~1!, allowing for simple numerical or analytical integration.

As is seen from the above derivations, use of a curvilin
orthogonal coordinate system simplifies integration of the rate
internal plastic work. Consequently, the upper bound surface t
tion can be calculated easily for the chosen KAVF.

4 Derivation of Streamlines
Applicability of the above method to a chosen KAVF depen

entirely on our ability to obtain a closed-form solution for th
system of Eqs.~7!. This requirement, however, involves seve
restrictions on the possible shapes of KAVFs. In order to av
complications arising from this requirement, let us invert the pr
lem and consider some transformation of coordinates
Journal of Applied Mechanics
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H X5X~x,y,z!

Y5Y~x,y,z!

Z5Z~x,y,z!
(21)

satisfying uniqueness and orthogonality conditions:

J5UX,x Y,x Z,x

X,y Y,y Z,y

X,z Y,z Z,z

UÞ0 (22)

H X,xX,y1Y,xY,y1Z,xZ,y50
X,zX,y1Y,zY,y1Z,zZ,y50
X,xX,z1Y,xY,z1Z,xZ,z50.

(23)

Then, a family of non intersecting streamlines can be associ
with thex-coordinate lines. In this case it is not really necessary
resolve the system of Eqs.~21!—the streamlines can be defined
a parametric form.

To illustrate this approach, let us consider a class of veloc
fields where each streamline in the field lies entirely within so
plane. We shall refer to these fields asplanar velocity fields.
Streamlines in velocity fields can never intersect except al
axes with zero velocity. In planar velocity fields this condition
automatically satisfied in the following two cases:

Case I:Planevelocity fields—where all the planes are parall
to each other;

Case II:Radial velocity fields—where all the planes interse
along the same straight line.
In the following we illustrate derivation of the coordinate surfac
for these two cases.

4.1 Plane Velocity Fields. Let us choose theZ-axis of the
Cartesian coordinate system in such a way that all the pla
containing streamlines are orthogonal to it. The coordinate sur
z is then a plane given byz5Z2Z0 , so thatZ,x5Z,y50 and
Z,z51. The uniqueness condition~22! becomes

X,xY,y2Y,xX,yÞ0 (24)

and it follows that, in order to have a nontrivial solution, orthog
nality conditions~23! must be reduced to

HX,xX,y1Y,xY,y50
X,z5Y,z50. (25)

Table 1 gives details of three simple coordinate transformati
satisfying both uniqueness~24! and orthogonality conditions~25!
~actual examples illustrating these fields graphically are given
Sections 5 and 6 of this paper!. The streamlines in the three cas
considered comprise:~a! straight parallel lines inclined to anyY
5const plane by anglec; ~b! concentric circular arcs centred a
the point$X0 ,Y0%; and~c! involute curves arising from an evolut
circle of radiusR centered at the point$X0 ,Y0%. The last of these
is included as an example of a curved, but noncircular, family
streamlines, which has found application in the flow of mater
past a cylindrical object~@10#!.

In the first two cases, the coordinate transformation leads to
explicit expression for the coordinate surfacesy ~see Table 1!. In
the third case the surface is contained implicitly in parame
form ~with x as the parameter! in the coordinate transformation
equations. In all cases, analytical expressions are given in Tab
for the maximum principal strain rate, in terms of a streamli
velocity that is some general function of coordinatesy andz.

4.2 Radial Velocity Fields. Let us choose theY-axis of the
Cartesian coordinate system in such a way that it belongs to al
planes containing streamlines. In this case the coordinate surfaz
is a plane given byZ5X tanz, so that
JANUARY 2003, Vol. 70 Õ 93



Table 1 Key functions for plane velocity fields

94
Z,x5X,x tanz X,xX,y~11tan2 z!1Y,xY,y50

ing

y

H Z,y5X,y tanz
Z,z5X,z tanz1X~11tan2 z!.

(26)

The uniqueness condition~22! becomes

HX,xY,y2Y,xX,yÞ0
XÞ0 (27)

and it follows that, in order to have a nontrivial solution, th
orthogonality conditions~23! must be reduced to
Table 2 Key functions fo

Õ Vol. 70, JANUARY 2003
e

H X,z52X tanz
Y,z50

. (28)

Table 2 gives details of three coordinate transformations satisfy
the equationZ5X tanz, and both uniqueness~27! and orthogonal-
ity conditions ~28!. Similar to the examples for plane velocit
fields, the streamlines comprise:~a! straight parallel lines inclined
to any Y5const plane by anglec; ~b! concentric circular arcs
r radial velocity fields
Transactions of the ASME
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centered at the point$R0 cosz,Y0,R0 sinz%; and~c! involute curves
derived from an evolute circle of radiusR centered at the poin
$R0 cosz,Y0,R0 sinz% ~@11#!.

For the involute curves, the coordinate surfacesy cannot
be obtained analytically, but are given in a parametric form
equations

HAX21Z25R01R~cosx1~x2y!sinx!

Y5Y01R~sinx2~x2y!cosx!
(29)

wherex is a parameter.

4.3 Discussion. The general framework presented above
lows for derivation of the three-dimensional kinematically adm
sible velocity fields from any unique orthogonal transformation
Cartesian coordinates$X, Y, Z%. In fact, each transformation ca
generate three different families of streamlines, depending w
of the coordinate lines are chosen to act as streamlines, with
fields being derived from the same transformation~21! by inter-
changing variablesx, y, and z. For example, by interchangin
variablesx and y in the coordinate transformation for straig
streamlines in Table 1, we obtain a new family of straight, b
radial, streamlines emanating from the center$X0 ,Y0%.

The coordinate surfacesy are obtained by resolving the mod
fied transformation equations to give (Y2Y0)5(X2X0)tany.
From Eqs.~10! it follows that b5x anda5g51, and their sub-
stitution into Eqs.~15!–~19! produces

u«̇umax5A4s21s,y
2 1x2s,z

2

3x2 cosS 1

3
arccos

3)usus,z
2 x2

A~4s21s,y
2 1x2s,z

2 !3D
(30)

dV5xdxdydz (31)

wheres5u and u5 f (y,z)/x is some function describing a pa
ticular velocity field.

This section has covered virtually all shapes of streamlines
sented so far in the literature. Derivation of these fields using
proposed approach has allowed closed-form expressions o
maximum absolute values of principal strain rates to be obtai
by means of a standard procedure. This reduces calculations o
upper bounds to simple numerical integration, while in some ca
closed-form upper bound solutions may be obtained.

However, the benefits of the proposed approach extend far
yond simplifications in calculations. In this paper we will demo
strate some potential applications of the approach, namely

• derivation of KAVFs with new streamline shapes;
• derivation of new plane KAVFs~non-plane-strain!;
• derivation of new radial KAVFs~nonaxisymmetric!.

5 Applications: Fields With New Streamline Shapes
In order to demonstrate application of the proposed approac

derivation of KAVFs with new streamline shapes, let us consi
the following simple bearing capacity problem.

5.1 Bearing Capacity Problem of a Rough Strip Footing
Near a Rigid Obstacle. Consider a rigid rough strip footing o
width 2b on saturated clay between two rigid rough obstacles
distance of (11d)b from either edge of the footing, and subjecte
to an average pressure,p ~Fig. 1!.

Due to symmetry, only half of the problem will be consider
below. Clearly, whend>1, the upper bound bearing capacity
the footing under vertical load is given by the Prandtl solutionp
5(21p)cu , which also happens to be the exact solution. T
corresponding kinematic mechanism, consisting of two ri
blocks ABO and ACD and a fan shear zone ABC is shown in F
2~a!. However, for obstacles located closer than that~i.e., when
d,1) the Prandtl mechanism is not kinematically admissible,
cause the passive block ACD will collide with the obstacle. F
cases when 0,d,1, one possible solution of the problem wou
be to modify the Prandtl mechanism by adjusting the passive
Journal of Applied Mechanics
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gion ACD in such a way that it avoids collision with the obstac
~Fig. 2~b!!. This may be achieved through new shapes of strea
lines, e.g., hyperbolic streamlines.

5.2 Hyperbolic Streamlines. Let us consider a plane coor
dinate transformation

H X5X01A2x21Ax41~y1y0!4

Y5Y01Ax21Ax41~y1y0!4

Z5Z01z.

(32)

This coordinate transformation satisfies both uniqueness~24! and
orthogonality~25! conditions. Coordinate surfacesy are obtained
by resolving Eqs.~32! to give (y1y0)25(X2X0)/(Y2Y0) and
their intersection with the planez produces a family of hyperbolic
streamlines. From Eqs.~10! it follows that

a5
&x

A4 x41~y1y0!4
b5

&~y1y0!

A4 x41~y1y0!4
g51 (33)

and their substitution into Eqs.~15!–~17! produces

q5
2x5ss,z

2

2A~x41~y1y0!4!3
(34)

p5
x6s2

~x41~y1y0!4!2 1
x2s,z

2

2A~x41~y1y0!4!
1

x2s,y
2

4~y1y0!2

(35)

where

s5
uA4 x41~y1y0!4

&x
and u5

f ~y,z!A4 x41~y1y0!4

&~y1y0!
(36)

are some functions describing a particular velocity field. Fo
plane-strain case,u ands are independent ofz, reducing expres-
sion ~34! to q50 and simplifying expression~35!, which after
substitution into~18! and ~19! produce

u«̇umax5A x6s2

~x41~y1y0!4!2 1
s,y

2

4~y1y0!2;

dV5
2x~y1y0!

Ax41~y1y0!4
dxdydz. (37)

5.3 Solution. Let us construct a hyperbolic velocity field i
a passive shear zone ACD~Fig. 3!. The origin of the Cartesian
coordinate system X0Y is chosen at point C. SubstitutingX0
5Y05y0 into Eqs.~32! and resolving them with respect tox and
y we obtain

H ~y1y0!25~X2y0!~Y2y0!

2x25~Y2y0!22~X2y0!2 . (38)

The first Eq.~38! produces a family of hyperbolic streamlines:

Y5
y21y0~X12y!

X2y0
. (39)

Fig. 1 Schematic layout of the bearing capacity problem
JANUARY 2003, Vol. 70 Õ 95
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The streamline passing through the origin is defined byy50. This
streamline also represents a discontinuity separating the pa
shear zone ACD from the rigid half-space and emerges to
surface at point D with coordinatesX52db and Y5b. Param-
etery0 is defined by substituting these coordinates andy50 into
Eq. ~39!:

y05
2db

12d
(40)

so that the hyperbolic discontinuity surface is described by

Y5
2dbX

X~12d!1db
. (41)

In Fig. 3~a!, a family of these curves bounding the passi
shear zone is shown for varying parameterd. As is seen, this
family covers a wide range of shapes, from the original Pran
triangle atd51 to half of this triangle atd50, with a smooth
hyperbolic boundary for any intermediate value ofd.

Once the boundary is established and parametery0 is defined
from Eq. ~40!, the whole family of streamlines is defined by su
stituting y0 into ~39!. In Fig. 3~b!, this family of streamlines is
shown ford50.4 for various values of curvilinear coordinatey.
The first streamline in the family passes through the point C w
Cartesian coordinates~0, 0! and is defined byyCD50. The last
streamline in the family passes through the point A with Cartes
coordinatesX5Y5b and substitution of these coordinates in
~39! producesyA52b. All the streamlines are perpendicular
the radius AC bounding the fan zone ABC.

Because in the proposed method integration of plastic wor
the volume ACD will be carried out in curvilinear coordinatesx
andy, it is necessary to define integration limits in these coor
nates. As is clear from the previous paragraph, coordinaty
changes within2b<y<0. Coordinatex changes between its re
spective values along lines AC and AD. Along the line AC,X
5Y and from the second Eq.~38!: xAC50. Along the line AD,
Y5b and after eliminatingX from Eqs.~38! we obtain

Fig. 3 Examples of hyperbolic velocity fields: „a… discontinuity
surfaces bounding the passive shear zone for various values of
d ; „b… hyperbolic streamlines for dÄ0.4
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xAD5
~b2y0!

&
A12

~y1y0!4

~b2y0!4 . (42)

The velocity field is defined by the second Eq.~36!, where an
arbitrary function f (y) is defined from the velocity continuity
condition between the fan shear zone ABC and the hyperb
shear zone ACD. Along the radius AC,uAC5v0 /& andxAC50,
wherev0 is the vertical velocity of the footing, which after sub
stitution into the second Eq.~36! producesf (y)5v0 . This leads
to

s5
v0Ax41~y1y0!4

2x~y1y0!
and u5

v0A4 x41~y1y0!4

&~y1y0!
. (43)

Substituting~43! into ~37! we obtain

u«̇umax5
Ax41~y1y0!4

4~y1y0!3 ; dV5
2x~y1y0!

Ax41~y1y0!4
dxdydz

(44)

and integration of~37! over the volume ACD according to~1!,
gives an expression for the plastic work in this volume:

DACD5v0cuE
yDC52b

yAA50 E
xAC50

xAD x

~y1y0!2 dxdy. (45)

SubstitutingxAD from ~42!, integrating Eq.~45! and substitut-
ing for y0 from ~40!, we obtain

DACD5
42~11d!~11d2!

12d
v0cub. (46)

Plastic work along the discontinuity CD is calculated using t
fact that the discontinuity surface coincides with one of t
y-coordinate surfaces, namelyy50, giving

DCD5cuE
xAC50

xADuy50

uuCDuy50dSy . (47)

Substitution of Eqs.~20!, ~40!, ~42!, and~43! into ~47!, and sub-
sequent integration yields

DCD5v0cuE
xAC50

xADuy50 x

y0
dx5

~11d!~11d2!

4d
v0cub. (48)

Total plastic work in the passive shear zone isD5DCD1DACD

5@21(11d)(11d2)#/6d v0cub, so that the upper bound of th
collapse pressure in the entire mechanism is

p5S 11p1
1

2d
1

11d1d2

6 D cu . (49)

5.4 Discussion. Remarkably, the new hyperbolic shear zo
produced a simple closed-form solution~49!, which paradoxically
contains a hyperbolic term! Ford51 this solution is identical to
Transactions of the ASME
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the Prandtl~exact! solution, because in this extreme case the
perbolic shear zone degenerates into a rigid block. Derivation
the plastic work in this zone looks rather elaborate, due to
necessity to demonstrate clearly the proposed procedure. H
ever, once derived, the hyperbolic shear zone can be used in
struction of the kinematic mechanisms in a way similar to that
the fan shear zones and rigid blocks in a search for sharper u
bounds.

For example, in the particular cased5&21 of our problem of
a strip footing near the rigid obstacle, the mechanism constru
by extending the fan shear zone ABC into the passive zone A
~external arc CD in Fig. 4! produces the upper boundp5(1
13p/2)cu'5.71cu . By contrast, the hyperbolic shear zone AC
~internal hyperbola CD in Fig. 4! produces a sharper upper boun
p5(21p1&/3)cu'5.61cu . Both of these are lower than a fi
nite element solution, which yieldsp55.81cu ~compared with
5.17cu for the case ofd.1).

While the present solution gives unrealistically infinite capac
as d approaches zero, in principal the approach could be exte

Fig. 4 Comparison of different velocity fields in the passive
zone
Journal of Applied Mechanics
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for rigid walls that approach right to the edge of the footing,
reducing the present fan angle belowp/2 again matching the hy-
perbolic streamlines to the velocities emerging from the fan zo
This is outside the scope of the present paper, but the example
served to demonstrate the general approach, and also tha~a!
closed-form expressions for the dissipation terms can someti
be achieved, and~b! the method can lead to improved upp
bounds compared with existing mechanisms.

6 Applications: Plane But Non-Plane-Strain Fields
There are certain classes of problem where it is reasonab

assume streamlines that lie in parallel planes, but where the
locity fields vary in the direction normal to the planes. Such ca
are referred to here as ‘‘plane but not plane-strain velocity field

In order to demonstrate application of the proposed approac
derivation of non-plane-strain KAVFs, let us consider the bear
capacity problem of a rigid smooth square footing of width 2b on
saturated clay subjected to undrained moment loadingM ~Fig. 5!.
The form of the failure surface is identical to that proposed
Shield and Drucker@2# for purely vertical loading of a square
footing, which led to an upper bound for the vertical load,V, of
V5@4A61p(21A6)#b2cu'23.78b2cu . Under moment loading,
the footing rotates and the soil within the fields OBCDI a
OLMNJ is assumed to move in vertical planes parallel to NO
~Note that, although the footing is smooth, a symmetric mec
nism is assumed at this stage, with soil beneath the trailing ha
the footing moving upwards as the footing rotates; the case wh
the soil breaks from the footing and remains stationary in OLM
and OFGHJ merely reduces the final dissipation~and resulting
ultimate moment! by a factor of 2.! At the sides of the footing, soil
within the fields OFGHI and OFGHJ is assumed to move in v
tical planes parallel to OH, with zero velocity in the plan
OEHGF.
Fig. 5 Rotation of a smooth square footing

Fig. 6 Coordinate transformations and velocity boundary conditions: „a… in the plane of
rotation; „b… perpendicular to the plane of rotation
JANUARY 2003, Vol. 70 Õ 97



Table 3 Internal plastic work for square footing under moment loading
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Let us start with the field OBCDI. As is seen from Fig. 6~a!, in
a section through a plane parallel to the plane of rotation, the fi
is built of two triangular shear zones 1 and 3 with straight strea
lines, and one fan shear zone 2 with circular streamlines.
Cartesian coordinate system is chosen with the origin at the ce
of the footing and axisZ perpendicular to the plane of rotation. I
shear zone 1, a new coordinate systemx1y1z with the origin at the
point A is obtained from the transformation for straight strea
lines in Table 1, withc5p/4, X05b and Y05Z050. A similar
transformation, but withc52p/4, yields coordinate system
x3y3z in shear zone 3. In the fan shear zone 2, the coordin
systemx2y2z with the origin at the point A is obtained from th
transformation for circular streamlines in Table 1, withX05b and
Y05Z050. The velocity fields in the three zones are all paralle
the xj axes, with velocity magnitudes given byui(yi ,z)
5& u̇0(b2&yi), whereu̇0 is the rotational velocity of the foot-
ing. On the interfaces OBI, BCI, and CDI, the velocities simpl
to ui(yi ,z)5& u̇0z. Using the expressions in Table 1, the ma
mum principal strain rates areu«̇umax5u̇0 in shear zones 1 and 3
and u«̇umax5bu̇0 /(y2&) in shear zone 2. The expressions for t
internal plastic work in each zone and the corresponding in
faces are summarized in Table 3.

The total plastic work in the field OBCDI is then obtained b
summing the plastic work in each zone to give

DOBCDI5F1

3
1

p

4
1

1

A6
S 11

p

4 D Gb3cuu̇0 . (50)

Next, let us consider the field OFGHJ. As is seen from Fig. 6~b!,
in a section by a plane perpendicular to the plane of rotation,
field is also built of two triangular shear zones 1 and 3, and
fan shear zone 2. The Cartesian coordinate system is chosen
the origin at the center of the footing and axisZ parallel to the
plane of rotation~but rotated in absolute terms relative to Fi
6~a!, so that the streamlines lie within theZ5const planes!. The
coordinate transformations are identical to those for the field O
CDI, while the velocities in the three zones and the correspond
interfaces are given byui(z)5& u̇0z.
8 Õ Vol. 70, JANUARY 2003
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The maximum principal strain rates areu«̇umax5u̇0 /& in the
triangular shear zones 1 and 3, andu«̇umax5u̇0Ay2

21z2/(y2&) in
the fan shear zone 2. The expressions for the internal plastic w
in each zone and the corresponding interfaces are summariz
Table 3.

The total plastic work in the field OFGHJ is calculated by su
ming the plastic work in each zone to give

DOFGHJ5F&1A6

6
1

p&

216 S 316&19)12) ln
A612

)21
D G

3b3cuu̇0 . (51)

Finally, Eq. ~1! in our case can be written as

M u̇054~DOBCDI1DOFGHJ! (52)

and after substitution of~50! and ~51! we obtain an upper bound
for the collapse moment:

M5F412&14A6

3
1

p&

54 S 3133&118)12) ln
A612

)21
D G

3b3cu'12.71b3cu . (53)

This upper bound may be compared with a value ofM
513.41b3cu using the mechanism adopted by Paolucci a
Pecker@12#, some 5% above the above solution. The present
lution may be improved by adjusting angles AOB and DAC, b
the main advantage of adopting a similar mechanism for rotatio
motion as for vertical translation~@2#!, is that excellent upper
bound solutions may be obtained for combinations of vertical a
moment loading.

7 Applications: Nonaxisymmetrical Fields
In order to demonstrate application of the proposed approac

deriving nonaxisymmetric KAVFs, let us consider the bearing
pacity problem of a rigid rough circular footing of radiusb on
saturated clay subjected to undrained moment loadingM ~Fig. 7!.
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Journal of Applied Mec
Fig. 7 Rotation of a rough circular footing
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The footing rotates around an axis parallel to the ground sur
and passing through pointB and the kinematic mechanism und
consideration~of a shape proposed in@13# for vertical loading! is
shown in Fig. 7. The mechanism consists of a rigid conical blo
based on the footing with the tip of the cone located at pointB and
two shear zones. As is seen from Fig. 8, in a section trough
axis of symmetry of the footing, the field is built of a fan she
zone 1 and a triangular shear zone 2. Figure 8 also shows vel
boundary conditions for the fan shear zone 1 in the plane of r
tion. In other planes, rotation of the rigid cone produces m
complex velocity boundary conditions, including circumferent
velocity components as will be described below.

The Cartesian coordinate system is chosen with the origin a
center of the footing and axisZ perpendicular to the plane o
rotation. In the fan shear zone 1, a new coordinate systemx1y1z
with origin at point A is obtained from the transformation fo
circular streamlines in Table 2, withR05b and Y050. Velocity
boundary conditions on the cone surface AB are defined by a
lyzing the three-dimensional velocity field from rotation of th
rigid cone, giving

ux1
5 u̇0 cos~z!S b

sind
2y1D ; uy1

50;

uz5 u̇0 sin~z!cosdS b

sind
2y1D (54)

whereu̇0 is the rotational velocity of the footing;ux1
, uy1

, anduz

are boundary velocity components inx1 , y1 , and z-directions,
respectively. The velocity field, satisfying these boundary con
tions and incompressibility condition, is given by circular strea
lines parallel to thex1-curvilinear coordinate, with magnitud
given by

Fig. 8 Coordinate transformations and velocity boundary
condition
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u1~x1 ,y1 ,z!5 u̇0 cos~z!S b

sind
2y1D y1 cos~p/21d!1b

y1 cosx11b
(55)

so that at x15p/21d: u1(p/21d,y1 ,z)5ux1
(y1 ,z). Then,

u«̇umax is calculated using the expression in Table 2~circular
streamlines!, with plastic work in fan shear zone 1 given by

D152cuE
0

2pE
0

b/sin dE
p/4

p/21d

u«̇umaxy1~y1 cosx11b!dx1dy1dz.

(56)

Discontinuity surface AB is in fact thex15p/21d coordinate
surface. Therefore, plastic work on this surface is calculated u
Eqs.~20! and ~54! to give

DAB5cuE
0

2pE
0

b/sin d

uuzuS y1 cosS p

2
1d D1bDdy1dz

5
4 cosd

3 sin2 d
b3cuu̇0 . (57)

Finally, in the shear zone 2, a new coordinate systemx2y2z
with origin at point A is obtained from the transformation fo
straight streamlines in Table 2, withc52p/4, R05b and Y0
50. The velocity field, satisfying boundary and incompressibil
conditions, is parallel to thex2-axis, with magnitude given by

u2~x2 ,y2 ,z!5 u̇0 cos~z!S b

sind
2y2D

3
y2 cos~p/21d!1b

x2 cos~p/4!1y2 sin~p/4!1b
. (58)

Equation ~58! satisfies both the incompressibility condition an
continuity of velocitiesu1(p/4,y1 ,z)5u2(0,y2 ,z) at the bound-
ary AC between the shear zones 1 and 2, defined byx15p/4,
x250 andy15y2 . Then,u«̇umax is calculated using the expressio
in Table 2~straight streamlines!, with plastic work in shear zone 2
given by

D252cuE
0

2pE
0

b/sin dE
0

y2

u«̇umax~x2 cos~p/4!1y2 sin~p/4!1b!

3dx2dy2dz. (59)

Finally, Eq. ~1! in our case can be written as

M u̇05D11DAB1D2 (60)
JANUARY 2003, Vol. 70 Õ 99
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and after numerical integration of Eqs.~56! and ~59! and their
substitution together with~57! into Eq. ~60!, we obtain an upper
bound for the collapse moment:

M5k~d!b3cu (61)

where k(d) is a coefficient given in Fig. 9 for a range ofd
P@p/4;p/2#. The minimum value ofk(d) is 8.47, and occurs
for d51.517. This value is approximately twice as high as can
obtained with a spherical scoop mechanism, which yieldsM
54.21b3cu . However, the mechanism considered here, si
it is similar to the optimal mechanism under purely vertic
load, yields the sharpest upper bound for combinations of mom
and high vertical load, making use of the superposition techni
of @6#.

8 Concluding Remarks
The proposed method of derivation of kinematically admissi

velocity fields~KAVFs! using coordinate transformations provid
significant flexibility for three-dimensional upper bound lim
analysis in a Tresca material. The main feature of this metho
that it allows the incompressibility condition to be satisfied simp
by imposing certain requirements on the analytical form of vel
ity magnitudes. This allows for new classes of velocity fields to
derived solely using standard procedures. These new class
fields include: KAVFs with new streamline shapes; new plane

Fig. 9 Bearing capacity coefficient
100 Õ Vol. 70, JANUARY 2003
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non-plane-strain KAVFs; new radial but nonaxisymmet
KAVFs. An additional advantage of the method is that it allow
for expressions of local plastic work in any field to be derived
closed form. When these expressions can be integrated ana
cally, we obtain analytical solutions for upper bounds of collap
loads, but even numerical integration of these expressions d
not constitute a problem of significant complexity and can
easily performed. The proposed method makes an attempt to
pand applicability of three-dimensional upper bound limit analy
by introducing more realistic shapes of KAVFs, while maintaini
simplicity and the clear engineering meaning of this approach
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Three-Dimensional Green’s
Functions in an Anisotropic
Half-Space With General
Boundary Conditions
This paper derives, for the first time, the complete set of three-dimensional Green’s
tions (displacements, stresses, and derivatives of displacements and stresses with
to the source point), or the generalized Mindlin solutions, in an anisotropic half-sp
~z.0! with general boundary conditions on the flat surface z50. Applying the Mindlin’s
superposition method, the half-space Green’s function is obtained as a sum of the g
alized Kelvin solution (Green’s function in an anisotropic infinite space) and a Mindl
complementary solution. While the generalized Kelvin solution is in an explicit form
Mindlin’s complementary part is expressed in terms of a simple line-integral over [0p].
By introducing a new matrixK , which is a suitable combination of the eigenmatricesA
and B, Green’s functions corresponding to different boundary conditions are conci
expressed in a unified form, including the existing traction-free and rigid boundarie
special cases. The corresponding generalized Boussinesq solutions are investiga
details. In particular, it is proved that under the general boundary conditions studie
this paper, the generalized Boussinesq solution is still well-defined. A physical explan
for this solution is also offered in terms of the equivalent concept of the Green’s func
due to a point force and an infinitesimal dislocation loop. Finally, a new numer
example for the Green’s functions in an orthotropic half-space with different boun
conditions is presented to illustrate the effect of different boundary conditions, as we
material anisotropy, on the half-space Green’s functions.@DOI: 10.1115/1.1532570#
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Introduction
Green’s functions~due to a concentrated source! are of great

interests in both theoretical and applied mechanics~@1–3#!. With
increasing popularity of the integral equation method among
ferent engineering fields, research on various Green’s function
increasing. The half-space Green’s function alone has been
plied in materials science~@4–6#!, rock engineering~@7,8#!, in-
verse problem@6#, and contact mechanics~@9–12#!. However, be-
cause of complexity, most three-dimensional half-space Gre
functions are for the traction-free boundary condition only, inclu
ing the isotropic half-space solution by Mindlin@13#, transversely
isotropic half-space solution by Pan and Chou@14#, and aniso-
tropic half-space solution by Willis@9#, Barnett and Lothe@4#,
Barber and Sturla@15#, Ting @2#, Wu @16#, and Pan and Yuan@17#.
While the half-space Green’s functions with a rigid surface c
also be reduced from the corresponding bimaterial Green’s fu
tions, no Green’s function solution exists in an anisotropic ha
space with any mixed surface boundary conditions, with the
ception of the transversely isotropic half-space Green’s solu
by Yu et al. @18# for the slippery boundary condition, which in
cludes the isotropic solution of Dundurs and Hetenyi@19# as a
special case.

While the traction-free and rigid boundary conditions on t
surface of a half-space are perhaps the most common one

1Currently at the Department of Civil Engineering, University of Akron, Akro
OH 44325-3905. e-mail: pan2@uakron.edu

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb. 1
2001; final revision, Mar. 5, 2002. Associate Editor: D. A. Kouris. Discussion on
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Mechanical and Environmental Engineering, University of California–Santa B
bara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
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engineering applications, the mixed boundary conditions, in p
ticular the slippery condition, have been also used in various p
tical problems~@20,21#!. For example, in rock and foundation en
gineering, the slippery boundary condition has been used to m
a large-size soil deposit underlain by a hard bedrock base~@22#!.
In plate theory, the roller or simple supported condition resemb
the slippery surface condition~@23#!. The slippery condition has
been also used to describe the connection between an ideal
and a solid in material science~@24#!, and to model the bone
implants in biomechanics~@25#!.

Besides its applications in conventional engineering, Gree
function method now becomes an essential tool in the numer
studies of strained semiconductor quantum devices where
strain-induced quantum dot growth in semiconductor nanost
tures is crucial to the electronic performance~@26–28#!. While
under two-dimensional deformation, the strain-induced elastic
electric fields can be easily analyzed by the analytical solution
Ru ~@29,30#!, for those in the three-dimensional space, the Gree
functions, as embedded in the Eshelby tensor~@5,31#!, are re-
quired in the corresponding studies.

In Green’s function solutions involving material anisotropy, t
Stroh formalism has been shown to be mathematically elegant
technically powerful~@2,32,33#!. Under two-dimensional defor-
mation, Ting and co-workers~@2,34,35#! first derived the Green’s
functions in anisotropic half-plane with general boundary con
tions. Two new eigenmatrices were introduced to replace
original eigenmatricesA and B, and the solution of the genera
boundary value problems was expressed in terms of a new si
Stroh formalism~@2,34#!. The general boundary conditions con
sidered by Ting and co-workers~@2,34,35#! include, as special
cases, the traction-free, rigid, and slippery boundary conditio
and their solution covers at least eight different sets of bound
conditions~to be defined later!. While the two-dimensional defor-
mation in terms of the Stroh formalism is relatively easy, t
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the
corresponding three-dimensional deformation is much more c
plicated. Although in recent years, the Stroh formalism was
tended to certain three-dimensional Green’s function soluti
~@2,16,17#! no literature exists on generalizing the Stroh formalis
to the three-dimensional problem with general boundary con
tions.

In this paper, the author shows that, similar to the tw
dimensional case, the Green’s function in an anisotropic h
space with general boundary conditions can also be derive
terms of the extended Stroh formalism. The present study follo
a recent development on three-dimensional Green’s function s
tion in anisotropic bimaterials with perfectly bonded interfa
~@17#!. It is found that, similar to the three-dimensional bimater
case, the three-dimensional half-space Green’s function with g
eral boundary conditions can also be expressed as a sum o
generalized Kelvin Green’s functions~the infinite-space Green’s
functions! and a Mindlin’s complimentary part. While the forme
has an explicit expression~@36–39#!, the latter can be expressed
terms of a simple line integral over@0,p#. Furthermore, a new
matrix, namedK , which is a suitable combination of the eige
matricesA and B, is introduced so that the Green’s function
corresponding to different boundary conditions can be concis
expressed in a unified form, including the existing traction-fr
and rigid boundaries as special cases. Also studied for the
time are the limit cases of the Green’s functions when the sou
and/or field points are on the surface of the half-space with g
eral boundary conditions. It is proved that even for these spe
cases, the corresponding Green’s function solutions, the gen
ized Boussinesq solutions in particular, are still well defined.
enhance our understanding, a physical explanation for these
tions are also offered in terms of the equivalent concept of
Green’s functions due to a point force and an infinitesimal dis
cation loop. Finally, a new numerical example for the Gree
functions in an orthotropic half-space with different bounda
conditions is presented to illustrate the effect of different bou
ary conditions, as well as material anisotropy, on the half-sp
Green’s functions.

In the following discussion, the three-dimensional Gree
functions due to an interior point force in an anisotropic ha
space with general boundary conditions will be also called
generalized Mindlin solutions. When the source point is loca
on the surface of the half-space, the corresponding Green’s f
tions will be then called generalized Boussinesq solutions~i.e., the
generalized surface Green’s functions, see e.g.,@4,15#. Also, by
Green’s functions, we mean the Green’s displacements, stre
and derivatives of displacements and stresses with respect t
source point.

Problem Description
Consider an anisotropic half-space occupying domainx3.0

bounded by thex350 plane. Let a point forcef5( f 1 , f 2 , f 3) be
applied in the half-space at source pointd[(d1 ,d2 ,d3[d) with
d3.0 and the field point be denoted byx[(x1 ,x2 ,x3[z).2 As
usual, the problem domain is artificially divided into two region
z.d and 0<z,d.

In the two regions of the half-space, the equations of equi
rium in terms of displacementsuk in the absence of body force
are written as

Ci jkl uk,l j 50 (1)

whereCi jkl is the elastic stiffness tensor of the half-space.
In this paper, the following eight different sets of bounda

conditions on the surfacez50 ~@2,34#! will be discussed. In other
words, the half-space Green’s functions are required to satisfy
of the eight sets of boundary conditions:

2Thereafter, the scalar variablesz andd will be used exclusively for the third field
coordinatex3 and the third source coordinated3, respectively.
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u150; u250; u350 (2a)

t150; u250; u350 (2b)

u150; t250; u350 (2c)

u150; u250; t350 (2d)

t150; t250; t350 (2e)

u150; t250; t350 (2f)

t150; u250; t350 (2g)

t150; t250; u350 (2h)

where the vectort(t1 ,t2 ,t3) is the traction on thez5constant
plane defined as

t5~s13,s23,s33!. (3)

Similar to the corresponding two-dimensional analysis~@2,34#!,
we unify Equations~2a–h! by the following simple vector equa
tion:

Iuu1I tt50 (4)

where Iu and I t are 333 diagonal matrices whose elements a
either one or zero, and satisfy conditions

Iu1I t5I ; IuI t50 (5)

with I being the unit matrix.
It is seen that Equations~2a! and ~2e! corresponds to the rigid

and traction-free boundary conditions, respectively, with (Iu ,I t)
5(I ,0) and (Iu ,I t)5(0,I ). On the other hand, the slippery su
face condition is represented by Equation~2h! and Iu
5diag@0,0,1# and I t5diag@1,1,0#. We remark that instead of the
displacement and stress function vectors (u,f) adopted in the
two-dimensional analysis~@2,34#!, the displacement and tractio
vectors (u,t) are used in this paper.

At the source levelz5d where the point force is applied, th
displacement and traction vectors are required to satisfy the
lowing conditions:

uuz5d25uuz5d1

tuz5d22tuz5d15d~x12d1!d~x22d2!f (6)

along with the radiation condition so that the solution in the ha
space vanishes asuxu approaches infinity.

Stroh Formalism in the Transformed Domain
To solve the problem described in the previous section,

two-dimensional Fourier transform~i.e., for the displacement!

ũk~y1 ,y2 ,z;d!5E E uk~x1 ,x2 ,z;d!eiyaxadx1dx2 (7)

is applied to Eq.~1!. In Eq. ~7!, a takes the summation from 1 to
2.

A general solution to the Fourier transformed equation of~1!
can be expressed as~@2,17#!

ũ~y1 ,yz ,z;d5ae2 iphz (8)

with p anda satisfying the eigenrelation

@Q1p~R1RT!1p2T#a50. (9)

The superscriptT denotes matrix transpose, and

Qik5Ci jksnjns , Rik5Ci jksnjms , Tik5Ci jksmjms (10)

with

~n1 ,n2 ,n3![~cosu,sinu,0! (11)

~m1 ,m2 ,m3![~0,0,1!.
Transactions of the ASME
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Note that a polar coordinate transform, defined below, has b
used:

y15h cosu
(12)

y25h sinu.

It is observed that Eq.~9! is the Stroh eigenrelation for th
oblique plane spanned byn andm defined in Eq.~11!. It has been
also shown~see i.e.,@2#! that its eigenvalues are either complex
purely imaginary due to the positive requirement on the str
energy density.

Using the Stroh eigenvalues and the corresponding eigen
tors, the traction vectort on thez5constant plane and the in-plan
stress vectors, namely

t5~C13kluk,l ,C23kluk,l ,C33kluk,l ! (13)

s[~s11,s12,s22!

5~C11kluk,l ,C12kluk,l ,C22kluk,l ! (14)

can be expressed in the Fourier-transformed domain as~@17#!

t̃52 ihbe2 iphz (15)

s̃52 ihce2 iphz (16)

with

b5~RT1pT!a52
1

p
~Q1pR!a

(17)
c5Da.

The matrixD is defined by

D5FC111ana1pC1113 C112ana1pC1123 C113ana1pC1133

C121ana1pC1213 C122ana1pC1223 C123ana1pC1233

C221ana1pC2213 C222ana1pC2223 C223ana1pC2233

G .

(18)

If pj , aj , andbj ( j 51,2,...6) are the eigenvalues and the as
ciated eigenvectors, we let

Impj.0, pj 135 p̄ j , aj 135āj , bj 135b̄j , cj 135 c̄j

~ j 51,2,3!
(19)

A5@a1 ,a2 ,a3#, B5@b1 ,b2 ,b3#, C5@c1 ,c2 ,c3#

where Im stands for the imaginary part and the overbar den
the complex conjugate. It is further assumed thatpj are distinct
and the eigenvectorsaj , andbj satisfy the following normaliza-
tion relation:

bi
Taj1ai

Tbj5d i j (20)

with d i j being the Kronecker delta.
It is worthwhile mentioning that should repeated eigenvalu

occur, i.e., for transversely isotropic or isotropic materials, a sli
perturbation on the material stiffness tensor would make th
distinct with negligible error~@40#!. Therefore, the unified and
simple solution presented in this paper can be applied to mate
with any material symmetry.

Half-Space Green’s Functions in the Fourier Trans-
formed Domain

For the anisotropic half-space, the general boundary condit
~4! on the surfacez50 and the condition~6! at the source leve
z5d, become, in the Fourier transformed domain, as

Iuũ1I t t̃50 (21)

and

ũuz5d25ũuz5d1
(22)

t̃uz5d22 t̃uz5d15feiyada.
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Using these conditions as well as the requirement that the solu
should vanish asuxu approaches infinity, the half-space Green
function in the Fourier transformed domain can be derived
~@2,17#! follows:

For 0<z,d:

ũ~y1 ,y2 ,z;d!5 ih21A^e2 ip
*

h~z2d!&q`2 ih21Ā^e2 i p̄
*

hz&q

t̃~y1 ,y2 ,z;d!5B^e2 ip
*

h~z2d!&q`2B̄^e2 p̄
*

hz&q (23)

s̃~y1 ,y2 ,z;d!5C^e2 ip
*

h~z2d!&q`2C̄^e2 i p̄
*

hz&q.

For z.d:

ũ~y1 ,y2 ,z;d!52 ih21Ā^e2 ip
*

h~z2d!&q̄`2 ih21Ā^e2 i p̄
*

hz&q

t̃~y1 ,y2 ,z;d!52B̄^e2 ip
*

h~z2d!&q̄`2B̄^e2 i p̄
*

hz&q (24)

s̃~y1 ,y2 ,z;d!52C̄^e2 ip
*

h~z2d!&q̄`2C̄^e2 i p̄
*

hz&q.

where

q`5ATfeiyada (25)

and

^e2 ip* hz&5diag@e2 ip1hz,e2 ip2hz,e2 ip3hz#. (26)

The complex vectorq in Eqs.~23! and ~24! is to be determined.
Motivated by the unified and elegant expression for the Gree

function in an anisotropic half-plane with general boundary co
ditions ~@2#!, we have found that if we introduce a new matrixK
defined as

K5IuA1I tB (27)

then the complex vectorq for the eight different sets of boundar
conditions~2a–h! can be expressed, in a single vector equation

q5K̄21K ^eip
*

hd&ATfeiyada. (28)

It is also observed that the new matrixK , like A andB, is inde-
pendent of the radial variableh, an important feature to be use
later. Equation~28! is a very surprising result and will be the ke
factor when deriving the physical-domain Green’s functions.

Substituting Eq.~28! into Eqs. ~23! and ~24! gives the half-
space Green’s displacements and stresses in the Fourier t
formed domain, which possess the following important feature

1. As discussed by Pan and Yuan@17#, the first terms in Eqs.
~23! and ~24! are the Fourier transformed-domain Green’s fun
tions for a homogeneous and anisotropic full space. Inverse
these Green’s functions, i.e., the physical-domain solution,
been obtained by Tewary@36#, Ting and Lee@37#, Sales and Gray
@38#, and Tonon et al.@39# in an explicit form. Therefore, the
inverse Fourier transform needs to be carried out only for
second terms of the solution, which resemble the complemen
part of the Mindlin solution~@13#!.

2. These unified Fourier transformed-domain solutions~Eqs.
~23! and ~24!! include the eight different sets of the bounda
conditions~2a–h!. Thus, to solve for the Green’s function in a
anisotropic half-space with different boundary conditions, o
only needs to assign the matrixK defined by Eq.~28! with the
corresponding boundary conditions, a remarkably simple re
parallel to its two-dimensional counterpart~@2#!.

3. In deriving the Fourier transformed-domain solution, t
matrix K has been assumed to be nonsingular. This can be pro
following a procedure similar to the corresponding tw
dimensional analysis~@2#!.

Generalized Mindlin Solution
Having obtained the Green’s functions in the Fourier tra

formed domain, we now apply the inverse Fourier transform
Eqs. ~23! and ~24!. To handle the double infinite integrals, th
JANUARY 2003, Vol. 70 Õ 103
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polar coordinate transform~12! is introduced so that the infinite
integral with respect to the radial variableh can be carried out
exactly. Thus, the final half-space Green’s function in the phys
domain, i.e., the generalized Mindlin solution, can be expresse
a sum of a Kelvin’s part in an explicit form and a Mindlin’
complementary part in terms of a line integral over@0,2p#. The
integral for the latter can actually be further reduced to an inte
over @0,p#. In what follows, we will use only the displacemen
solution to illustrate the derivation and list the final results
other Green’s functions. Assumption will be also made that
source pointd is interior to the half-space. The limit case, name
the corresponding Boussinesq solution~when the source pointd is
on the surface! will be discussed later.

Applying the inverse Fourier transform, the Green’s displa
ment in Eq.~24! becomes

u~x1 ,x2 ,z;d!52
i

4p2E E $h21Ā^e2 i p̄
*

h~z2d!&

3q̄`e2 i ~xa2da!ya%dy1dy2

2
i

4p2E E $h21Ā^e2 i p̄
*

hz&

3qe2 i ~xa2da!ya%dy1dy2 . (29)

The first integral in Eq.~29! corresponds to the full-space Green
displacement that is already available in an explicit form~@36–
39#!. Consequently, the inverse transform needs to be carried
only for the second integral, or the complementary part. Deno
the full-space Green’s function tensor byU`(x;d) with its row
and column indices corresponding to the displacement compo
and point-force direction, respectively, and introducing the po
coordinate transform~12!, the half-space Green’s displaceme
tensor can be rewritten as

U~x;d!5U`~x;d!2
i

4p2E
0

2p

duE
0

`

Ā^e2 i p̄
*

hz&

3K̄21K ^eip
*

hd&e2 ih@~x12d1!cosu1~x22d2!sinu#ATdh.

(30)

Since the matricesA ~alsoB andC! andK̄21K are independent o
the radial variableh, integral with respect toh can therefore be
performed analytically, resulting in the following compact form

U~x;d!5U`~x;d!1
1

2p2E
0

p

ĀG1ATdu (31)

where3

~G1! i j 5
~K̄21K ! i j

2 p̄iz1pjd2@~x12d1!cosu1~x22d2!sinu#
. (32)

It is noticed that the integral interval in Eq.~31! has been reduced
from @0,2p# to @0,p# based upon certain properties of the int
grand as a function ofu ~@41#!, plus a new relation for the matrix
K̄21K , i.e., K̄21K (u1p)52K21K̄ (u). Similar properties have
also been used to derive the Green’s stresses, derivative
Green’s displacements and stresses.

Following a similar procedure, the half-space Green’s str
tensors can be derived and the results are listed as

T~x;d!5T`~x;d!1
1

2p2E
0

p

B̄G2ATdu (33a)

S~x;d!5S`~x;d!1
1

2p2E
0

p

C̄G2ATdu. (33b)

3Thereafter, the indicesi and j take the range from 1 to 3.
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In Eqs.~33a! and ~33b!, T`(x;d) andS`(x;d) are the full-space
Green’s stress tensors~@39#!, and

~G2! i j 5
~K̄21K ! i j

$2 p̄iz1pjd2@~x12d1!cosu1~x22d2!sinu#%2 .

(34)

Derivatives of the Green’s displacements and stresses~tensors!
with respect to the source point (d1 ,d2 ,d3) are found to be

]U~x;d!

]dj
5

]U`~x;d!

]dj
2

1

2p2E
0

p

ĀG2^gj&A
Tdu (35)

^g1&5diag@cosu,cosu,cosu#

^g2&5diag@sinu,sinu,sinu# (36)

^g3&5diag@p1 ,p2 ,p3#

]T~x;d!

]dj
5

]T`~x;d!

]dj
2

1

2p2E
0

p

B̄G3^gj&A
Tdu (37a)

]S~x;d!

]dj
5

]S`~x;d!

]dj
2

1

2p2E
0

p

C̄G3^gj&A
Tdu (37b)

~G3! i j 5
~K̄21K ! i j

$2 p̄iz1pjd2@~x12d1!cosu1~x22d2!sinu#%3 .

(38)

Equations~31!, ~33!, ~35!, and ~37! are thecompleteGreen’s
functions in an anisotropic half-space with general boundary c
ditions, or the generalized Mindlin solutions. It is emphasized t
these Green’s functions are presented in a unified and very sim
form so that the eight different sets of the boundary conditio
~2a–h! are all included. To find the Green’s functions for a give
set of boundary conditions, one only needs to assign the co
spondingK matrix. For example, forK5B, the present half-space
Green’s displacements and stresses will then reduce to the exi
solution ~@2,4,16,17#! for the traction-free boundary conditio
case. Since the present solution includes all the eight different
of the boundary conditions, it is therefore particularly convenie
when investigating the effect of different boundary conditions
the problem solution based on the Green’s function method.

Considering the complexity of the problem and yet the simp
ity of the final physical-domain Green’s function expressions
all the eight sets of the boundary conditions, it is seen that,
resorting to the Mindlin’s superposition approach, the extend
~three-dimensional! Stroh formalism is indeed a very powerfu
and elegant method. A direct application of the Fourier transfo
method, without employing the Stroh formalism, would requ
three-dimensional Fourier inverse integrals for the infinite Gree
function, and four-dimensional Fourier inverse integrals for t
complementary part~@42#!.

Besides their concise expressions, the present half-sp
Green’s functions~generalized Mindlin solutions! also possess the
following important features:

1. Similar to the bimaterial Green’s functions with perfect
bonded interface~@17#!, the half-space Green’s displacemen
stresses and derivatives of displacements, and derivative
stresses are inversely proportional to, respectively, a linear, q
dratic, and cubic combination of the field and source coordina
This feature resembles the behavior of the full-space Green’s
placements~}1/r!, stresses and derivatives of displaceme
(}1/r 2), and derivatives of stresses (}1/r 3), with r being the
distance between the source and field points.

2. Different to either the bimaterial Green’s functions with pe
fectly bonded interface or the half-space Green’s functions w
traction-free boundary conditions~2e! where the source pointd
Transactions of the ASME
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can directly approach the interface or the surface for all the th
point-force directions, the half-space Green’s functions with ot
seven sets of boundary conditions need special attention w
approaching the surface, a very interesting feature to be discu
in the next section.

3. Since the source point is not on the surface of the half-sp
~i.e., dÞ0), the integrals in Eqs.~31!, ~33!, ~35!, and ~37! for
performing the complementary part of the half-space Gree
functions are regular and thus can be easily carried out by a s
dard numerical integral method such as the Gauss quadratur

Generalized Boussinesq Solution
In the previous section, we derived the generalized Mind

solution in an anisotropic half-space with general boundary c
ditions~2a–h!. While the field pointx can be anywhere in the ha
space, the source pointd is assumed to be interior to the hal
space~i.e., dÞ0). We recall that in the Mindlin solution~@13#! to
an isotropic half-space with traction-free boundary conditio
both field and source points~x and d! can be arbitrary, and the
corresponding Boussinesq solution~for a point force in any direc-
tion on the surface; see,@43#! can be directly reduced from Mind
lin solution by taking the source point to the surface~i.e., d50!.
Furthermore, the special half-space surface Green’s func
where the field and source points are both on the surface~i.e.,z50
andd50!, can also be obtained either from Mindlin solution wi
z50 andd50 for from Boussinesq solution withz50. Actually,
this feature also holds for the Mindlin solution in a transvers
isotropic ~@14#! and general anisotropic half-space~@2,4,15–17#!.
It is important at this point to emphasize that this feature is ba
upon the condition that the surface of the half-space is tract
free~i.e., Eq.~2e!!. Then, it is natural to ask the question: Can o
safely take the source point to the surface~i.e., d50! in the gen-
eralized Mindlin solution to obtain the corresponding generaliz
Boussinesq solution? The answer is yes!

First, it is observed that if thei-th component of the traction
vector is zero~i.e., t i50) on the surface, with boundary cond
tions in other two directions being properly given, then the cor
sponding generalized Boussinesq solution exists for a sur
point force acting in theith direction. Furthermore, this solutio
can be directly obtained from the generalized Mindlin solution
letting d50. We point out that the field point is assumed to
interior to the half-space~i.e.,zÞ0!, leaving the case ofd50 and
z50 being treated separately in the next section. It is very in
esting that Boussinesq~see@43#! derived solutions in an isotropic
half-space subjected to two general types of boundary condit
to which the present boundary condition sets~2d! and ~2h! have
direct connection. Therefore, for example, for the boundary c
dition set ~2d!, the generalized Boussinesq solution to a norm
point force ~i.e., in the x3-direction! on the surface with fixed
tangential displacements~i.e., u150 andu250) is well-defined
and can be directly reduced from the generalized Mindlin solut
by takingd50.

Now, let us examine the case where theith component of the
displacement vector is zero~i.e., ui50) on the surface, which is
also subjected to a surface point force in theith direction at the
origin. Since the displacement componentui50 is described on
the whole surface while a concentrated traction compon
t i(52d(x)) is also given at the surface pointx5(0,0,0), the
resulting boundary condition is over imposed atx5~0,0,0!! How-
ever, if we release the displacement condition atx5~0,0,0! for ui ,
due to the fact that this is a concentrated force atx5~0,0,0!, then
the boundary value problem will be well defined. Actually, from
mathematical point of view, i.e., from Eqs.~31!–~38!, it can be
proved that whend50, these Boussinesq solutions are still w
defined and regular as long aszÞ0. It is noted that the first terms
in Eqs. ~31!, ~33!, ~35!, and ~37! are the infinite-space Green
functions that are regular and become singular if and only if
field and source points are coincident to each other~i.e., x5d!.
Journal of Applied Mechanics
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The second terms in these equations are proportional to one o
Gi matrices defined by Eqs.~32!, ~34!, and~38!, which are again
regular and well defined. Therefore, in conclusion, the generali
Boussinesq solutions with general boundary conditions are
well defined and regular~if zÞ0!.

To enhance our understanding, we now offer a physical ex
nation to the generalized Boussinesq solutions in terms of
equivalent concept of the Green’s functions due to a point fo
and an infinitesimal dislocation loop. Using the Betti’s reciproci
it can be shown~@44–46#! that the following important equivalen
between the Green’s function of a unit point force and that o
unit infinitesimal dislocation loop holds~in a dimensionless form!:

uj
uik~d;x!5s ik

f j~x;d! (39)

While the right-hand side of Eq.~39! denotes the Green’s stres
component~i,k! at the field pointx due to a point force in thejth
direction atd, the left-hand side denotes the displacement in
jth direction at the field pointd due to an infinitesimal dislocation
loop, with index (i ,k) for the dislocation direction and the norma
of the dislocation plane, at the source pointx. Therefore, the stress
field due to a point force can be equivalently considered a
displacement field due to an infinitesimal dislocation loop. T
latter is well defined with an apparent physical meaning: The d
placement response on the surface of the half-spaced ~sinced50!
due to an interior infinitesimal dislocation loop at the source po
x ~sincezÞ0!. A very interesting consequence of Eq.~39! is that if
the boundary condition is rigid~2a!, then the stress field within
the whole half-space, due to a point force in any direction on
surface, is zero! Furthermore, our numerical tests have shown
for such a case, the displacement field is indeed zero. The
nonzero components are the derivatives of the displacement
stress with respect to the third source coordinated. While whether
or not this special Boussinesq solution~with rigid boundary con-
dition! has any application is unknown to the author, it is wor
mentioning that these numerically obtained features on the
placements, stresses, and derivatives of displacements and st
are consistent with those in the corresponding two-dimensio
half-plane~@2#! where analytical solutions exist.

Yet, another limit case is when the field and source points
both on the surface~i.e.,z5d50). The corresponding response
a special case of the surface Green function, and it is discu
and presented in the following section.

Special Surface Green’s Function
When both the field and source points are on the surface~i.e.,

z5d50), the half-space Green’s functions are reduced~from ei-
ther the generalized Mindlin or Boussinesq solutions! to a particu-
lar class of Green’s functions called special surface Green’s fu
tions. Similar to the generalized Mindlin or Boussinesq solutio
these special surface Green’s functions can be expressed as
of the generalized Kelvin solution in an explicit form and a Min
lin’s complementary part. For the complementary part, howev
the involved one-dimensional integral becomes singular and ex
only in the sense of finite-part principle value~@47–49#!. Assum-
ing that the field and source coordinates on the surface are (x1 ,x2)
and (d1 ,d2), respectively, and expressing their relative position
terms of the polar coordinate asx12d15r cosu0; x22d2
5r sinu0, then these special surface Green’s functions are obta
as ~@50#!

U~x;d!5U`~x;d!2
1

2pr H 1

pE0

p ĀK̄21KA T

cos~u2u0!
du

1 i @ĀK̄21KA T#u5u01p/2J (40)
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Fig. 1 Variation of in-plane stress component sxx along the line xÄy on the surface zÄ0, caused by
the point force f Ä„0,0,1… and dÄ„0,0,1…. Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions „2a–h….
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1

2pr 2 H 1

pE0

pĀK̄21K ~gj&A
T

cos2~u2u0!
du

2 i
d@ĀK̄21K ^gj&A

T#

du
U

u5u01p/2
J (41)

T~x;d!5T`~x;d!1
1

2pr 2 H 1

pE0

p B̄K̄21KA T

cos2~u2u0!
du

2 i
d@B̄K̄21KA T

du
U

u5u01p/2
J (42)

]T~x;d!

]dj
5

]T`~x;d!

]dj
1

1

2pr 3 H 2

pE0

pB̄K̄21K ^gj&A
T

cos3~u2u0!
du

1 i Fd2@B̄K̄21K ^gj&A
T#

d2u

1@B̄K̄21K ^gj&A
T#GU

u5u01p/2
J (43)
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S~x;d!5S`~x;d!1
1

2pr 2 H 1

pE0

p C̄K̄21KA T

cos2~u2u0!
du

2 i
d@C̄K̄21KA T#

du
U

u5u01p/2
J (44)

]S~x;d!

]dj
5

]S`~x;d!

]dj
1

1

2pr 3 H 2

pE0

pC̄K̄21K ^gj&A
T

cos3~u2u0!
du

1 i Fd2@C̄K̄21K ^gj&A
T#

d2u

1@C̄K̄21K ^gj&A
T#GU

u5u01p/2
J . (45)

Several features regarding to the special surface Green’s f
tions with general boundary conditions are observed:

1. Similar to the interfacial Green’s functions in anisotrop
bimaterial with perfectly bonded interface~@50#!, the surface dis-
placements, stresses and derivatives of displacements, and d
tives of stresses are inversely proportional, respectively, tor , r 2,
andr 3, wherer is the distance between the field and source po
on the surface (z5d50), a generalized consequence of se
Transactions of the ASME
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Fig. 2 Variation of in-plane stress component syy along the line xÄy on the surface zÄ0, caused by
the point force f Ä„0,0,1… at dÄ„0,0,1…. Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions „2a–h….
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similarity @9,15#. For the special surface Green’s function comp
nent which is inversely proportional tor , r 2, and r 3, the corre-
sponding finite-part integral has singular order of one~1/cosu!,
two (1/cos2u), and three (1/cos3u), respectively; therefore, the
special surface Green’s functions are completely determined
the values on a unit circle on the surfacez5d50 ~with field point
on the unit circle and source point at the center of the circle!. The
finite-part integrals can be carried out accurately and efficie
using an adaptive scheme proposed recently by Pan and
@50#.

2. For the traction-free boundary conditions~2e!, the corre-
sponding special surface Green’s function was discussed p
ously by Willis @9#, Barnett and Lothe@4#, Barber and Sturla@15#,
Ting @2#, Wu @16#, and Pan and Yuan@17#. Even for this case, the
complete special surface Green’s functions are not available in
literature until very recently~@50#!.

3. All the special surface Green’s functions corresponding
the boundary conditions~2a–d! and ~2f–h! are new.

Numerical Examples
For an anisotropic half space with general boundary conditi

~2a–h!, no previous solution is available except for the tractio
free ~2e! and rigid ~2a! cases. While for the former, the Green
displacements and stresses were studied previously by Barret
Lothe @4#, Tine @2#, Wu @16#, and Pan and Yuan@17#, the Green’s
functions for the latter can be numerically reduced from the bim
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terial Green’s functions of Pan and Yuan@17# for a perfectly
bonded interface by letting the elastic tensorCi jkl in the z,0
half-space being much stiffer than that in the concerned half-sp
regionz.0. Although the isotropic~@19#! and transversely isotro
pic ~@18#! half-space Green’s solutions were studied before for
slippery surface boundary conditions~2h!, no numerical result is
available. Nevertheless, the present generalized Mindlin solut
have been self-checked for the boundary conditions~2a! and~2e!,
and for two of the mixed boundary conditions, namely conditio
~2d! and ~2h!, to be discussed below.

Boussinesq~see@43#! derived the solution in an isotropic half
space when its boundary is subjected to two general type
boundary conditions: namely, the normal tractiontz and tangential
displacements (ux anduy), and normal displacementuz and tan-
gential tractions (tx and ty). If, for the former, we assume a un
normal point force at the original and let the tangential displa
ments be zero~i.e., ux5uy50), then the dilatation at any field
point x5(x,y,z) of the half-space caused by this normal po
force is found to be

D5ui ,i5
2z

2p~l12m!~x21y21z2!3/2 (46)

wherel andm are the two Lame constants.
Similarly, for the latter, if we assume a unit point force in th

x-direction at the original, traction-free in they-direction (ty
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50), and zero-displacement in thez-direction (uz50), then the
dilatation at any field pointx5(x,y,z) of the half-space caused b
this tangential point force is obtained as

D5ui ,i 5
2x

2p~l12m!~x21y21z2!3/2. (47)

It is seen that while Boussinesq solution~46! corresponds to the
present Green’s function with boundary condition~2d!, solution
~47! corresponds to that with the boundary condition~2h!. For the
former, the point force is in thez-direction and for the latter it is in
the x-direction.

In the numerical testing, a Young’s modulusE52.6 and Pois-
son’s ration50.3 were assumed for the isotropic half-space. F
the field point at (x,y,z)5~1/A3,1/A3,1/A3!, both Eqs.~46! and
~47! give the same dilatation valueD520.026254, while that
predicted by the present Green’s function solutions for the

Table 1 Reduced and normalized stiffness matrix Cij in the
half-space

1.0352019 .0523837 .0523837 .0 .0 .0
.1153771 .0405268 .0 .0 .0

.1153771 .0 .0 .0
.0333333 .0 .0

.0333333 .0
.0333333
108 Õ Vol. 70, JANUARY 2003
or
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cases isD520.026251. This result not only has validated some
the present Green’s functions, but also has shown that even
isotropic case can be easily handled by the present Stroh for
ism using a slightly perturbed elastic property~@40#!. For instance,
to use the present Stroh formalism for the isotropic material,
orthotropic material was assumed with one of the three Poiss
ratios being perturbed ton50.2999 while the other two being kep
at n50.3.

Next, the effect of different boundary conditions as well
material anisotropy, on the surface stress field is studied for
orthotropic half-space. The stiffness matrix~in its reduced and
normalized form! from Pan and Yang@50# is given in Table 1. For
this example, the source is fixed atd5~0,0,1! while the field point
varies on the surface of the half-space asx5(x,x,0), with xP
@21,1#. While Figs. 1 and 2 show the variation of the norm
stressessxx and syy caused by a unit point force in th
z-direction, Figs. 3 and 4 show the variation of these norm
stresses (sxx andsyy) due to a unit point force in thex-direction.
In these figures, results for the eight different sets of bound
conditions ~2a–h! are labeled as BC 1 and BC 8, respective
These numerical results are believed to be new and posses
following interesting features:

1. For the given material~orthotropic!, the surface normal
stressessxx andsyy are either symmetric~Figs. 1 and 2! or anti-
Fig. 3 Variation of in-plane stress component sxx along the line xÄy on the surface zÄ0, caused by
the point force f Ä„1,0,0… at dÄ„0,0,1…. Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions „2a–h….
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Fig. 4 Variation of in-plane stress component syy along the line xÄy on the surface zÄ0, caused by
the point force f Ä„1,0,0… at dÄ„0,0,1…. Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions „2a–h….
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symmetric~Figs. 3 and 4!, a general feature also associated w
the Mindlin solution in an isotropic half-space with traction-fre
boundary conditions.

2. The effect of material anisotropy on the surface norm
stresses can be clearly see by comparing Fig. 1 to Fig. 2. For
1 and BC 5, both normal stressessxx andsyy should be the same
if the material is isotropic. However, the magnitudes are mu
different in the orthotropic half space forsxx and syy under
boundary condition BC 1 or BC 5.

3. It is of particular interest to order the normal stressessxx
andsyy at the surface pointx50, i.e., the symmetric point! from
the largest tension~maximum! to the largest compression~mini-
mum! according to the different sets of boundary condition
While for those in Fig. 1, the descent order is BC 1, BC 3, BC
BC 2, BC 8, BC 6, BC 7, and BC 5, for those in Fig. 2, it is B
1, BC 2, BC 4, BC 7, BC 3, BC 8, BC 6, and BC 5. It is observ
that the boundary condition case BC 4~Eq. ~2d!! is in neutral for
which the normal stressessxx andsyy along the linex5y on the
surface are zero. While BC 1 and BC 3 predict a tensile and BC
BC 5–8 a compressive value for the normal stresssxx , BC 1 and
BC 2 predict a tensile and BC 3, BC 5–8 a compressive value
the normal stresssyy .

Conclusions
In this paper, the complete set of three-dimensional Gree

functions ~displacements, stresses, and derivatives of displa
ments and stresses with respect to the source points!, due to a
pplied Mechanics
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al
BC

ch

s.
4,

d

2,

for

n’s
ce-

point force in an anisotropic half-space with general bound
conditions, also called the generalized Mindlin solutions, are
rived for the first time. Applying the Mindlin’s superpositio
method, the half-space Green’s function is obtained as a sum
the generalized Kelvin solution~Green’s function in an aniso
tropic infinite space! and a Mindlin’s complementary solution
While the generalized Kelvin solution is in an explicit form, th
Mindlin’s complementary part is expressed in terms of a sim
line-integral over @0,p#. To handle the eight different sets o
boundary conditions, a new matrixK , a combination of the eigen
matricesA andB, has been introduced so that the Green’s fun
tions corresponding to the eight different sets of boundary con
tions can be expressed in a unified form, including the exist
traction-free and rigid boundaries as the special cases.

The corresponding generalized Boussinesq solutions~for source
point on the surface! and the special surface Green’s functions~for
both the source and field points on the surface! have been studied
in details. In particular, it has been proved that under the gen
boundary conditions studied in this paper, the generalized Bo
inesq solution is still well-defined, along with a physical explan
tion in terms of the equivalent concept of the Green’s functio
due to a point force and an infinitesimal dislocation loop.

A typical numerical example has been also presented for
Green’s functions in an orthotropic half-space with the eight d
ferent sets of boundary conditions. The new numerical resul
lustrates clearly the effect of the boundary conditions, as wel
material anisotropy, on the half-space Green’s stresses. It is
JANUARY 2003, Vol. 70 Õ 109
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lieved that the present complete Green’s function solutions sh
be of interest to various boundary/contact designs and of par
lar value to various mechanical engineering and quantum de
analyses based upon the integral equation method using Gr
function.
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General Solution for Mechanical
and Thermal Stresses
in a Functionally Graded Hollow
Cylinder due to Nonaxisymmetric
Steady-State Loads
In this paper, the general theoretical analysis of two-dimensional steady-state the
stresses for a hollow thick cylinder made of functionally graded material is develo
The temperature distribution is assumed to be a function of radial and circumfere
directions with general thermal and mechanical boundary conditions on the inside
outside surfaces. The material properties, except Poisson’s ratio, are assumed to d
on the variable r and they are expressed as power functions of r. The separatio
variables and complex Fourier series are used to solve the heat conduction and N
equations.@DOI: 10.1115/1.1509484#
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1 Introduction
Functionally graded materials are new, advanced, heat-resi

materials used in modern technologies as advanced structure
addition to superb heat properties, they are corrosion and ero
resistant and have high fracture stiffness. The basic concept
mix the ceramic and metal such that the material properties c
tinuously vary from one constituent material to the other. In effe
the governing equations for the temperature and stress dist
tions are coordinate dependent, as the material properties are
tions of position.

There are some analytical thermal and stress calculations
functionally graded materials in the one-dimensional case
thick spheres and cylinders~@1,2#!. The authors have considere
the nonhomogeneous material properties as linear functionsr.
The thermal and stress analysis of these types of structures
sometimes carried out using the theory of laminated compos
~@3–7#!. The material properties are, however, continuous fu
tions of position and therefore there are some objections to
analogy of functionally graded materials with composites. H
et al. @8,9# used the layerwise theory of plates to model the wa
propagation in a plate made of functionally graded material
used the quadratic element. They showed that the quadratic
ment may well express the properties of the functionally gra
material plates across the thickness. The quadratic layered ele
method may well express the material properties of the funct
ally graded material along the graded direction, but it is basic
an analytical-numerical technique with approximate solutions.

Using the perturbation technique, Obata and Noda@10# pre-
sented a solution for the transient thermal stresses in a plate m
of functionally graded material. The same authors used the pe
bation technique to derive the thermal stress equations of the t
hollow spheres and plates made of functionally graded mate
under different temperature distributions~@11,12#!. Obata et al.
@13# presented the solution for thermal stresses of a thick hol
cylinder made of functionally graded material under tw
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MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
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dimensional transient temperature distribution. Tanigawa e
@14,15# solved the thermal stresses for a slab and a semi-infi
body with the assumption that the nonhomogeneous mate
properties are power functions of the thickness direction,z. These
papers, due to their mathematical limitations, have a constrain
power of z in shear modulus of elasticityG(z). In the study of
thermal stresses of functionally graded material plates, sphe
cylinders, and semi-infinite bodies in two and three-dimensio
cases, the traditional potential function method is used. T
method of solution has limitations in choosing the boundary c
ditions for stresses and displacements.

In the present paper, a direct method of solution of the Nav
equations is presented which does not have the limitations of
potential function method as to handle the general types of
chanical and thermal boundary conditions. A thick hollow cyli
der made of functionally graded material under two-dimensio
steady-state temperature distribution with general types of ther
and mechanical boundary conditions is considered. The funct
ally graded material properties of the cylinder are assumed to
expressed by power functions inr. None of the limitations con-
sidered in the previous references~@14,15#! for the power of ma-
terial properties are applied in this paper. The Navier equation
terms of displacements are derived and solved analytically by
direct method, so any boundary conditions for stresses and
placements can be satisfied. By setting the power index cons
equal to zero, the method of solution and the results are reduce
those of thick cylinders of isotropic material.

2 Derivations of Governing Equations
Consider a thick hollow cylinder of inner radiusa and outer

radiusb made of functionally graded material. The cylinder’s m
terial is graded through ther-direction, thus the material proper
ties are functions ofr. Let u and v be the displacement compo
nents in the radial and circumferential directions, respectiv
Then the strain-displacement relations are

e rr 5u,r

euu5
v ,u

r
1

u

r
(1)

e ru5
1

2 S u,u

r
1v ,r2

v
r D

0;
per
t of

ara,
nal
003 by ASME JANUARY 2003, Vol. 70 Õ 111
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where~,! denotes partial derivative. The stress-strain relations
plane-strain conditions are

s rr 5~l12m!e rr 1leuu2~3l12m!aT~r ,u!

suu5~l12m!euu1le rr 2~3l12m!aT~r ,u! (2)

s ru52me ru

where s i j and e i j ( i , j 5r ,u) are the stress and strain tenso
T(r ,u) is the temperature distribution determined from the h
conduction equation,a is the coefficient of thermal expansion
andl andm are the Lame´ coefficients related to the modulus o
elasticityE and Poisson’s ration as

l5
nE

~11n!~122n!
(3)

m5
E

2~11n!
.

The equilibrium equations in the radial and circumferential dir
tions, disregarding the body forces and the inertia terms, are

s rr ,r1
1

r
s ru,u1

1

r
~s rr 2suu!50

(4)

s ru,r1
1

r
suu,u1

2

r
s ru50.

To obtain the equilibrium equations in terms of the displa
ment components for the functionally graded material cylind
the functional relationship of the material properties must
known. Since the cylinder’s material is assumed to be gra
along ther-direction, the modulus of elasticity and the coefficie
of thermal expansion are assumed to be described with po
laws as

E~r !5E0r m1

(5)
a~r !5a0r m2

whereE0 anda0 are the material constants andm1 andm2 are the
power-law indices of the material. We further assume that
Poisson’s ratio is constant.

Using the relations~1! to ~5!, the Navier equations in term o
the displacements are

u,rr 1~m111!
1

r
u,r1S nm1

12n
21D 1

r 2 u1S 122n

222n D 1

r 2 u,uu

1S 1

222n D 1

r
v ,ru1S ~412m1!n23

222n D 1

r 2 v ,u

5
~11n!a0

12n
~~m11m2!r m221T1r m2T,r ! (6)

v ,rr 1~m111!
1

r
v ,r2~m111!

1

r 2 v1S 222n

122n D 1

r 2 v ,uu

1S 1

122n D 1

r
u,ru1S 324n

122n
1m1D 1

r 2 u,u

5S 212n

122n Da0r m221T,u . (7)

Heat Conduction Problem. The heat conduction equation i
the steady-state condition for the two-dimensional problem in
lar coordinates and the thermal boundary conditions for a fu
tionally graded material hollow cylinder are given, respectively,

T,rr 1S k8

k
11D 1

r
T,r1

1

r 2 T,uu50
a<r<b

2p<u<1p (8)
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C11T~a,u!1C12T,r~a,u!5 f 1~u!
(9)

C21T~b,u!1C22T,r~b,u!5 f 2~u!

wherek5k(r ) is the thermal conduction coefficient, the symb
~8! denotes derivative with respect tor, a, andb are the inner and
outer radii of the hollow cylinder, respectively, andCi j are the
constant thermal parameters related to the conduction and con
tion coefficients. The functionsf 1(u) and f 2(u) are known on the
inner and outer radii, respectively.

We assume that the nonhomogeneous thermal conduction c
ficient k(r ) is a power function ofr as

k~r !5k0r m3 (10)

wherek0 andm3 are material parameters. Using Eqs.~8! and~10!,
the heat conduction equation becomes

T,rr 1~m311!
1

r
T,r1

1

r 2 T,uu50. (11)

SinceT(r ,u) is a periodic function ofu, it may be written in the
form of complex Fourier series as

T~r ,u!5 (
n52`

`

Tn~r !einu (12)

whereTn(r ) is the coefficient of complex Fourier series ofT(r ,u)
and is

Tn~r !5
1

2p E
2p

p

T~r ,u!e2 inudu. (13)

Substituting Eq.~12! into Eq. ~11!, the following equation is ob-
tained:

Tn9~r !1~m311!
1

r
Tn8~r !2

n2

r 2 Tn~r !50. (14)

Equation~14! is the Euler equation and has solutions in the fo
of

Tn~r !5Anr b. (15)

Substituting Eq.~15! into Eq. ~14!, the following characteristic
equation is obtained:

b21m3b2n250. (16)

The roots of Eq.~16! are

bn1,25
2m3

2
7S m3

2

4
1n2D 1/2

. (17)

Thus

Tn~r !5An1r bn11An2r bn2. (18)

Substituting Eq.~18! into Eq. ~12!, gives

T~r ,u!5 (
n52`

`

~An1r bn11An2r bn2!einu. (19)

Using the boundary conditions~9! to determine the constantsAn1
andAn2 , yields

(
n52`

`

@~C11a
bn11C12bn1abn121!An11~C11a

bn2

1C12bn2abn221!An2#einu5 f 1~u! (20)

(
n52`

`

@~C21b
bn11C22bn1bbn121!An11~C21b

bn2

1C22bn2bbn221!An2#einu5 f 2~u!.
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In Eqs.~20!, the right-hand sides are the coefficients of comp
Fourier series of left-hand sides as

~C11a
bn11C12bn1abn121!An11~C11a

bn21C12bn2abn221!An2

5
1

2p E
2p

p

f 1~u!e2 inudu

(21)
~C21b

bn11C22bn1bbn121!An11~C21b
bn21C22bn2bbn221!An2

5
1

2p E
2p

p

f 2~u!e2 inudu.

Equations~21! are a system of algebraic equations for the cons
coefficientsAn1 andAn2 , where the solution by Cramer’s metho
is

An15
1

2p E
2p

p

@~C21b
bn21C22bn2bbn221! f 1~u!2~C11a

bn2

1C12bn2abn221! f 2~u!#e2 inudu/~Ĉ12Ĉ2!
(22)

An25
1

2p E
2p

p

@~C11a
bn11C12bn1abn121! f 2~u!2~C21b

bn1

1C22bn1abn121! f 1~u!#e2 inudu/~Ĉ12Ĉ2!

where

Ĉ15~C11a
bn11C12bn1abn121!~C21b

bn21C22bn2bbn221!
(23)

Ĉ25~C11a
bn21C12bn2abn221!~C21b

bn11C22bn1bbn121!.

Solution of the Navier Equations. To solve the Navier equa
tions, the displacement componentsu(r ,u) and v(r ,u) are ex-
panded in the complex Fourier series as

u~r ,u!5 (
n52`

`

un~r !einu

(24)

v~r ,u!5 (
n52`

`

vn~r !einu

where un(r ) and vn(r ) are the coefficients of complex Fourie
series ofu(r ,u) andv(r ,u), respectively, and are

un~r !5
1

2p E
2p

p

u~r ,u!e2 inudu

(25)

vn~r !5
1

2p E
2p

p

v~r ,u!e2 inudu.

Substituting Eq.~19! and Eq.~24! into Eq. ~6! and Eq.~7!, yields

un91~m111!
1

r
un81S nm1

12n
212

~122n!n2

222n D 1

r 2 un

1S in

222n D 1

r
vn81 inS ~412m1!n23

222n D 1

r 2 vn

5
~11n!a0

12n
@~m11m21bn1!An1r bn11m221

1~m11m21bn2!An2r bn21m221# (26)

vn91~m111!
1

r
vn82S m1111

~222n!n2

122n D 1

r 2 vn1S in

122n D 1

r
un8

1 inS 324n

122n
1m1D 1

r 2 un5
in~212n!a0

122n
@An1r bn11m221

1An2r bn21m221#. (27)
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Equations~26! and ~27! are a system of ordinary differentia
equations having general and particular solutions. The genera
lutions are assumed as

un
g~r !5Brh

(28)

vn
g~r !5Crh.

Substituting Eqs.~28! into Eqs.~26! and ~27!, yields

Fh~h21!1~m111!h1
nm1

12n
212

~122n!n2

222n GB
1 i F h

222n
1

~412m1!n23

222n GnC50
(29)

i F h

122n
1

324n

122n
1m1GnB1Fh~h21!1~m111!h2m121

2
~222n!n2

122n GC50.

A nontrivial solution of Eqs.~29! is obtained as

Fh~h21!1~m111!h1
nm1

12n
212

~122n!n2

222n GFh~h21!

1~m111!h2m1212
~222n!n2

122n G1n2F h

222n

1
~412m1!n23

222n GF h

122n
1

324n

122n
1m1G50. (30)

Equation~30! has four rootshn1 to hn4 . Thus, the general solu
tions are

un
g~r !5(

j 51

4

Bn jr
hn j

(31)

vn
g~r !5(

j 51

4

Nn jBn jr
hn j

whereNn j is the relation between constantsBn j and Cn j and is
obtained from the first of Eq.~29! as

Nn j5

i Fhn j~hn j21!1~m111!hn j1
nm1

12n
212

~122n!n2

222n G
nF hn j

222n
1

~412m1!n23

222n G
j 51,2,3,4. (32)

For isotropic materials (m150) and for n51, Eq. ~30! has re-
peated roots and hence a solution of the form oflnr must be
considered foru1

g(r ) andv1
g(r ).

The particular solutionsun
p(r ) andvn

p(r ) are assumed as

un
p~r !5Dn1r bn11m2111Dn2r bn21m211

(33)

vn
p~r !5Dn3r bn11m2111Dn4r bn21m211.

Substituting Eqs.~33! into Eqs.~26! and ~27!, yields

d1Dn1r bn11m2211d2Dn2r bn21m2211d3Dn3r bn11m221

1d4Dn4r bn21m2215d5r bn11m2211d6r bn21m221 (34)
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d7Dn3r bn11m2211d8Dn4r bn21m2211d9Dn1r bn11m221

1d10Dn2r bn21m2215d11r
bn11m2211d12r

bn21m221

(35)

where constantsd1 to d12 are given in the Appendix. Equating th
coefficients of the identical powers yields

d1Dn11d3Dn35d5 (36)
d9Dn11d7Dn35d11

d2Dn21d4Dn45d6 (37)
d10Dn21d8Dn45d12.

Equations~36! and ~37! are a system of algebraic equation
where the solution is given by the Cramer’s method as

Dn15
d5d72d3d11

d1d72d3d9

Dn25
d6d82d4d12

d2d82d4d10 (38)

Dn35
d1d112d5d9

d1d72d3d9

Dn45
d2d122d6d10

d2d82d4d10
.

The complete solutions forun(r ) and vn(r ) are the sum of the
general and particular solutions and are

un~r !5un
g~r !1un

p~r !
(39)

vn~r !5vn
g~r !1vn

p~r !.

Thus
114 Õ Vol. 70, JANUARY 2003
s,

un~r !5(
j 51

4

Bn jr
hn j1Dn1r bn11m2111Dn2r bn21m211

(40)

vn~r !5(
j 51

4

Nn jBn jr
hn j1Dn3r bn11m2111Dn4r bn21m211.

For n50 the coefficientNn j in Eq. ~32! is undefined because th
system of Eqs.~26! and ~27! for n50 is two decoupled ordinary
differential equations as

u091~m111!
1

r
u081S nm1

12n
21D 1

r 2 u05
~11n!a0

12n

3~~m11m21b01! (41)
A01r

b011m2211~m11m21b02!A02r
b021m221)

v091~m111!
1

r
v082~m111!

1

r 2 v050. (42)

The solutions of Eqs.~41! and ~42! are

u0~r !5(
j 51

2

~B0 j r
h0 j1D0 j r

b0 j 1m211!

(43)

v0~r !5(
j 53

4

B0 j r
h0 j

where

h01,25
2m1

2
7S m1

2

4
2

nm1

12n
11D 1/2

h0351
(44)

h0452~m111!
D0 j5
~11n!~b0 j1m11m2!a0A0 j

~12n!F ~b0 j1m211!~b0 j1m2!1~b0 j1m211!~m111!1
nm1

12n
21G j 51,2.
Substituting Eqs.~40! and ~43! into Eq. ~24! give

u~r ,u!5(
j 51

2

~B0 j r
h0 j1D0 j r

b011m211!1 (
n52`,nÞ0

` F(
j 51

4

Bn jr
hn j

1Dn1r bn11m2111Dn2r bn21m211Geinu

(45)

v~r ,u!5(
j 53

4

B0 j r
h0 j1 (

n52`,nÞ0

` F(
j 51

4

Nn jBn jr
hn j

1Dn3r bn11m2111Dn4r bn21m211Geinu.

Substituting Eqs.~45! into Eqs.~1! and~2!, the strains and stresse
are obtained as
s

e rr 5(
j 51

2 S h0 jB0 j r
h0 j 211~b011m211!D0 j r

b0 j 1m2

1 (
n52`,nÞ0

` F(
j 51

4

hn jBn jr
hn j211Dn1~bn11m211!r bn11m2

1Dn2~bn21m211!r bn21m2Geinu (46)

euu5(
j 51

2

~B0 j r
h0 j 211D0 j r

b0 j 1m2!1 (
n52`,nÞ0

` F(
j 51

4

~ inNn j

11!Bn jr
hn j211~ inDn31Dn1!r bn11m2

1~ inDn41Dn2!r bn21m2Geinu (47)
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e ru5
1

2 S ~h0421!B04r
h041 (

n52`,nÞ0

` F(
j 51

4

~ in1~hn j

21!Nn j!Bn jr
hn j211~ inDn11~bn11m2!Dn3!r bn11m2

1~ inDn21~bn21m2!Dn4!r bn21m2G D einu (48)

s rr 5
E0

~11n!~122n! S (j 51

2

~~12n!h0 j1n!B0 j r
h0 j 1m121

1~nb0 j1nm2112~11n!a0!D0 j r
b0 j 1m11m2

1 (
n52`,nÞ0

` F(
j 51

4

~~12n!hn j1n~ inNn j11!!Bn jr
hn j1m121

1~~12n!~bn11m211!Dn11n~ inDn31Dn1!

2~11n!a0An1!r bn11m11m21~~12n!~bn21m211!Dn2

1n~ inDn41Dn2!2~11n!a0An2!r bn21m11m2G D einu (49)

suu5
E0

~11n!~122n! S (j 51

2

~~12n!h0 j1n!B0 j r
h0 j 1m121

1S ~12n!~b0 j1m2112~11n!a0!D0 j r
b0 j 1m11m2

1 (
n52`,nÞ0

` F(
j 51

4

~nhn j1~12n!~ inNn j11!!Bn jr
hn j1m121

1~n~bn11m211!Dn11~12n!~ inDn31Dn1!2~11n!

3a0An1!r bn11m11m21~n~bn21m211!Dn21~12n!

3~ inDn41Dn2!2~11n!a0An2!r bn21m11m2G D einu (50)

s ru5
E0

~11n! S ~h0421!B04r
h041m121

1 (
n52`,nÞ0

` F(
j 51

4

~ in1~hn j21!Nn j!Bn jr
hn j1m121

1~ inDn11~bn11m2!Dn3!r bn11m11m2

1~ inDn21~bn21m2!Dn4!r bn21m11m2D Geinu. (51)

To determine the constantsBn j , we may consider any genera
from of boundary conditions for displacements and stresses a

u~a,u!5g1~u!

u~b,u!5g2~u!

v~a,u!5g3~u!

v~b,u!5g4~u!
(52)

s rr ~a,u!5g5~u!

s rr ~b,u!5g6~u!

s ru~a,u!5g7~u!

s ru~b,u!5g8~u!.
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It is recalled that Eqs.~45! through ~51! contain four unknowns
Bn1 , Bn2 , Bn3 , andBn4 . Therefore, four boundary conditions ar
required to evaluate the four unknowns. These boundary co
tions may be selected from the list of conditions given in Eq.~52!.

Assume that the four boundary conditions are specified fr
the list of Eqs.~52!. The boundary conditions may be either th
given displacements or stresses, or combinations. Expanding
given boundary conditions in complex Fourier series gives

gj~u!5 (
n52`

`

Gj~n!einu j 51, . . . ,4 (53)

where

Gj~n!5
1

2p E
2p

p

gj~n!e2 inudu j 51, . . . ,4. (54)

Substituting the four boundary conditions~52! with the help of
Eqs.~53! in Eqs.~45!, ~49!, and~51! the constants of integration
Bn j are calculated.

3 Results
Consider a thick hollow cylinder of inner radiusa51 m and

outer radiusb51.2 m. The Poisson’s ratio is assumed 0.3 and
modulus of elasticity and the thermal coefficient of expansion
the inner radius areEi5200 Gpa anda i51.231026/°C, respec-
tively. For simplicity of analysis we consider the power law
material properties be the same asṁ15m25m35m. To examine
the proposed solution method, two example problems are con
ered. The first example problem may have some physical inter
tation, while the second example is chosen to show the m
ematical effectiveness of the proposed method.

As the first example, consider a thick hollow cylinder where t
inside boundary is traction-free with given temperature distrib
tion T(a,u)560 cos 2u°C. The outside boundary is assumed to
radially fixed with zero temperature. Therefore, the assum
boundary conditions yields rr (a,u)50, s ru(a,u)50, u(b,u)
50 andv(b,u)50. The thermal boundary conditions are subs
tuted in Eq.~19! to obtain the temperature distribution, where t
constants of integration are obtained from Eqs.~22!. In general,
the displacement and stress boundary conditions are substitut
Eqs.~52!, and with proper function expansions~53!, the constant
coefficients of the series expansion are obtained from Eq.~54!.

Figure 1 shows the temperature distribution in the wall thic
ness along the radius and circumferential directions. Figur
shows the resulting thermoelastic radial displacement due to
given temperature variations. The resulting circumferential d
placementv is shown in Fig. 3. It is noted that, due to the a
sumed boundary conditions, theu andv-displacements are zero a
r 5b, and follow the pattern of the temperature distribution at t
inside surface atr /a51. Figures 4, 5, and 6 show the distributio

Fig. 1 Temperature distribution in the cross section of a cyl-
inder „example 1 …
JANUARY 2003, Vol. 70 Õ 115
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of the radial, circumferential, and the shear thermal stresses in
cross section of the cylinder. It is interesting to see that all co
ponents of stresses follow a harmonic pattern on the outside
face. The radial and shear stresses are zero at the insider su
due to the assumed boundary conditions. The effect of the po

Fig. 2 Radial displacement in the cross section of a cylinder
„example 1 …

Fig. 3 Circumferential displacement in the cross section of a
cylinder „example 1 …

Fig. 4 Radial thermal stress in the cross section of a cylinder
„example 1 …

Fig. 5 Hoop thermal stress in the cross section of a cylinder
„example 1 …
116 Õ Vol. 70, JANUARY 2003
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law index on the distribution of the radial thermal stress is sho
in Fig. 7. This figure is the plot ofs rr versusr /a at u5p/3. It is
shown asm increases, the radial thermal stress is increased.

As the second example, a thick-walled cylinder may be
sumed with zero temperature distribution (T(a,u)50 and
T(b,u)50), but exposed to mechanical boundary conditions. T
stress and displacement boundary conditions are assumed to

s rr ~a,u!5400 sinS u2

4
2u D MPa

s ru~a,u!550u2 cosu MPa
(55)

u~b,u!50

Fig. 6 Shear thermal stress in the cross section of a cylinder
„example 1 …

Fig. 7 Radial distribution of radial thermal stress s rr at uÄpÕ3
„example 1 …

Fig. 8 Radial displacement in the cross section of a cylinder
„example 2 …
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Fig. 9 Circumferential displacement in the cross section of a
cylinder „example 2 …

Fig. 10 Radial mechanical stress in the cross section of a cyl-
inder „example 2 …

Fig. 11 Hoop mechanical stress in the cross section of a cyl-
inder „example 2 …

Fig. 12 Shear mechanical stress in the cross section of a cyl-
inder „example 2 …
Journal of Applied Mechanics
The reason to select such boundary conditions is to examine
mathematical strength of the proposed method. These type
boundary conditions may not be handled with the potential fu
tion method. It is examined that series expansion of Eq.~54! rap-
idly converge after 31 number of terms. Therefore, in the cal
lations and plotting the figures, 31 terms of each series
considered.

Using Eqs.~52! to ~54!, the boundary conditions given in Eqs
~55! are expanded by the integral series and the unknown co
cientsBn j are determined. Figures 8 and 9 show the radial a
circumferential displacements in the cross section of the cylin
According to the boundary conditions,u5v50 at r 5b. At the
inside surfacer 5a, u, andv are harmonically varying. The stres
distributions are shown in Figs. 10–12. Stress patterns in in
and outside surfaces follow harmonic patterns. The given h
monic boundary conditions fors rr ands ru at r 5a, have general
influence on the pattern of stress distributions in the cylinde
cross section, as seen from Figs. 10 through 12.

4 Conclusions
This paper presents the analytical solution for the nonaxisy

metric thermal and mechanical stresses in a thick hollow cylin
made of functionally graded material. The method of solution
based on the direct method and uses power series, rather tha
potential function method. The advantage of this method over
potential function method is its generality and mathemati
power to handle any type of the mechanical and thermal bound
conditions. It is to be emphasized that the proposed method d
not have the mathematical limitations to handle the general ty
of boundary conditions which are usually countered in the pot
tial function method.

Appendix
The constantsdj defined in Eqs.~34! and ~35! are given as

d15~bn11m211!~bn11m2!1~m111!~bn11m211!

1
nm1

12n
212

~122n!n2

222n

d25~bn21m211!~bn21m2!1~m111!~bn21m211!

1
nm1

12n
212

~122n!n2

222n

d35 inS bn11m211

222n
1

~412m1!n23

222n D
d45 inS bn21m211

222n
1

~412m1!n23

222n D
d55

~11n!~m11m21bn1!a0An1

12n

d65
~11n!~m11m21bn2!a0An2

12n
(56)

d75~bn11m211!~bn11m2!1~m111!~bn11m211!

2m1212
~222n!n2

122n

d85~bn21m211!~bn21m2!1~m111!~bn21m211!

2m1212
~222n!n2

122n
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d95 inS bn11m211

122n
1

324n

122n
1m1D

d105 inS bn21m211

122n
1

324n

122n
1m1D

d115
in~212n!a0An1

122n

d125
in~212n!a0An2

122n
.
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Localization of Vibration
Propagation in Two-Dimensional
Systems With Multiple
Substructural Modes
Localization of vibration propagation in randomly disordered weakly coupled tw
dimensional cantilever-mesh-spring arrays, in which multiple substructural modes
considered for each cantilever, is studied in this paper. A method of regular perturba
for a linear algebraic system is applied to determine the localization factors, which
defined in terms of the angles of orientation and characterize the average expon
rates of growth or decay of the amplitudes of vibration in the given directions. Itera
formulations are derived to determine the amplitudes of vibration of the cantilevers. I
diagonal directions, a transfer matrix formulation is obtained. For a given direction
orientation, the localization behavior is similar to that of a one-dimensional cantilev
spring-mesh chain. The effect of the stiffnesses and the disorder in the stiffnesses
cantilevers on the localization behavior of the system is investigated.
@DOI: 10.1115/1.1507766#
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1 Introduction

In engineering applications, there are many structures, suc
long satellite antennae or space trusses used in space solar p
stations, which are designed to be composed of identically c
structed elements assembled end-to-end to form a spatially
odic structure. When analyzing the vibration of these large sp
structures, they have been traditionally treated as perfectly p
odic structures. However, due to defects in manufacture and
sembly, these nominally periodic structures can never be perfe
periodic but are in reality randomly disordered. The vibration
behavior of a disordered periodic structure can be significa
different from that of a perfectly periodic structure. For a perfec
periodic structure, the vibration modes are of wavy shapes
extend throughout the structure; whereas, when a structure is
ordered, vibration is confined to a small region with the amp
tudes decaying exponentially away from the center. The ave
exponential rate at which the amplitudes of vibration decay is
localization factor.

For one-dimensional monocoupled structures, the transfer
trices are of dimension 232, and Furstenberg’s theorem@1# for
products of random matrices may be applied to determine
localization factors. For multicoupled structures, the dimension
the transfer matrices is higher than 232; the multiplicative er-
godic theorem of Oseledec@2# has to be employed to obtain th
localization factors. The localization factor is related to the sm
est positive Lyapunov exponent for the corresponding discrete
namical system. A one-dimensional monocoupled structure m
be regarded as a special case of a multicoupled structure in w
there is only one positive Lyapunov exponent. Since the sma
Lyapunov exponent is also the largest for monocoupled structu
the determination of the localization factors is much easier. T
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months after final publication of the paper itself in the ASME JOURNAL OFAPPLIED
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method of Green’s function~@3,4#! may also be employed to de
termine the localization factors for both monocoupled and mu
coupled one-dimensional structures.

For localization problems in the context of structural dynami
much work has been done during the past two decades in
theory and experiments. However, because of the inapplicab
of the methods of transfer matrix and Green’s function, which
formulated for one-dimensional systems, to higher-dimensio
systems in their current formulations, the degree of difficulty, a
the amount of computation involved in studying highe
dimensional systems, most of the research work on localizatio
structural dynamics has been restricted to one-dimensional s
tures. Detailed reviews of literature on localization in on
dimensional systems may be found in the papers and referenc
the special issue onLocalization Problems in Engineering@5#.

In engineering applications, there are many structures, suc
large floor systems of shopping malls and airport terminals, wh
should be realistically modeled as large plates stiffened in
orthogonal directions, i.e., two-dimensional disordered perio
structures. It is therefore of practical importance to study in de
the localization behavior of disordered two-dimensional perio
systems. However, because of the complexity of mathema
modelling and analysis of large realistic two-dimensional dis
dered periodic engineering structures, to obtain some gen
knowledge on the localization behavior of disordered tw
dimensional systems, simple models of two-dimensio
cantilever-mesh-spring arrays have been considered, which ca
studied using elegant analytical approaches.

In an earlier study~@6#!, the free-vibration mode localization in
two-dimensional cantilever-spring arrays with single substructu
mode was investigated. This was the first publication on vibrat
mode location of two-dimensional structures in the context
structural dynamics. A regular perturbation method for a line
eigenvalue problem was applied to obtain the amplitudes of vib
tion of the cantilevers and a first-order approximation of the
calization factors, which were defined in terms of the angles
orientation and characterized the exponential rates of growth
decay of amplitudes of vibration in the given directions. Wh
plotted in the logarithmic scale, the vibration modes were of h
shape with the amplitudes of vibration decaying linearly aw
from the cantilever at which vibration was originated. The resu
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presented in@6# were extended in@7# to the free-vibration mode
localization in two-dimensional cantilever-mesh-spring arra
with multiple substructural modes, in which multiple substructu
modes are considered for each cantilever.

In Ref. @8#, a method of regular perturbation for a linear alg
braic system was applied to study localization of vibration pro
gation in randomly disordered weakly coupled two-dimensio
cantilever-spring arrays with a single substructural mode un
external harmonic excitations.

In this paper, the work presented in@8# is extended to study
localization in vibration propagation in two-dimension
cantilever-mesh-spring arrays with multiple substructural mod
which is a more realistic model of engineering structures,
though simplified. Employing a method of regular perturbation
a linear algebraic system in the block matrix form, first-ord
approximations of the localization factors are obtained.

For a two-dimensional system with a single substructural mo
when the mean values of stiffness of the cantilevers in thex and
y-directions are the same, there is only one frequency passb
whereas when they are different, there are two frequency p
bands. On the other hand, for a two-dimensional system witS
substructural modes, depending on the average values of stiff
of the cantilevers in thex andy-directions, the possible number o
frequency passbands is betweenS and 2S with various possible
combinations. Therefore, there are many properties of vibra
propagation localization for systems with multiple substructu
modes that are not observable for systems with a single subs
tural mode. The objective of this research is to obtain some g
eral knowledge on the localization behavior of vibration propa
tion in disordered two-dimensional structures using a simplifi
model.

2 Perturbation Formulation for Vibration Localiza-
tion

2.1 Equations of Motion. Consider the forced vibration o
a two-dimensional cantilever-mesh-spring array as shown in
1. The system is subjected to harmonic exciting forcesF0

xeivt and
F0

yeivt in thex andy-directions, respectively, applied at the tip
the (I 0 ,J0)th cantilever. Each cantilever of lengthL is connected
to its eight neighboring cantilevers by massless meshes and l
springs located at heightH. The parameters and displacements
the cantilever-mesh-spring array are shown in Fig. 2. The num
of columns and rows of cantilevers in the array areNH andNV ,
respectively.

If S substructural modes are considered for each cantilever
x andy components of the displacement of the (I ,J)th cantilever
are, respectively,

xI ,J~z,t !5aI ,J
T ~ t !f~z!, yI ,J~z,t !5bI ,J

T ~ t !f~z!,

Fig. 1 Two-dimensional cantilever-mesh-spring array
120 Õ Vol. 70, JANUARY 2003
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aI ,J~ t !5$aI ,J
1 ~ t !, . . . ,aI ,J

S ~ t !%T,

bI ,J~ t !5$bI ,J
1 ~ t !, . . . ,bI ,J

S ~ t !%T,

f~z!5$f1~z!, . . . ,fS~z!%T,

wherefa(z), a51, . . . ,S, is the ath normal mode shape of a
cantilever given by

fa~z!5coshb̂az2cosb̂az2âa~sinhb̂az2sinb̂az!, z5
z

L
.

For the first three cantilever modes, the parameters areâ1

50.73410, â251.01847, â350.99922, b̂151.87510, b̂2

54.69409,b̂357.85476.
Following @7#, the total kinetic energy of the cantilever-mes

spring array is

T5(
I 51

NV

(
J51

NH mI ,J

2 E
0

L

$@ ȧI ,J
T ~ t !f~z!#21@ ḃI ,J

T ~ t !f~z!#2%dz,

(1)

wheremI ,J is the mass per unit length of cantilever (I ,J). The
potential energy due to bending of the cantilevers is

VC5(
I 51

NV

(
J51

NH H EII ,J
x

2 E
0

L

@aI ,J
T ~ t !f9~z!#2dz

1
EII ,J

y

2 E
0

L

@bI ,J
T ~ t !f9~z!#2dzJ , (2)

where EII ,J
x and EII ,J

y are the flexural rigidities of the (I ,J)th
cantilever in thex andy-directions, respectively.

Considering only small deformations, the potential energy d
to the extensions of the springs is

VS5(
I 51

NV

(
J51

NH 1

2
@KI ,J

h ~D I ,J
h !21KI ,J

v ~D I ,J
v !21KI ,J

dl ~D I ,J
dl !2

1KI ,J
dr ~D I ,J

dr !2#, (3)

whereD I ,J
h , D I ,J

v , D I ,J
dl , andD I ,J

dr are the extensions of the hor
zontal springKI ,J

h , vertical springKI ,J
v , and diagonal springsKI ,J

dl

andKI ,J
dr , respectively. The potential energy due to the extensi

of the meshes is

Fig. 2 Parameters and displacements of a two-dimensional
cantilever-mesh-spring array
Transactions of the ASME



s

der
ers,
note

s of

ch
e

r
s of
-

of
-

VM5(
I 51

NV

(
J51

NH 1

2 H KI ,J
m-hE

0

L

@D I ,J
m-h~z,t !#2dz

1KI ,J
m-vE

0

L

@D I ,J
m-v~z,t !#2dz1KI ,J

m-dlE
0

L

@D I ,J
m-dl~z,t !#2dz

1KI ,J
m-drE

0

L

@D I ,J
m-dr~z,t !#2dzJ , (4)

whereD I ,J
m-h(z,t) is the extension of the horizontal mesh on lineI

and in columnJ, D I ,J
m-v(z,t) is the extension of the vertical mes

in row I and on lineJ, D I ,J
m-dl(z,t) andD I ,J

m-dr(z,t) are the exten-
sions of the left and right-slanting meshes in panelI ,J, respec-
tively, andKI ,J

m-h , KI ,J
m-v , KI ,J

m-dl , KI ,J
m-dr are the normal stiffnesse

per unit length of the corresponding meshes.
The Lagrange’s equations of motion are, forI 51, . . . ,NV and

J51, . . . ,NH ,

d

dt
S ]T

]ȧI ,J
D 1

]V

]aI ,J

5RI ,J
x ,

d

dt S ]T

]ḃI ,J
D 1

]V

]bI ,J

5RI ,J
y , (5)

where V is the total potential energy given byV5VC1VS

1VM , RI 0 ,J0

x 5eivtF0
xf(L), RI 0 ,J0

y 5eivtF0
yf(L), andRI ,J

x 5RI ,J
y

50, for all IÞI 0 , JÞJ0 .
Substituting Eqs.~1!–~4! into Eqs.~5! results in the equations

of motion for forced vibration of the cantilever-mesh-spring arra

Mẍ1Kx5Feivt, (6)

in which M is the mass matrix,K is the stiffness matrix, and the
displacement vectorx and the load vectorF are given by

x5$a1,1
T ,b1,1

T ;a1,2
T ,b1,2

T ; . . . ;aNV ,NH

T ,bNV ,NH

T %T,

F5$0T,0T; . . . ;0T,0T;F0
xfT~L !,F0

yfT~L !;0T,0T; . . . ;0T,0T%T.

To nondimensionalize Eq.~6!, let

x5LAmM21/2x̂eivt, f̄5
1

v0
2AL3m

M21/2F, v0
25

EIx

mL4 ,

wherem andEIx are the average values of the mass densitiesmI ,J

and the flexural rigiditiesEII ,J
x of cantilevers, respectively.

Transform the nodal coordinates (I ,J) to the global coordinates
i using the following relationships as in Ref.@6#:

i 5H 2~ I 21!NH12J21, for x-direction

2~ I 21!NH12J, for y-directionJ ⇔

I 5 intS i 21

2NH
D11, J5 intS i 11

2 D11.

Without loss of generality, it may be assumed thati is an odd
number and it corresponds to thex-direction; hencei 11 is an
even number and it corresponds to they-direction. Letting ūi

5âI ,J , ūi 115b̂I ,J , the nondimensional displacement vectorx̂ be-
comesū, where

ū5$ū1
T ,ū2

T ; . . . ;ū2NHNV21
T ,ū2NHNV

T %T, ūi5$ūi1 , . . . ,ūiS%T,

and the nondimensional load vector becomes

f̄5$0T,0T; . . . ;0T,0T;f j
T ,f j 11

T ;0T,0T; . . . ;0T,0T%T, (7)

where the global coordinatesj and j 11 correspond to the
(I 0 ,J0)th cantilever, and
Journal of Applied Mechanics
h

y:

f j5 f̄ x

1

2
f~L !, f j 115 f̄ y

1

2
f~L !, f̄ x5

F0
x

f 0
, f̄ y5

F0
y

f 0
,

f 05
EIx

2L2AmI 0 ,J0

m
,

where 1
2f(L) is a vector of dimensionS give by (1,21,1,

21, . . . )T.
The equations of motion become

Āū5 f̄, (8)

whereĀ5v0
22M21/2KM 21/22nI , n5v2/v0

2.
For simplicity of presentation, assume that there is no disor

in the geometry of the array, the mass densities of the cantilev
the meshes and springs connecting the cantilevers, and de
K̂ I ,J

h 5kh, K̂ I ,J
v 5kv, K̂ I ,J

dl 5K̂ I ,J
dr 52kd, K̂ I ,J

m-h5kh, K̂ I ,J
m-v5kv,

K̂ I ,J
m-dl5K̂ I ,J

m-dr52kd, for all values of I , J, in which K̂ I ,J
dir

5KI ,J
dir /(EIx/L3), K̂ I ,J

m-dir5LKI ,J
m-dir/(EIx/L3), where ‘‘dir’’ is h, v,

dl, dr. The only sources of disorder are the bending stiffnesse
the cantilevers in bothx and y-directions denoted aski

x

5EII ,J
x /EIx andki 11

y 5EII ,J
y /EIx.

Therefore, in the block form, matrixĀ5@Āk,l #, in which there
are 2NHNV block rows and block columns, respectively, and ea
block is of dimensionS3S. The nonzero block elements in th
i th block row ~corresponding to thex-direction! are

Ā i ,i5ki
xb̂41~2kh14kd!FH1~2kh14kd2n!I ,

Ā i ,i 225Ā i ,i 1252~khFH1khI !,
(9)

Ā i ,i 22NH2252Ā i ,i 22NH215Ā i ,i 22NH125Ā i ,i 22NH13

5Ā i ,i 12NH225Ā i ,i 12NH215Ā i ,i 12NH12

52Ā i ,i 12NH1352~kdFH1kdI !,

and the nonzero block elements in the (i 11)th block row~corre-
sponding to they-direction! are

Ā i 11,i 115ki 11
y b̂41~2kv14kd!FH1~2kv14kd2n!I ,

Ā i 11,i 22NH115Ā i 11,i 12NH1152~kvFH1kvI !,
(10)

2Ā i 11,i 22NH225Ā i 11,i 22NH215Ā i 11,i 22NH125Ā i 11,i 22NH13

5Ā i 11,i 12NH225Ā i 11,i 12NH2152Ā i 11,i 12NH12

5Ā i 11,i 12NH1352~kdFH1kdI !,

where b̂45diag$b̂1
4, . . . ,b̂S

4%, FH5f(H)fT(H). For the case
whenS53 andH5L,

b̂45diag$12.36236, 485.51882, 3806.54627%,

FH5FL5F 4 24 4

24 4 24

4 24 4
G .

2.2 Perturbation Analysis. To apply the method of regula
perturbation, weak coupling is assumed, i.e., the magnitude
the off-diagonal elements ofĀ, which are functions of the nondi
mensional stiffnesses of the mesheskh, kv, and kd and the
springskh, kv, andkd, are much smaller than the magnitudes
the diagonal elements ofĀ, which are functions of the nondimen
sional flexural rigidities of the cantileverski

x andki 11
y . Matrix Ā

may be written as

Ā5A1dA, (11)
JANUARY 2003, Vol. 70 Õ 121
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whereA is the diagonal matrix obtained from the main diagon
of matrix Ā and is given by

A5diag$A1,1
diag,A2,2

diag, . . . ,A2NHNV,2NHNV

diag %,

Ak,k
diag5diag$A1,1

k ,A2,2
k , . . . ,AS,S

k %, k51, . . . ,2NHNV ,

and for i odd,a51, . . . ,S,

Aa,a
i 5ki

xb̂a
41~2kh14kd!Faa1~2kh14kd!2n,

(12)

Aa,a
i 115ki 11

y b̂a
41~2kv14kd!Faa1~2kv14kd!2n.

In Eq. ~11!, matrix dA is of the form dA5@dAk,l #, where the
diagonal blocks are, fori odd,

dA i ,i5~2kh14kd!F0, dA i 11,i 115~2kv14kd!F0,

whereF0 equalsFH except all diagonal elements that are set to
and the off-diagonal blocksdAk,l5Āk,l , kÞ l , which are given by
Eqs.~9! and ~10!.

The method of regular perturbation for a linear algebraic s
tem in the block form is applied to solve Eq.~8!. Expanding the
response vectorū as

ū5u1du1¯1dmu1¯ , (13)

and substituting Eqs.~11! and ~13! into ~8! yields

Au1~Adu1dAu!1¯1~Admu1dAdm21u!1¯5 f̄.

The zeroth-order perturbation equation is

Au5 f̄. (14)

Substituting Eqs.~12! and~7! into Eq.~14! results in the zeroth-
order solution

u5~u1
T ,u2

T ;u3
T ,u4

T ; . . . ;u2NHNV21
T ,u2NHNV

T !T,

uj5~A j , j
diag!21f j5 f̄ x$~A1,1

j !21,2~A2,2
j !21, . . . ,~21!S~AS,S

j !21%T,

uj 115~A j 11,j 11
diag !21f j 115 f̄ y$~A1,1

j 11!21,2~A2,2
j 11!21, . . . ,

~21!S~AS,S
j 11!21%T, (15)

ui5ui 1150, for i 51,3, . . . ,2NHNV21, and iÞ j .

This result indicates that, in the zeroth-order, only the direc
forced (I 0 ,J0)th cantilever is excited.

For theM th-order perturbation,M51,2, . . . , theperturbation
equation is

AdMu1dAdM21u50. (16)

Express theM th-order amplitude of vibration vectordMu as a
linear combination of the unit vectorulb , which is formed by
2NHNV blocks of dimensionS in which thebth element of thel th
block is equal to 1 and all other elements are equal to 0, as

dMu5 (
l 51

2NHNV

(
b51

S

« lb
M ulb . (17)

Substituting Eq.~17! into ~16!, multiplying the resulting equation
by uka

T from the left results in

«ka
M 52

1

Aa,a
k (

l 51

2NHNV

(
b51

S

« lb
M21~uka

T dAu lb!. (18)

It is easy to show thatuka
T dAu lb5dAka,lb , which is the element

of dA located on theath row of thekth row block and thebth
column of thel th column block.

Using Eqs.~9! and~10! and after some calculation, the follow
ing results are obtained. Fork5 i odd, which corresponds to th
x-direction, Eq.~18! becomes
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« ia
M 5

1

Aa,a
i H (

g51

S

~khFag1khdag!@« ( i 22)g
M21 1« ( i 12)g

M21 #

2~2kh14kd!(
g51

S

Fag
0 « ig

M212(
g51

S

~kdFag1kddag!

3@2« ( i 22NH22)g
M21 1« ( i 22NH21)g

M21 2« ( i 22NH12)g
M21

2« ( i 22NH13)g
M21 2« ( i 12NH22)g

M21 2« ( i 12NH21)g
M21

2« ( i 12NH12)g
M21 1« ( i 12NH13)g

M21 #J , (19)

and for k5 i 11 even, which corresponds to they-direction, Eq.
~18! becomes

« ( i 11)a
M 5

1

Aa,a
i 11 H (

g51

S

~kvFag1kvdag!@« ( i 22NH11)g
M21

1« ( i 12NH11)g
M21 #2~2kv14kd!(

g51

S

Fag
0 « ( i 11)g

M21

2(
g51

S

~kdFag1kddag!@« ( i 22NH22)g
M21 2« ( i 22NH21)g

M21

2« ( i 22NH12)g
M21 2« ( i 22NH13)g

M21 2« ( i 12NH22)g
M21

2« ( i 12NH21)g
M21 1« ( i 12NH12)g

M21 2« ( i 12NH13)g
M21 #J . (20)

Equations~19! and~20! give the relationships between the amp
tude of vibration of the (I ,J)th cantilever, corresponding to th
global coordinatesi and i 11, in theM th-order perturbation and
those of its eight neighboring cantilevers in the (M21)th-order
perturbation. This coupling of cantilevers in the transfer of vib
tion can be better visualized in Fig. 3.

As shown in Fig. 1, each cantilever is coupled with its eig
adjacent cantilevers through meshes and linear springs. In
zeroth-order perturbation, only the (I 0 ,J0)th cantilever that is di-
rectly forced is vibrating. For the first-order perturbation, the eig
neighboring cantilevers on the first layer are brought into mot
through coupling; whereas for the second-order perturbation,
16 cantilevers on the second layer are brought into motion

Fig. 3 Coupling of cantilevers in the transfer of vibration
Transactions of the ASME
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general, for theM th-order perturbation, 8M cantilevers on the
M th layer are brought into motion for the first time. As shown
Fig. 4, if the (I ,J)th cantilever is on theM th layer, it satisfies the
condition uI 2I 0u5M and/oruJ2J0u5M . For themth-order per-
turbation (m,M ), all cantilevers on and outside theM th layer
are at rest~@6#!. Therefore, vibration extends or propagates o
ward a layer for each increment in the order of perturbation
the M th layer is the farthest layer that vibration can extend to
the M th-order perturbation. The amplitudes of vibration of t
cantilevers on theM th layer in theM th-order perturbation are
therefore determined by the amplitudes of vibration of the ca
levers on the (M21)th layer in the (M21)th-order perturbation.
Hence, if the (I ,J)th cantilever, corresponding to the global coo
dinatesi andi 11, is on theM th layer, the terms on the right side
of Eqs. ~19! and ~20! that correspond to cantilevers not on th
(M21)th layer are equal to zero; for example, the second s
mation terms in Eqs.~19! and ~20! are equal to zero.

In Ref. @8#, where localization of vibration propagation in
two-dimensional cantilever-spring array with one substructu
mode is considered, it is found that the amplitudes of vibration
of hill shapes when plotted in the logarithmic scale. The am
tudes of vibration of the cantilevers decay linearly in a spec
direction~angle of orientation! in the logarithmic scale away from
the cantilever that is directly forced. This observation sugges
the definition of the localization factors for a two-dimension
cantilever-spring array in terms of the angle of orientation~@8#!,
which are analogous to the localization factors for a o
dimensional randomly disordered system and characterize the
erage exponential rates of growth or decay of amplitudes of
bration.

A localization factor is defined as

lu52 lim
M→`

1

M
lni v̄i i , u5tan21

J2J0

I 2I 0
, (21)

where v̄i5(ūi
T ,ūi 11

T )T5(ūi1 , . . . ,ūiS ;ū( i 11)1, . . . ,ū( i 11)S)T is
the nondimensional amplitude vector of vibration of the (I ,J)th
cantilever on theM th layer ~corresponding to the global coord
natesi and i 11), andu is the angle of orientation as shown
Fig. 4.

The localization factors defined in Eq.~21! are consistent in the
sense that, in numerical simulations, two different values ofM
→` yield the same value oflu as long as the cantilevers (I ,J) on
the two different layers correspond to the same angle of orie
tion u. This confirms that the exponential decay rate of vibrat

Fig. 4 Definition of the localization factor
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amplitudes is invariant for a specific direction and it is reasona
to define the localization factors in terms of the angle of orien
tion.

It may be noted that, when the full linear algebraic system~8! is
solved and the true amplitude vector of vibrationv̄i of the (I ,J)th
cantilever, which is on theM th layer, is used in Eq.~21!, the exact
value of the localization factorlu is obtained when the number o
layer M approaches infinity.

On the other hand, when applying the method of regular p
turbation, v̄i may be written as, following Eq.~13!, v̄i5vi1dvi

1d2vi1¯ . Since cantilever (I ,J) or the global coordinatei is
on theM th layer,dmvi50 for m,M as discussed above, whic
results in

v̄i5dMvi1dM11vi1¯ . (22)

However, because of the large amount of computation involve
is difficult to evaluate Eq.~22! beyond the leading term. Hence, i
this study, only the leading term in the perturbation series,~22! is
taken, i.e., v̄i'dMvi5$(dMui)

T,(dMui 11)T%T, the elements of
which are obtained using Eqs.~19! and ~20!. The localization
factor lu obtained using Eq.~21! with v̄i'dMvi is therefore a
first-order approximation.

For the four cantilevers located at the corners of theM th layer,
which correspond to the angles of orientationu545 deg, 135 deg,
225 deg, and 315 deg, Eqs.~19! and ~20! can be simplified sig-
nificantly. Because of symmetry, only the diagonal directionu
545 deg is considered in the following formulation. As discuss
above, the amplitudes of vibration of the cantilevers on theM th
layer in theM th-order perturbation depend only on the amplitud
of vibration of the cantilevers on the (M21)th layer in the (M
21)th-order perturbation. Since the cantilever (I 01M ,J01M )
on theM th layer, which is located in the directionu545 deg, is
coupled with only one cantilever on the (M21)th layer, i.e., the
cantilever (I 01M21,J01M21), the amplitudes of vibration of
the cantilever (I 01M ,J01M ) in the M th-order perturbation de-
pend only on those of the cantilever (I 01M21,J01M21) in the
(M21)th-order perturbation. Equations~19! and~20! are simpli-
fied as

« ia
M 5

1

Aa,a
i H (

g51

S

~kdFag1kddag!@« ( i 22NH22)g
M21 2« ( i 22NH21)g

M21 #J ,

(23)

« ( i 11)a
M 5

1

Aa,a
i 11 H (

g51

S

~kdFag1kddag!@2« ( i 22NH22)g
M21

1« ( i 22NH21)g
M21 #J ,

where i 5 j 12M (NH11). Equation~23! may be written in the
matrix form as

H «i
M

«i 11
M J 5TMH «i 22NH22

M21

«i 22NH21
M21 J , (24)

where«l
m5$« l1

m , . . . ,« lS
m%T, andTM is the transfer matrix given

by

TM5F T i
M 2T i

M

2T i 11
M T i 11

M G ,
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M53

kd F111kd

A1,1
l

kdF12

A1,1
l ¯

kdF1S

A1,1
l

kdF21

A2,2
l

kdF221kd

A2,2
l ¯

kd F2S

A2,2
l

A A A A

kdFS1

AS,S
l

kdFS2

AS,S
l ¯

kdFSS1kd

AS,S
l

4 .

Equation~24! leads to

H «i
M

«i 11
M J 5TMTM21

¯T1H «j
0

«j 11
0 J , (25)

where«j
05uj and«j 11

0 5uj 11 as given in Eq.~15!.
Hence, in the diagonal direction ofu545 deg, a first-order ap

proximation of the propagation of vibration is expressed in ter
of a product of transfer matrices of 2S32S. This implies that the
localization behavior of a two-dimensional cantilever-mesh-spr
array in the diagonal direction ofu545 deg is similar to that of a
one-dimensional system with multiple substructural modes~@9#!.
The numerical method presented in@9# can be applied to deter
mine the localization factors.

The ath frequency passbands corresponding to vibration do
nant in thex andy-directions are located around, respectively,

na
x 5mkxb̂a

41~2kh14kd!Faa1~2kh14kd!,

na
y 5mkyb̂a

41~2kv14kd!Faa1~2kv14kd!,

with certain bandwidths.
For weak coupling of the cantilevers, i.e., small values of

nondimensional stiffnesses of the springskh, kv, andkd and the
mesheskh, kv, andkd, the locations of the frequency passban
are given approximately byna

x 'mkxb̂a
4 , na

y 'mkyb̂a
4 . The fol-

lowing three cases are possible.

Case 1.mkxÄmky
In this case, the frequency passbands corresponding to vibra

dominant in thex-direction and they-direction coincide and are
well separated. For example, ifmkx5mky51 and three substruc
tural modes are taken, i.e.,S53, the passbands are located arou

for both x and y-directions: 12.36 485.52 3806.55.

Case 2.mkxÅmky, without overlap
For certain values ofmkx and mky , the frequency passband

corresponding to vibration dominant in thex-direction and the
y-direction are well separated. For example, ifmkx51, mky55,
S53, the frequency passbands are located around

x-direction: 12.36 485.52 3806.55

y-direction: 61.81 2427.59 19032.73.

Case 3.mkxÅmky, with overlap
For certain values ofmkx andmky , there may be overlaps be

tween the frequency passbands corresponding to vibration d
nant in thex-direction and those corresponding to vibration dom
nant in they-direction. For example, ifmkx51, mky57.84, S
53, the frequency passbands are located around

x-direction: 12.36 485.52 3806.55

y-direction: 96.92 3806.47 29843.32

in which the third frequency passband corresponding to vibra
dominant in thex-direction and the second frequency passba
corresponding to vibration dominant in they-direction overlap.
124 Õ Vol. 70, JANUARY 2003
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3 Numerical Results
Numerical results of the first-order approximation of the loc

ization factors for vibration propagation in disordered tw
dimensional cantilever-mesh-spring arrays are presented in
section.

Fig. 5 Localization factors: mkxÄmkyÄ1, k hÄk vÄk dÄkhÄkv

ÄkdÄ0.01
Transactions of the ASME
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For the purpose of illustration, three substructural modes
considered for each cantilever, i.e.,S53. The nondimensiona
bending stiffnesses of the cantilevers in thex andy-directionski

x

and ki 11
y are uniformly distributed random numbers with me

valuesmkx andmky and coefficients of variationdkx anddky , and
the exciting forces are taken asf̄ x5 f̄ y51.

Fig. 6 Localization factors: mkxÄ1, mkyÄ5, k hÄk vÄk dÄkh

ÄkvÄkdÄ0.01
Journal of Applied Mechanics
are

n

Given the nondimensional forcesf̄ x and f̄ y , and the excitation
frequencyn, the zeroth-order approximation of the amplitude
vibration vectoru is given by Eq.~15!. Iterative Eqs.~19! and
~20! are employed to determine the amplitudes of vibration of
the cantilevers on theM th layer in theM th-order perturbation.
For each iteration, two independent uniformly distributed rand

Fig. 7 Localization factors: mkxÄ1, mkyÄ7.84, k hÄk vÄk dÄkh

ÄkvÄkdÄ0.01
JANUARY 2003, Vol. 70 Õ 125
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numbers are generated forki
x and ki 11

y for the cantilever corre-
sponding to thei th global coordinate. Equation~21! is then em-
ployed to determine the localization factorslu .

The determination of a first-order approximation of the loc
ization factors requires only the amplitudes of vibrations of c
tilevers on theM th layer in theM th-order perturbation forM

Fig. 8 Localization factors: mkxÄ1, mkyÄ7.84, dkxÄdkyÄ0.01,
k hÄk vÄk dÄkhÄkvÄkdÄ0.01
126 Õ Vol. 70, JANUARY 2003
l-
n-

large. All cantilevers outside theM th layer are at rest in the
M th-order perturbation. Therefore, a large two-dimensio
cantilever-mesh-spring array may be imagined as one withM
11 rows and 2M11 columns and the cantilever that is direct
forced is located at node (M11,M11). The localization factors
are plotted for 0 deg<u<180 deg only due to their symmetry.

Fig. 9 Localization factors: mkxÄ1, mkyÄ7.84, dkxÄ0.1, dky
Ä0.01, k hÄk vÄk dÄkhÄkvÄkdÄ0.01
Transactions of the ASME



Fig. 10 Localization factors in direction uÄ45 deg: mkxÄ1, mkyÄ7.84, k hÄk vÄk dÄkhÄkvÄkdÄ0.01
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First-order approximate localization factors are shown in Fig
for mkx5mky51, dkx5dky50.1. Sincemkx5mky andS53, there
are three frequency passbands as discussed in Section 2. Be
the statistical properties of the cantilever-mesh-spring array in
x-direction are the same as those in they-direction, the vibration
propagation localization behavior in thex-direction (u590 deg)
is the same as that in they-direction (u50 deg). Furthermore
because of the symmetry of the two-dimensional cantilev
spring-mesh array in the statistical sense, the localization fac
are symmetric about the horizontal axis (u590 deg), vertical axis
(u50 deg, 180 deg!, and the diagonal lines (u545 deg, 135 deg!
passing through the cantilever that is directly forced. It is seen
the localization factors are minimum in thex and y-directions
(u50 deg, 90 deg, and 180 deg! and are maximum in the diago
nal directions (u545 deg and 135 deg!.

When mkx51, mky55, dkx5dky50.1, the localization factors
are shown in Fig. 6. In this case, there are six frequency p
bands, three of which correspond to vibration dominant in
x-direction and three of which correspond to vibration domin
in they-direction. Sincemkx,mky , the coupling in thex-direction
is relatively stronger than that in they-direction. Hence the local-
ization factor in thex-direction (u590 deg) is smaller than that in
they-direction (u50 deg). The localization factors are symmetr
about the horizontal axis (u590 deg) and vertical axis (u
50 deg, 180 deg! but not the diagonal lines (u545 deg, 135 deg!
passing through the cantilever that is directly forced. It is o
Journal of Applied Mechanics
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served that the localization factors are minimum in thex-direction
(u590 deg) and maximum in the diagonal directionsu
545 deg and 135 deg!.

When mkx51, mky57.84, dkx5dky50.1, there are five fre-
quency passbands, in which the third passband correspondin
vibration dominant in thex-direction overlaps with the secon
passband corresponding to vibration dominant in they-direction.
Numerical results of the localization factors are shown in Fig.
The interesting shape of the localization factor plot in the fou
frequency passband aroundn53806 where the overlap of the
passbands occurs is noteworthy. In this passband, vibratio
dominant in both thex andy directions, and the localization facto
in the x-direction (u590 deg) is the same as that in th
y-direction (u50 deg). In other frequency passbands, proper
of the localization factors observed for the casemkx51, mky55
can also be observed here.

When the stiffnesses of the springs and meshes in the diag
directions are reduced, the coupling of the cantilevers in the d
onal directions becomes weak, resulting in larger values of
localization factors. Because of the limit in the length of the pap
numerical results are not presented here.

To study the effect of the degree of disorder on the localizat
behavior of the system, the case ofdkx5dky50.01 is considered.
The localization factors are shown in Fig. 8 formkx51 andmky
57.84. It is seen that for smaller values of disorder, the locali
tion factors are small, implying a smaller degree of localizatio
JANUARY 2003, Vol. 70 Õ 127
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This result is expected; as an extreme case whendkx5dky50, i.e.,
for the perfect periodic system, the localization factor is zero
the passband and there is no localization.

The case ofdkx50.1 anddky50.01, i.e., the disorder in the
x-direction is different from that in they-direction, is considered
in the following. The localization factors are shown in Fig. 9 f
mkx51 andmky57.84.

To further compare the effect of the values ofdkx anddky on the
localization behavior, the localization factors for the diagonal
rection u545 deg, which are obtained using Eq.~25! and the
method of transfer matrix~@9#!, are shown in Fig. 10 for the cas
of mkx51 andmky57.84, and various values ofdkx anddky . As
is well known, for the perfect system withdkx5dky50, the local-
ization factors are zero in the passband and there is not loca
tion. The localization factors increase when the values ofdkx and
dky are increased.

Consider the casemkx51, mky57.84, dkx50.1, and dky
50.01 as an example ofmkxÞmky . In the first and the third
frequency passbands aroundn512.36 andn5485.52, vibration is
dominant in thex-direction. The statistical properties of the sy
tem in they-direction have little effect on the dynamical behavi
of the system. Hence, the localization factors of a system w
dkx50.1 and dky50.01 are the same as those withdkx5dky
50.1 near the first and the third frequency passbands. This ca
observed in Fig. 10, as the localization factors for both ca
concur around the first and the third frequency passbands.

On the other hand, in the second frequency passband ar
n596.92, vibration is dominant in they-direction. The statistical
properties of the system in thex-direction have little effect on the
dynamical behavior of the system. Therefore, the localization
tor of a system withdkx50.1 anddky50.01 is the same as tha
with dkx5dky50.01, which is evident in Fig. 10 as the localiz
tion factors for both cases coincide around the second passb

However, in the fourth passband aroundn53806.5, vibration is
dominant in both thex andy-directions. The statistical propertie
of the system in both thex andy-directions affect the dynamica
behavior of the system, which can be observed in Fig. 10 as
localization factors are different for different values ofdkx anddky
in the fourth frequency passband. The same conclusion ca
drawn for the case whenmkx5mky51 in all three frequency pass
bands, since the frequency passbands corresponding to vibr
dominant in thex-direction and they-direction coincide.

From Figs. 5–9, it is observed that for a given direction
orientation u, the localization behavior of the two-dimension
cantilever-mesh-spring array is similar to that of an on
dimensional cantilever-mesh-spring chain. The weaker the c
pling of the cantilevers in a given direction, the larger the loc
ization factors.

Since the diagonal elementsAa,a
i andAa,a

i 11 in Eq. ~12! increase
rapidly with b̂a

4 as the substructural mode numbera is increased,
theath substructural mode becomes increasingly weakly coup
resulting in more prominent localization when the frequency pa
band number is increased. For example, as seen in Figs. 5–10
localization factors in the second passband are larger than tho
the first passband for the same system parameters.
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4 Conclusions
In this paper, the localization of forced vibration propagation

two-dimensional cantilever-mesh-spring arrays with multiple s
structural modes is studied. A method of regular perturbation fo
linear algebraic system in the block form is applied to obta
iteratively the amplitudes of vibration of the cantilevers on t
M th layer in theM th-order perturbation in terms of the ampl
tudes of vibration of the cantilevers on the (M21)th layer in the
(M21)th-order perturbation. The amplitudes of vibration of t
cantilevers on theM th layer in theM th-order perturbation forM
large are employed to obtain a first-order approximation of
localization factors of the two-dimensional system. The locali
tion factors are defined in terms of the angles of orientation
characterize the exponential rate of growth or decay of the am
tudes of vibration in the given directions. For a given direction
orientation, the localization behavior is similar to that of on
dimensional systems. In the diagonal directions, changes of
amplitudes of vibration of cantilevers can be expressed in term
a product of random transfer matrices and the localization fac
may be determined using the method of transfer matrix. The ef
of the stiffnesses and the disorder in the stiffnesses of the can
vers on the localization behavior of the system is investigated.
general vibration propagation localization behavior observed
the simplified two-dimensional cantilever-mesh-spring arrays
expected to be applicable to more realistic two-dimensional e
neering disordered periodic structures.
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A procedure for designing a feedback control to asymptotically stabilize with probab
one quasi-integrable Hamiltonian system is proposed. First, a set of averaged Itoˆ stochas-
tic differential equations for controlled first integrals is derived from given equations
motion of the system by using the stochastic averaging method for quasi-integ
Hamiltonian systems. Second, a dynamical programming equation for infinite ho
performance index with unknown cost function is established based on the stoc
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Introduction
The feedback stabilization of stochastic systems is an impor

problem in control theory. Although the basic formulation a
fundamental equations of stochastic stabilization have b
known since the 1960s~@1#!, the only results of any significanc
for a long period were those pertaining to linear stochastic s
tems and employing quadratic control criteria~@2#!. For nonlinear
stochastic systems, the progress on stochastic stabilization
been plagued by a fundamental technical obstacle in the Lyapu
analysis. In recent years, the stabilization of nonlinear stocha
systems has received much attention and several interestin
sults have been obtained. Particularly, the concept of stoch
control Lyapunov function has been introduced and the suffic
conditions for feedback stabilization have been derived by Flo
inger @3,4#. The stochastic stabilization problem for stric
feedback systems was solved and a systematic backsteppin
sign scheme was developed by Pan and Basar@5#. The inverse
optimal stabilization of strict-feedback systems was designed
extended to output-feedback systems by Deng and Krstic@6–8#.
Notable advances on input-to-state stabilization were also m
by Tsinias@9#.

A recent trend in the study of stochastic stability is to emp
Lyapunov exponent rather than Lyapunov function. According
multiplicative ergodic theorem due to Oseledec@10#, the neces-
sary and sufficient condition for the asymptotic stability wi
probability one of a linear stochastic system is that its larg
Lyapunov exponent is negative. A procedure for evaluating
largest Lyapunov exponent of linear system of Itoˆ stochastic dif-
ferential equations was proposed by Khasminskii@11# and the
procedure has been successfully applied to certain t
dimensional linear stochastic systems. The direct use of Khas
skii’s procedure to the system of dimension higher than two
not met with much success principally due to the difficulty
discussing diffusion process occurring on surface of unit hyp
sphere in higher dimensional space. However, the stochastic
eraging method may be used to reduce the dimension of stoch
systems. Thus, a combination of the stochastic averaging me

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 1
2000; final revision, January 15, 2002. Associate Editor: A. A. Ferri. Discussion
the paper should be addressed to the Editor, Professor Robert M. McMeeking
partment of Mechanical and Environmental Engineering University of Californ
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months after final publication of the paper itself in the ASME JOURNAL OFAPPLIED
MECHANICS.
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and the Khasminskii’s procedure is a powerful approach to ev
ating the largest Lyapunov exponent of higher-dimensional s
chastic systems~@12,13#!. Especially, the combination of the sto
chastic averaging method for quasi-integrable Hamilton
systems~@14#! and the Khasminskii’s procedure may be applied
higher-dimensional nonlinear stochastic systems~@13,15#!.

At the same time, a nonlinear stochastic optimal control st
egy for quasi-Hamiltonian systems was proposed recently by
present first author and his co-workers~@16–18#! based on the
stochastic averaging method for quasi-Hamiltionian syste
~@14,19#! and the stochastic dynamical programming principle
has been shown that the strategy has several advantages ov
isting ones and is very promising.

In the present paper, a procedure for designing a feedback
trol law to asymptotically stabilize with probability one quasi in
tegrabe Hmiltonian systems is proposed. The procedure is a
trivial combination of the nonlinear stochastic optimal contr
strategy and the approach to stochastic stability of quasi integr
Hamiltonian systems. An example is worked out in detail to illu
trate the proposed procedure.

Stochastic Averaging
Consider ann-degree-of-freedom controlled quasi-Hamiltonia

system governed by the followingn pairs of equations of motion

Q̇i5
]H8

]Pi

Ṗi52
]H8

]Qi
2ci j8

]H8

]Pj
1ui1 f ikWk~ t !

i , j 51,2,̄ ,n; k51,2,̄ ,m (1)

where Qi and Pi are generalized displacements and momen
respectively;H85H8(Q,P) is twice differentiable Hamiltonian;
ci j8 5ci j8 (Q,P); ui5ui(Q,P); f ik5 f ik(Q,P); Wk(t) are Gaussian
white noises in the sense of Stratonovich with correlation fu
tions E@Wk(t)Wl(t1t)#52Dkld(t); ci j8 , ui , and f ik f j l Dkl are
assumed to be of the same order of«, where« is a small param-
eter. The system governed by Eq.~1! is generally nonlinear. The
first summation terms on the right-hand side of Eq.~1! represent
dissipation while the second summation terms the multiplicat
excitations of Gaussian white noises.ui are the feedback contro
forces.

2,
on
De-

a–
four
003 by ASME JANUARY 2003, Vol. 70 Õ 129
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Equation~1! is equivalent to the following set of Itoˆ equations:

dQi5
]H8

]Pi
dt

dPi52S ]H8

]Qi
1ci j8

]H8

]Pj
2Dkl f j l

] f ik

]Pj
1ui Ddt1s ikdBk~ t !

(2)

i , j 51,2,̄ ,n; k,l 51,2,̄ ,m

where Bk(t) are unit-independent Wiener processes andssT

52fDfT. The double summation terms on the right-hand side
Eq. ~2! are known as the Wong-Zakai correction terms~@20#!.
These terms usually can be split into a conservative part an
dissipative part. The conservative part can be combined w
2]H8/]Qi to form overall effective conservative term
2]H/]Qi with a modified Hamiltonian H5H(Q,P) and
]H/]Pi5]H8/]Pi . The dissipative part can be combine
with 2ci j8 ]H8/]Pj to constitute effective dissipative term
2ci j ]H/]Pj with ci j 5ci j (Q,P). With these accomplished, Eq
~2! can be rewritten as

dQi5
]H

]Pi
dt

dPi52S ]H

]Qi
1ci j

]H

]Pj
2ui Ddt1s ikdBk~ t ! (3)

i , j 51,2,̄ ,n; k51,2,̄ ,m.

The Hamiltonian system with modified HamiltonianH gov-
erned by Eq.~3! with ci j 5ui5s ik50 is assumed to be integrable
That is, there exitn-independent first integrals,H1 ,H2 ,¯ ,Hn ,
which are in involution. This last term means that any two of th
commute each other, i.e.,

@Hi ,H j #50, i , j 51,2,̄ ,n (4)

where

@Hi ,H j #5
]Hi

]pk

]H j

]qk
2

]Hi

]qk

]H j

]pk
, k51,2,̄ ,n (5)

is the Poisson bracket ofHi andH j . The Hamiltonian system is
assumed to be nonresonant. So, the motion of the system is a
periodic and the orbits of the system are uniformly distributed
n-dimensioned torus.

Introduce transformations

Hr5Hr~Q,P!, r 51,2,̄ ,n. (6)

The Itô equations forHr are obtained from Eq.~3! by using Itô
differential rule as follows:

dHr5S 2ci j

]H

]Pj

]Hr

]Pi
1

1

2
s iks jk

]2Hr

]Pi]Pj
1ui

]Hr

]Pi
Ddt

1
]Hr

]Pi
s ikdBk~ t !

i , j ,r 51,2,̄ ,n; k51,2,̄ ,m. (7)

Take Q1 ,Q2 ,¯ ,Qn and H1 ,H2 ,¯ ,Hn as the new state vari
ables of the system. Then the system is governed by Eq.~7! and
then equations forQi in Eq. ~3! with Pi replaced byHr andQi in
all these equations according to the transformations~6!. It is seen
that Qi are rapidly varying processes whileHr slowly varying
processes. According to the Khasminskii’s theorem~@21#!, theHr
converge weakly to ann-dimensional diffusion process as«→0 in
a time interval 0<t<T, whereT;o(«21). The Itôequations for
averagedHr are of the form
130 Õ Vol. 70, JANUARY 2003
of

d a
ith

s

d
s
.

.

m

most
on

dHr5FFr~H!1 K ui

]Hr

]Pi
L Gdt1Grk~H!dBk~ t !

r ,i 51,2,̄ ,n; k51,2,̄ ,m (8)

where

H5@H1 ,H2 ,¯ ,Hn#T,

Fr~H!5 K ci j

]H

]Pj

]Hr

]Pi
1

1

2
s iks jk

]2Hr

]Pi]Pj
L

brs~H!5Grk~H!Gsk~H!5 K s iks jk

]Hr

]Pi

]Hs

]Pj
L (9)

and

^@•#&5 lim
T→`

1

T E
t0

t01T

@•#dt (10)

denoting a time-averaging operation. The time-averaging in
~8! and~9! may be replaced by space-averaging using the ergo
property of the associated integrable and nonresonant Hamilto
system onn-dimensional torus~@14#!. The averaging of term
ui]Hr /]Pi will be completed later sinceui are unknown so far.

Dynamical Programming Equation
Consider then-dimensional controlled diffusion processH(t)

governed by Eq.~8! on an infinite time interval@0,̀ !. Assume that
the stationary solution exists in the system. Then we may form
late an ergodic control problem: finding Markov feedback cont
law ui5ui(Q,P) to minimize the expected average cost functio

J5 lim
T→`

1

T
EF E

0

T

~ f ~H!1^uTRu&!dtG (11)

where E@•# denotes expectation operation,u5@u1 ,u2 ,¯ ,un#T

and R is a positive definite matrix; or, simply to minimize th
average cost function

J5 lim
T→`

1

T E
0

T

~ f ~H!1^uTRu&!dt (12)

whenH(t) is ergodic. The dynamical programming equation f
this ergodic control problem can be established based on the
namical programming principle as follows~@22#!:

min
u

H f ~H!1^uTRu&1
]V

]Hr
FFr~H!1 K ui

]Hr

]Pi
L G

1
1

2
brs~H!

]2V

]Hr]Hs
J 5g (13)

where

g5 lim
T→`

1

T E
0

T

@ f ~H!1^u* TRu* &#dt (14)

is the optimal average cost function andu* is the optimal control.
The necessary conditions for minimizing the left-hand side

Eq. ~13! are

]

]ui
K uTRu1ui

]V

]Hr

]Hr

]Pi
L 50

i ,r 51,2,̄ ,n. (15)

The optimal feedback control law is thus obtained from Eq.~15!
as follows:

ui* 52
1

2
~R21! i j

]Hr

]Pj

]V

]Hr

i , j ,r 51,2,̄ ,n (16)
Transactions of the ASME
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where (R21) i j is thei, j element ofR21. If R is a diagonal matrix
with elementsRi , then Eq.~16! is reduced to

ui* 52
1

2Ri

]Hr

]Pi

]V

]Hr

i ,r 51,2,̄ ,n. (17)

Substituting Eq.~16! or ~17! into Eq. ~13! and averaging the
terms involving ui* lead to the final dynamical programmin
equation. For example, in the case of diagonalR, the dynamical
programming equation is of the form

f ~H!1Fr~H!
]V

]Hr
2

1

4Rs
K S ]Hr

]Ps
D 2L S ]V

]Hr
D 2

1
1

2
brs~H!

]2V

]Hr]Hs
5g

r ,s51,2,̄ ,n. (18)

For given f (H) andR, the optimal control law is obtained from
solving Eq.~18! and then substituting the resulting]V/]Hr into
Eq. ~17!. Note thatui* are generally nonlinear inQi andPi . For
the problem of feedback stabilization,f (H) andR will be deter-
mined by the requirement of stochastic stabilization as show
the following section.

Stochastic Stabilization
The asymptotic stability with probability one of quas

integrable Hamiltonian systems without control has been stud
by evaluating the largest Lyapunov exponent of the averagedˆ
equations for first integrals~@13,15#!. Here we extend the result t
controlled quasi-integrable Hamiltonian systems.

Substitutingui* obtained from Eq.~17! and~18! into Eq. ~8! to
replaceui and averagingui* ]Hr /]Pi lead to the following aver-
aged Itôequations for controlled first integrals:

dHr5F̄r~H!dt1Grk~H!dBk~ t !

r 51,2,̄ ,n; k51,2,̄ ,m (19)

where

F̄ r~H!5Fr~H!2
1

2Rs
K S ]Hr

]Ps
D 2L S ]V

]Hr
D . (20)

Let H̄ be sum ofn independent first integrals, i.e.,

H̄5(
r 51

n

Hr~Q,P!. (21)

For example, for mechanical systems the total energy of
system is a sum ofn component energies. Since the stochas
excitations in Eq.~1! are pure parametric~multiplicative!, there
will be

Fr~0!50, Grk~0!50. (22a)

That is, 0 is the trivial solution of the uncontrolled system. L
^(]Hr /]Ps)

2&(]V/]Hr)uHÄ050. Furthermore, assume that th
drift and diffusion coefficients of fully averaged Itoˆ Eqs. ~19!
satisfy the following conditions:

kF̄r~H!5F̄r~kH!, kGrk~H!5Grk~kH! (22b)

~G~H!GT~H!a,a!>cuHu2uau2 (23)

where a is an arbitrary vector andc.0 is a scalar. Equations
~22a,b! and~23! imply that the drift and diffusion coefficients ar
homogeneous inHr of degree one and the diffusion processH(t)
is nonsingular, respectively. In the case where Eq.~19! does not
satisfy conditions~22b!, we may linearize Eq.~19!. These as-
Journal of Applied Mechanics
in

i-
ied
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tic

t
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sumptions permit us to derive an expression for the largest Lya
mov exponent of Eq.~19! using a procedure similar to that due
Khasminskii@11#.

To this end, introduce the following new variables:

r5
1

2
ln H̄ (24)

and

a r5Hr /H̄, r 51,2,̄ n. (25)

The Itôequations forr anda r are obtained from Eq.~19! by using
Itô differential rule as follows:

dr5Q̄~a!dt1Sk~a!dBk~ t ! (26)

da r5m̄r~a!dt1s rk~a!dBk~ t !

r 51,2,̄ ,n; k51,2,̄ ,m (27)

wherea5@a1 ,a2 ,¯ ,an#T,

Q̄~a!5
1

2 (
s51

n

F̄s~a!2
1

4 (
s,s851

n

(
k51

m

Gsk~a!Gs8k~a!

m̄r~a!52a r(
s51

n

F̄s~a!1F̄r~a!1
1

2
a r (

s,s851

n

(
k51

m

Gsk~a!Gs8k~a!

2
1

2 (
s51

n

(
k51

m

Grk~a!Gsk~a!

s rk~a!5Grk~a!2a r(
s51

n

Gsk~a!. (28)

Note that( r 51
n a r51. So, onlyn21 equations fora r in Eq. ~27!

are independent. In the following then21 equations for
a1 ,a2 ,¯ ,an21 are taken as independent ones. Leta8
5@a1 ,a2 ,¯ ,an21#T andan be replaced by 12( r 51

n21a r .
Define the Lyapunov exponent of averaged system~19! as

the asymptotic rate of the exponential growth of the square roo
H̄, i.e.,

l̄5 lim
T→`

1

2T
ln H̄. (29)

This definition is essentially the same as the Lyapunov expon
usually defined in terms of Euclidean norm when the associa
Hamiltonian systems is linear but different when it is nonline
However, it is physically meaningful and it simplifies the evalu
tion of the largest Lyapunov exponent.

Following a derivation similar to that in@13# yields the follow-
ing expression for the largest Lyapunov exponent of control
system~19!:

l̄max5E Q̄~a8!p̄~a8!da8 (30)

whereQ̄(a8) is obtained fromQ̄(a) in Eq. ~28! with an replaced
by 12( r 51

n21a r and p̄(a8) is the stationary probability density o
a8 obtained from solving the reduced Fokker-Planck equation
sociated with Itoˆ Eq. ~27! with an replaced by 12( r 51

n21a r . In the
derivation of Eq.~30!, it is assumed thata8 is ergodic on the
entire intervals 0,a r,1, r 51,2,̄ ,n. In the casea8 is not er-
godic on the entire intervals, special investigation is necess
~see, for example,@12#!. The necessary and sufficient conditio
for asymptotic stability with probability one of the trivial solutio
of Eq. ~19! is l̄max,0. This is also the approximate condition fo
asymptotic stability with probability one of the trivial solutio
JANUARY 2003, Vol. 70 Õ 131
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of original system~1!. The boundary between stability and inst
bility regions of original system~1! is determined approximately
by l̄max50.

The differences between uncontrolled and controlled avera
systems are in drift coefficients

F̄ r~H!2Fr~H!52
1

2Ri
K S ]Hr

]Pi
D 2L S ]V

]Hr
D

r ,i 51,2,̄ ,n. (31)

These differences will stabilize the system studied and they
determined by dynamical programming Eq.~18! for given f (H)
andR subject to the restrictions in Eq.~22a,b!. In the designing
feedback stabilization,f (H) andR are so selected thatl̄max,0. In
the following an example is given to illustrate in detail the desig
ing procedure.

Example
Consider the feedback stabilization of a linear oscilla

coupled with a nonlinear oscillator by dampings and stochastic
parametric excitations. The equations of motion of the system
of the form

Ẍ11b11Ẋ11b12Ẋ21v1
2X15C11Ẋ1W1~ t !1C12Ẋ2W2~ t !1u1

Ẍ21b21Ẋ11b22Ẋ21guX2udsignX25C21Ẋ1W1~ t !

1C22Ẋ2W2~ t !1u2 (32)

where Xi are generalized coordinates;b i j are damping coeffi-
cients;Ci j are constants;v1 is the natural frequency of the linea
oscillator;g, d.0 are constants;Wk(t) are independent Gaussia
white noises in the senses of Stratonovich with intensities 2Dk .
Assume thatb i j , CikDk , andui are of the same order of«.

Let Xi5Qi , Ẋi5Pi , i 51, 2. Equation~32! can be rewritten as
the following Itô equations:

dQ15P1dt

dP15@2v1
2Q12~b112C11

2 D1!P12~b122C12C22D2!P21u1#dt

1C11A2D1P1dB1~ t !1C12A2D2P2dB2~ t !

dQ25P2dt

dP25@2guQ2udsignQ22~b212C21C11D1!P12~b22

2C22
2 D2!P21u2#dt1C21A2D1P1dB1~ t !

1C22A2D2P2dB2~ t !. (33)

The Wong-Zakai correction terms contain no conservative p
The Hamiltonian associated with Eq.~33! is

H5H11H2 (34)

where

H15~P1
21v1

2Q1
2!/2

H5P2
2/21guQ2ud11/~d11!. (35)

The Itô equations forH1 and H2 are obtained from Eq.~33! by
using Itôdifferential rule as follows:

dH15 b2~b112C11
2 D1!P1

22~b122C12C22D2!P1P21u1P1

1C11
2 D1P1

21C12
2 D2P2

2cdt1C11
2 A2D1P1

2dB1~ t !

1C12A2D2P1P2dB2~ t !

dH25@2~b212C11C21D1!P1P22~b222C22
2 D2!P2

21u2P2

1C21
2 D1P1

21C22
2 D2P2

2#dt1C21A2D1P1P2dB1~ t !

1C22A2D2P2
2dB2~ t !. (36)
132 Õ Vol. 70, JANUARY 2003
-

ged

are

n-

or
lly
are

r
n

art.

Following the derivation from Eq.~7! to Eq. ~8!, the following
averaged Itoˆ equations forH1 andH2 can be obtained:

dH15~F1~H!1^u1P1&!dt1G11dB1~ t !1G12dB2~ t !

dH25~F2~H!1^u2P2&!dt1G21dB1~ t !1G22dB2~ t ! (37)

whereH5@H1 ,H2#T,

F1~H!5F11H11F12H2

F2~H!5F21H11F22H2

b11~H!5~GGT!115b11
~1!H1

21b11
~2!H1H2

b22~H!5~GGT!225b22
~1!H1H21b22

~2!H2
2

b12~H!5b21~H!50 (38)

and

F1152C11
2 D12b11, F1252C12

2 D2~d11!/~d13!

F215C21
2 D1 , F2252~2C22

2 D22b22!~d11!/~d13!

b11
~1!53C11

2 D1 , b11
~2!54C12

2 D2~d11!/~d13!

b22
~1!54C21

2 D1~d11!/~d13!,

b22
~2!524C22

2 D2~d11!2/@~d13!~3d15!#. (39)

For uncontrolled system,ui50. Equation~34! is a special case
of Eq. ~21!, andFi and Gik in Eq. ~38! satisfy the conditions in
Eq. ~22a,b! and ~23!. Introducing the transformations in Eq.~24!
and ~25!, we obtain the following equations forr anda1 :

dr5Q~a1!dt1S~a1!dB~ t ! (40)

da15m~a1!dt1s~a1!dB~ t ! (41)

where

Q~a1!5l1a11l2~12a1!1
1
4 w~a1!1b22

~1!a1~12d!/8~11d!

m~a1!52~l12l2!a1~12a1!1
1
2 ~122a1!w~a1!

2b22
~1!a1

2~12d!/4~11d!

s2~a1!5a1~12a1!w~a1! (42)

and

l15F11/22b11
~1!/4, l25F22/22b22

~2!/4

w~a1!5aa1
21ba11c

a5b11
~2!1b22

~1!2b11
~1!2b22

~2!

b5b11
~1!1b22

~2!22b11
~2!

c5b11
~2!

D5b224ac5~b11
~1!1b22

~2!!224b11
~2!b22

~1! . (43)

Sinces2(a1)50 at two boundariesa150, 1, a1 is singular at
these two boundaries. It can be further identified by evaluat
diffusion exponent and character value and by using Table 4.5.
~@23#! that a150 is an entrance anda151 is an entrance when
d,1 and regular whend.1. a1 is nonsingular and ergodic in th
interval 0,a1,1. The stationary probability densityp(a1) exists
and it is obtained from solving the reduced Fokker-Planck eq
tion associated with Itoˆ Eq. ~41! as follows:
Transactions of the ASME
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Fig. 1 The largest Lyapunov exponents lmax and l̄max of uncontrolled and
optimally controlled system „32… versus intensity D1ÄD2ÄD of stochastic ex-
citations. vÄ1.0, gÄ1.0, dÄ3, b11Äb22Ä0.01, b12Äb21Ä0.0, c 11Äc 22Ä1.0, c 12
Äc 21Ä2.0, f 1Äf 2Ä0.0005, R1ÄR2Ä1.0.
2d!/2~11d! ~12d!/2~11d!
p~a1!5
C~12a1!

~w~a1!!11~12d!/4~11d!

3expF4~l12l2!1~b11
~1!1b22

~2!!~12d!/4~11d!

AD

3 lnU2aa11b2ADUG for D.0 (44)

b1AD

hanics
p~a1!5
C~12a1!

~w~a1!!11~12d!/4~11d!

3expF8~l12l2!1~b11
~1!1b22

~2!!~12d!/2~11d!

A2D

3tg21
2aa11b

A2D
G for D,0 (45)
Fig. 2 The largest Lyapunov exponents lmax and l̄max of uncontrolled and
optimally controlled system „32… versus intensity d of nonlinearity. vÄ1.0,
gÄ1.0, b11Äb22Ä0.01, b12Äb21Ä0.0, c 11Äc 22Ä1.0, c 12Äc 21Ä2.0, f 1Äf 2
Ä0.0005, R1ÄR2Ä1.0, D1ÄD2Ä0.01.
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Fig. 3 The largest Lyapunov exponent l̄max of optimally controlled system
„32… versus f 1Äf 2Äf . vÄ1.0, gÄ1.0, dÄ3, b11Äb22Ä0.01, b12Äb21Ä0.0, c 11
Äc 22Ä1.0, c 12Äc 21Ä2.0, R1ÄR2Ä1.0, D1ÄD2Ä0.01.
!/2~11d!

p

n

l
-

p~a1!5
C~12a1!

~w~a1!!11~12d!/4~11d!

3expF2
8~l12l2!1~b11

~1!1b22
~2!!~12d!/2~11d!

2aa11b G
for D50 (46)

whereC is a normalization constant. The largest Lyapunov ex
nent of uncontrolled system~32! is then

lmax5E
0

1

Q~a1!p~a1!da1 . (47)

Now consider the controlled system~32!. From Eq.~35!,
Y 2003
o-

]H1

]P1
5P1 ,

]H2

]P2
5P2 . (48)

It is seen from Eq.~20! that in order to satisfy the conditions i
Eq. ~22a,b!, ]V/]Hr should be constant. That is,V should be
linear function ofH1 and H2 . Then, it is seen from dynamica
programming Eq.~18! that f (H)2g should also be linear func
tion of H1 andH2 . Let

f ~H !2g5 f 1H11 f 2H2

V~H !5k1H11k2H2 . (49)

Substituting Eq. ~49! into Eq. ~18! leads to the following
equations:
Fig. 4 The largest Lyapunov exponent l̄max of optimally controlled system
„32… versus R1ÄR2ÄR. vÄ1.0, gÄ1.0, dÄ3, b11Äb22Ä0.01, b12Äb21Ä0.0, c 11
Äc 22Ä1.0, c 12Äc 21Ä2.0, f 1Äf 2Ä0.0005, D1ÄD2Ä0.01.
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f 11F11k11F21k22
1

4R1
k1

250

f 21F12k11F22k22
d11

2R2~d13!
k2

250. (50)

k1 and k2 can be solved from Eq.~50! for given f i and Ri ( i
51,2). The optimal controlui* are then obtained from Eq.~17! as
follows:

ui* 52
ki

2Ri
Pi52

ki

2Ri
Q̇i , i 51,2. (51)

Substitutingui* into Eq. ~37! and then averagingui* Pi yield the
following averaged drift coefficients for controlled first integra

F̄1~H!5S F112
k1

2R1
DH11F12H2

F̄2~H!5F21H11S F222
~d11!k2

~d13!R2
DH2 . (52)

Let

l̄15l12
k1

4R1
, l̄25l22

~d11!k2

2~d13!R2
. (53)

Following the derivation similar to that from Eq.~37! to Eq.~47!,
the following expression for the largest Lyapunov exponent
controlled averaged system can be obtained:

l̄max5E
0

1

Q̄~a8!p̄~a8!da8 (54)

whereQ̄(a8) andp̄(a8) are obtained fromQ(a8) in Eq. ~42! and
from p(a8) in Eq. ~44!–~46!, respectively, by replacingl1 andl2

with l̄1 and l̄2 , respectively.
Equation ~50! can be reduced to the following quadruplica

algebraic equation fork1 :

k1
41a1k1

31a2k1
21a3k11a450 (55)

where

a152
2F11

d1

a25
1

d1
2d2

~d2F11
222d1d2f 12d1F21F22!

a35
1

d1
2d2

~2d2F11f 11F11F22F212F12F21
2!

a45
1

d1
2d2

~d2f 1
22F21

2f 21F21F22f 1!

d15
1

4k1
, d25

d11

2~d13!R2
(56)

while k2 can be obtained fromk1 as follows:

k25
1

F21
~d1k1

22F11k12 f 1!, F21Þ0. (57)

The feedback stabilization of system~32! is to determinef i
and Ri ( i 51,2) such that the largest Lyapunov exponent de
mined by Eq.~54! is negative. It is seen from Eq.~51! that if ki

.0 (i 51,2), thenui* are really negative feedback control an
the system may be stabilized by the control. Extensive comp
tional results show that there are always positive real solutions
k1 andk2 in Eq. ~50! providedf i are positive. It is verified in Figs
Journal of Applied Mechanics
s:
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1 and 2, where the largest Lyapunov exponentlmax of uncon-
trolled system~32! is positive while the largest Lyapunov expo
nent l̄max of optimally controlled system~32! is negative. It is
noted that the absolute value of negative largest Lyapunov ex
nent can be taken as a measure of stability margin. Figure
show that feedback stabilization is more effective for stron
nonlinearity and stochastic excitations and with largerf i or
smallerRi .

Conclusions
In the present paper a procedure for designing feedback

trol to asymptotically stabilize with probability one quasi int
grable Hamiltonian systems has been proposed. The proce
consists of deriving the averaged equations for first integrals,
tablishing the dynamical programming equation for an ergo
control problem, and determining the stability by evaluating t
largest Lyapunov exponent of the averaged system. One exa
has been worked out in detail to illustrate the procedure. It
been shown that the procedure is relatively simple. It has a
been shown that a quasi-integrable Hamiltonian system can
ways be stabilized by the control via proper choice of the c
function.
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Squeeze Film Force Using an Elliptical
Velocity Profile

R. Usha
e-mail: ushar@iitm.ac.in

P. Vimala
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Technology, Madras, Channei 600 036, India

The squeeze film force in a circular Newtonian squeeze film
been theoretically predicted by using the elliptical velocity profi
assumption in the squeeze film by three different approxima
methods. As examples, the numerical results for the sinuso
squeeze motion, constant velocity squeezing state, and con
force squeezing state have been obtained and the results
been found to be in good agreement with those obtained u
experimental test coefficients predicted by the spectral anal
techniques for Newtonian circular squeeze film geometry. The
lidity of applying the energy integral method (EIM) or the succe
sive approximation method (SAM) has been justified and the
fectiveness of EIM or SAM in predicting squeeze film force us
the elliptical velocity profile assumption in the squeeze film
large-amplitude motion has been demonstrated.
@DOI: 10.1115/1.1526124#

1 Introduction
The study of the dynamics of liquid squeeze films is import

in many practical engineering applications. The squeeze film fo
that arises due to the motion of two surfaces separated by a
cous fluid is highly nonlinear in nature and hence it is difficult
obtain exact closed form solutions including the effects of flu
inertia. The studies based on Reynolds equation neglect the in
effects completely, in predicting the squeeze film force. But,
approximation methods like the successive approximation me
~SAM!, momentum integral method~MIM !, and energy integra
method~EIM! include the inertial effects in predicting theoret

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division June
2000, final revision, August 26, 2002. Associate Editor: K. T. Ramesh.
Copyright © 2Journal of Applied Mechanics
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cally the squeeze film performance. These methods requir
knowledge of the velocity profile in the squeeze film. Usually
parabolic velocity profile is assumed and the expression for
squeeze film force is obtained.

However, the parabolic velocity profile assumption in t
squeeze film is derived by neglecting the inertial effects and he
the resulting solution obtained for the squeeze film force is
valid for large amplitude motion of the squeeze film. Further,
experimental results on the squeeze film force in heat exchan
between a tube and its cylindrical support~Lu and Rogers@1,2#!
and the experimental and the simulated results on the squeeze
force components in a circular geometry~Esmonde et al.@3# and
Esmonde@4#! show that the temporal inertia force dominates t
convective inertia and the viscous forces for large-amplitude m
tion and hence again the parabolic velocity profile assumptio
inadequate.

Therefore, in order to accurately predict the squeeze film fo
for large-amplitude motion, it is necessary to assume the shap
a velocity profile that takes into account the inertial effects. Gr
et al. @5# have suggested the use of elliptical velocity profile a
sumption in such cases where the inertia cannot be neglecte

In view of this, the axisymmetric problem of squeeze film in
circular geometry is analyzed by the approximation methods us
an elliptical velocity profile assumption and the squeeze film fo
is theoretically predicted. The results obtained are compared
those predicted using other velocity profile assumptions for si
soidal squeeze motion, constant velocity squeezing state, and
stant force squeezing state for large-amplitude motion. The ef
tiveness of SAM or EIM in predicting the squeeze film forc
using the elliptical velocity profile assumption is demonstrated
comparing the present results with~i! those obtained using the
experimental test coefficients predicted by spectral analysis t
niques by Esmonde et al.@3# for Newtonian circular squeeze film
geometry and~ii ! the exact similarity solution due to Wang@6#.

2 Mathematical Analysis
The equation of continuity and the Navier-Stokes equations

cylindrical polar coordinates, simplified using the order of mag
tude analysis~Tichy and Winer@7#! for axisymmetric flow, are

]u

]r
1

u

r
1

]w

]z
50 (1)

]p

]r
52r

]u

]t
2rS u

]u

]r
1w

]u

]zD1m
]2u

]z2 (2)

]p

]z
50 (3)2,
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whereu and w are the components of velocity in the radial a
axial directions. Figure 1 shows the squeeze film configuration
the axisymmetric flow between two parallel circular disks of
dius r a located atz50 andz5h(t). The disk atz50 is fixed and
the other atz5h(t) has motion only in the axial direction.

An elliptical velocity profile in the squeeze film with sem
major axis ‘‘a’’ and semi-minor axis ‘‘b’’ is assumed in the form

u2~r ,z,t !1B~r ,t !z21C~r ,t !u~r ,z,t !1D~r ,t !z1E~r ,t !50
(4)

whereB, C, D, andE are determined using the no-slip conditio

u50 on z50; u50 on z5h~ t ! (5)

w50 on z50; w5ḣ on z5h~ t ! (6)

and ~•! refers to derivative with respect tot. The condition~5!
gives the equation of the elliptical velocity profile as

S u1
C

2 D 2

S C2

4
1

Bh2

4 D 1

S z2
h

2D 2

1

B S C2

4
1

Bh2

4 D 51. (7)

Equating the semi-major axis and the semi-minor axis toa andb,
respectively, whereb5Ah/2, (A>1), A is a constant paramete
introduced to specify that part of the ellipse which is used
describe the velocity profile, andC andB are obtained as

C5
a

b
A4b22h2, B5

a2

b2 (8)

so that the elliptical velocity profile in the squeeze film is given
~Fig. 2!

u5
a

Ah
@A~Ah!22~2z2h!22A~Ah!22~h!2#. (9)

The equation of continuity~1! and the condition~6! then yield the
semi-major axis and the radial and axial components of velo
as

a52
Aḣ

h

r

A2 sin21S 1

AD2AA221

(10)

u52
ḣr

h2

@A~Ah!22~2z2h!22hAA221#

FA2 sin21S 1

AD2AA221G (11)

Fig. 1 Geometry of the parallel circular squeeze film and ellip-
tical velocity profile
138 Õ Vol. 70, JANUARY 2003
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w5
A2ḣ

2

H sin21S 2z2h

Ah D1sin21S 1

AD J
FA2 sin21S 1

AD2AA221G
2

ḣ

2h

~4z2h!AA221

FA2 sin21S 1

AD2AA221G
1

ḣ

2h2

~2z2h!A~Ah!22~2z2h!2

FA2 sin21S 1

AD2AA221G . (12)

The elliptical velocity profile thus obtained is used in the differe
approximation methods~SAM, MIM, and EIM! to get the average
radial pressure gradient, and the squeeze film force is then
tained from

F5E
0

r a

~p2pa!u~z5h~ t !!r dr (13)

where r a is the radius of the disk andpa is the pressure a
r 5r a .

3 Approximation Methods
There are three basic approaches to the integration of

Navier-Stokes equations to determine the average radial pres
gradient. In the MIM, the average radial pressure gradient is
tained by integrating the expression for the local pressure grad
across the squeeze film, so that

]p

]r
52

r

h E0

hS ]u

]t
1u

]u

]r
1w

]u

]zDdz1
m

h E
0

h ]2u

]z2 dz. (14)

In the EIM, the Navier-Stokes equation is first multiplied by th
radial velocity u and then the resulting equation is integrat
across the squeeze film to obtain the average radial pressure
dient. This gives

Fig. 2 Elliptical velocity profiles at a radial location for differ-
ent values of A
Transactions of the ASME
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]p

]r
52

r

E
0

h

udz
E

0

hS u
]u

]t
1u2

]u

]r
1uw

]u

]zDdz

1
m

E
0

h

udz
E

0

h

u
]2u

]z2 dz. (15)

The expressions for the assumed velocity profile in the sque
film are substituted foru andw that appear on the right-hand sid
of ~14! and~15! and the resulting average radial pressure grad
is then integrated to give the pressure in the squeeze film.

In the SAM, the Navier-Stokes equation is rewritten as

]2u

]z2 5
1

m

]p

]r
1

r

m S ]u

]t
1u

]u

]r
1w

]u

]zD (16)

and is then linearized using the assumed velocity profile in
squeeze film. The equation of continuity expressed in the form

E
0

h

u dz52
ḣr

2
(17)

is then used to find the radial pressure gradient.
In the present investigation, the elliptical velocity profile give

in ~11! and~12! are used on the right-hand side of~14!, ~15!, and
~16!. The squeeze film forceF is then obtained from~13! by the
three approximation methods as

F5lF2
aḧ

h
1

bḣ2

h2 2
gnḣ

h3 G (18)

wherel5rpr a
4/8 and

a51; b5

6FA2H 12AA221 sin21S 1

AD J 2
1

3G
S A2 sin21S 1

AD2AA221D 2

g5
8

S A2 sin21S 1

AD2AA221DAA221

. (19)

For MIM,

a52

8H 2
A2

2
1

1

6
1

A2

2
AA221 sin21S 1

AD J
S A2 sin21S 1

AD2AA221D 2

b52

4H 2
A2

2
1

1

6
1

A2

2
AA221 sin21S 1

AD J
S A2 sin21S 1

AD2AA221D 2

2

4H sin21S 1

AD S 2
15

4
A413A2D1AA221S 15

4
A22

1

2D J
S A2 sin21S 1

AD2AA221D 3

g5

8H A lnS A11

A21D22J
S A2 sin21S 1

AD2AA221D 2 . (20)

For EIM and for SAM,
Journal of Applied Mechanics
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e
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the

n
a5

H 3A2~42A2!sin21S 1

AD1~3A2210!AA221J
8S A2 sin21S 1

AD2AA221D

b5

H 3A2~A224!sin21S 1

AD2~3A2114!AA221124AJ
4S A2 sin21S 1

AD2AA221D

1

H 115A2S 2A21
4

3D1A2~5A228!AA221 sin21S 1

AD J
S A2 sin21S 1

AD2AA221D 2

1

3AH S A3S sin21S 1

AD D 2

22A2 sin21S 1

AD12AA221D J
S A2 sin21S 1

AD2AA221D 2

g512. (21)

4 Results and Discussion
The values of the coefficientsa, b andg obtained by the three

methods, using the elliptical velocity profile~11! and ~12! in the
squeeze film are presented in Table 1, for different values of
profile factorA. In order to facilitate comparison, the results o
tained~Elkouh @8#; Kuzma, @9#; and Tichy and Winer@7#! using
the parabolic velocity profile (u5(3ḣr /h3)(z22hz);w
5(26ḣ/h3)(z3/32hz2/2)) and the uniform velocity profile (u
5rḣ/2h;w52ḣz/h) for the circular squeeze film geometry b
the three approximation methods, are presented in Table 1.
experimental test coefficients obtained using spectral anal
techniques by Esmonde et al.@3# are also presented fo
comparison.

From Table 1 it is observed that the temporal inertia force
efficient a takes the value one for different velocity profile a
sumptions in the squeeze film by MIM. This implies that th
choice of the assumed velocity profile in the squeeze film does
affect the temporal inertia coefficienta when MIM is employed to
predict the squeeze film force. On the other hand, in the cas
EIM or SAM, the value ofa depends upon the use of the assum
velocity profile in the squeeze film. This suggests that the tem

Table 1 Force coefficients for different velocity profiles using
different methods * Elkouh †8‡; Œ Kuzma †9‡; Tichy and Winer
†7‡ „perturbation solution up to first order …

Method Profile a b g

A51.0 1.0000 1.6211 -
MIM Elliptical A51.1 1.0000 1.7200 18.9247

A51.2 1.0000 1.7430 15.9691
A51.0 1.0808 1.7564 -

EIM Elliptical A51.1 1.1468 1.9627 12.6821
A51.2 1.1620 2.0133 12.3072
A51.0 1.1250 1.8308 12

SAM Elliptical A51.1 1.1704 2.0016 12
A51.2 1.1796 2.0421 12

* MIM 1.0 1.8 12
* EIM Parabolic 1.2 2.1429 12
+ SAM 1.2 2.1429 12
MIM 1.0 1.5 0
EIM Uniform 1.0 1.5 0
SAM 1.0 1.5 0

Esmonde et al.@3# Experimental test
coefficients using
spectral analysis

techniques

1.22 0.8 8.85
JANUARY 2003, Vol. 70 Õ 139



Fig. 3 Effects of fluid inertia on the squeeze film force using elliptical velocity profile under sinusoidal squeezing
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ral inertia force in the circular squeeze film might be reasona
accurately predicted if either SAM or EIM is employed. Also, it
observed from Table 1 that the value ofa given by either EIM or
SAM using elliptical velocity profile~for different values of the
profile factorA! lie between those predicted by uniform veloci
profile and parabolic velocity profile assumptions.

With regard to the convective inertia force coefficientb and the
viscous force coefficientg, it is observed from Table 1 that th
values of b and g predicted by EIM or SAM using elliptical
velocity profile are close to those obtained by any of the th
methods using parabolic velocity profiles. Further, the visc
force coefficientg predicted by all the methods using unifor
velocity profile has the value zero. Such a prediction would
valid only for very low-viscosity fluids.

The temporal inertia coefficient predicted by the experimen
results of Esmonde et al.@3# for the circular squeeze film geom
etry is higher than that predicted using parabolic profile by s
cessive approximation method~Table 1!. Comparison of the cur-
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rent results with the experimental results by Esmonde et al.@3#
show that simulated values for temporal inertia coefficient are a
greater than that obtained using elliptic velocity profile with eith
EIM or SAM.

Thus, the results presented in Table 1 and the deductions b
on these values as given above imply that the use of either S
or EIM with elliptical velocity profile assumptions in the squee
film might predict reasonably accurate values of the squeeze
force for large-amplitude motion. In view of this, the results a
presented for sinusoidal squeeze motion, constant velocity squ
ing state and constant force squeezing state using elliptical ve
ity profile in the squeeze film by SAM and are compared with t
other methods and other velocity profiles.

Figure 3 presents the results obtained for sinusoidal sque
motion (h* (T)511e sinT; h* is the dimensionless gap widt
given by h* 5h/h0 , whereh(t)5h01e sinvt, h0 is the initial
squeeze film thickness,e5e/h0 and T is the dimensionless time
Fig. 4 Effects of fluid inertia on the squeeze film force for constant velocity
squeezing state
Transactions of the ASME
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Fig. 5 Comparison of squeeze film force variation with Wang’s †6‡ results. Wang, — "— "
EIM, — — MIM.
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given byT5vt) of the circular geometry using elliptical velocit
profile by different methods, for different values of Reynol
numbers. It is observed that except for small values ofe and Re,
there is a significant distortion in the waveform of the fluctuati
force and phase shift. The comparison is made with referenc
the waveform of the force obtained for the doubly limiting ca
e→0 and Re→0. (F* }cosT, Re5rh0

2v/m is the Reynolds num-
ber andF* 5F/pr a

2pa is the dimensionless force!. It is also noted
that phase shift is remarkable as Re increases and this ma
attributed to the effect of fluid inertia. The distortion in wavefor
is magnified ase increases and this is due to the change in
gapwidth.

Figure 4 presents the comparison of the results obtained u
elliptical velocity profile by different methods and by using SA
with different values of Reynolds numbers for the constant vel
ity squeezing state. The dimensionless squeeze film force
creases with the increase of Re for elliptical velocity profile
sumptions using SAM. Further, the dimensionless squeeze
force obtained by EIM and SAM do not differ significantly whe
elliptical velocity profile assumption is used and the values
between those of MIM and the results of Esmonde et al.@3#.

The squeeze film force obtained using elliptical velocity profi
assumption using MIM and EIM is compared~Fig. 5! with the
exact similarity solution presented by Wang@6#. It is observed that
the solution obtained by EIM using elliptical velocity profile is
good agreement with that of Wang’s results.

In the case of constant force squeezing state, it is evident f
Fig. 6 that the gapwidth decreases considerably with the incre
lied Mechanics
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in force and that the effect of inertia is to increase the norm
force on the upper disk.

5 Conclusion
The squeeze film force in a circular Newtonian squeeze film

been theoretically predicted by using the elliptical velocity profi
assumption in the squeeze film using three different approxi
tion methods, and the numerical results for sinusoidal sque
motion, constant velocity squeezing state, and constant fo
squeezing state have been obtained. Motivated by the sugge
by Gross et al.@5# and the investigation by Han and Rogers@10#
on two-dimensional squeeze film geometry, the elliptical veloc
profile in the film has been derived by taking into account t
inertial effects. It has been observed by Esmonde et al.@3# that the
various physical phenomena associated with the circular squ
film for different film sizes for sinusoidal excitation obtained u
ing spectral simulation agree well with their experimental resu
In view of this, the present results have been compared with
exact similarity solution of Wang@6# and with those predicted by
Esmonde@4# using experimental test coefficients obtained fro
the spectral analysis techniques and have been found to be in
agreement. It has been observed that the squeeze film force
dicted by EIM or SAM using the elliptical velocity profile migh
be accepted as reasonably accurate for large-amplitude motio

The investigations by Elkouh@11# for steady flow in a hydro-
static thrust bearing, Kuzma@9# and Elkouh@8# for flow in a
Newtonian circular squeeze film, Turns@12# for flow in a New-
tonian annular squeeze film, and Gupta and Kapur@13# for flow in
Fig. 6 Effects of fluid inertia on the squeeze film force under constant force squeezing state
JANUARY 2003, Vol. 70 Õ 141
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a Newtonian curved squeeze film using SAM or EIM have be
shown to be in good agreement either with experimental res
~Tichy and Winer,@7#! or with the numerical solution~Grimm
@14#! and have thus justified the validity of applying SAM or EIM
in lubrication problems, in particular, in squeeze flow problem
These investigations have assumed a parabolic velocity pr
assumption in the squeeze film and hence the results are vali
small to moderate Reynolds numbers. The success of these
proximation methods in predicting theoretically the squeeze fi
force has given us the confidence to apply these methods in
present investigation for large-amplitude motion with elliptical v
locity profile assumption. The results in the present investiga
show how EIM or SAM can also be effectively used for larg
amplitude motion of the Newtonian circular squeeze film, by
ing elliptical velocity profile assumption in the squeeze films.
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Multiple Equilibria of a Hydrodynami-
cally Coupled Flexible Disk
Rotating Inside a Thin Housing

G. M. Warner and A. A. Renshaw
Department of Mechanical Engineering, Columbia
University, M/C 4703, New York, NY 10027

Experimental results are reported and a simple model propose
explain a phenomenon in which the equilibrium deflection o
flexible disk rotating inside a narrow housing undergoes
abrupt jump when the rotation speed is varied slightly. Disco
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tinuous jumps are observed in a small fraction (25%) of Zip dis
rotating between 3000 rpm and 4500 rpm. For those disks ex
iting jumps, the jumps are repeatable for both increases and
creases in rotation speed during a test; no hysteresis is obser
A disk that initially exhibits the jump phenomenon may fail
exhibit jumps several days or weeks later and vice versa. Num
cal results for a rotating membrane hydrodynamically coupled
the surrounding flow show that the number of possible equilib
is a sensitive function of the radial flows above and below
disk. In particular, a small change in radial flow from a radiall
inward flow to a radially outward flow can abruptly chang
the number of possible equilibria from two to one. The charact
istics of this transition are compatible with the experimen
observations. @DOI: 10.1115/1.1526121#

1 Introduction
The behavior of flexible rotating disks spinning within an e

closure is important to the design of removable computer mem
disks such as I-Omega Zip disks and floppy disks. Unlike h
disk drives, flexible memory disks have often operated at spe
above the first critical speed of the disk spinning in vacuu
@1–3#. High-speed rotation decreases data acquisition times,
disks rotating near or above critical speed are particularly sus
tible to small transverse vibrations which can degrade magn
recording accuracy,@4,5#. Even steady-state deflections of a sup
critical rotating disk can include small wavelength, larg
amplitude harmonics which may be undesirable in magnetic
cording,@2,6#.

High-speed rotation of flexible computer memory disks
achievable because of hydrodynamic coupling between the
and the surrounding air, which significantly increases the criti
speed of the system over that of a disk spinning in a vacuum,@3#.
Steady equilibrium behavior of a flexible disk spinning close to
rigid wall was first investigated by Pelech and Shapiro@7#. They
obtained excellent agreement between experimental meas
ments and a model based on classical hydrodynamic lubrica
theory modified to include centrifugal pressure gradients. M
recently, a number of investigators~including the authors! have
either extended or proposed alternative models of the cou
disk/fluid system in order to estimate the range of stable opera
for these systems,@3,8–10#. To the authors’ knowledge, none o
these stability predictions have been experimentally verified
addition, many of these investigations have analyzed disks w
hydrodynamic coupling on only one side of the disk. Such desi
have not been used commercially since the late 1970s.

The purpose of this brief note is to describe an instability p
nomenon in an I-Omega Zip disk and present a very simple, p
sible analytical explanation. We begin by describing experimen
results documenting abrupt changes in the transverse disp
ment of the outer periphery of the disk as the rotation spee
varied. These sudden displacement variations or jumps are
observed in all disks, but for those disks exhibiting the pheno
enon, the jump is repeatable as the rotation speed is incre
above or decreased below the critical transition speed.

We then introduce a simple mathematical model of the aero
namically coupled disk in order to explain the jump phenomen
In this model, we make two fundamental assumptions:~1!, the
disk deflection is axisymmetric; and~2!, the bending stiffness of
the disk is negligible in comparison to the stiffness derived fro
the in-plane stresses in the disk. In practice, neither of these
sumptions is true. Zip disks have a number of intrinsic asymm
tries: the enclosure is asymmetric due to a slot accommodating
read/write suspension, the polymeric disk is nonisotropic@7#, and
its mounting can produce noticeable runout. In addition, previ

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dece
ber 16, 2001; final revision, July 26, 2002. Associate Editor: O. O’Reilly.
2003 by ASME Transactions of the ASME
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Fig. 1 Displacement versus rotation speed for two disks. „a…: A typical Zip
disk response without the jump phenomenon; „b…: the jump phenomenon at
approximately 4500 rpm.
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research suggests that bending stiffness in very flexible rota
disks may be important,@2,6#. Despite these limitations, the sim
plified model has the numerical advantage that the search for e
libria can be performed using an ordinary differential equat
shooting technique involving only one unknown parameter. A
consequence, the results obtained are definitive, robust, and
from numerical artifacts. This would not be true for a more fai
ful, but complicated model. For example, inclusion of the bend
stiffness would lead to three unknown parameters in the shoo
method; equilibria could be found, but determining thatall equi-
libria had been found would be difficult.

The results indicate that the number of equilibrium states of
enclosed, flexible disk is controlled by small changes in the dir
tion of radial flows above and below the disk. When either
upper or lower flow rate changes direction, as might be expe
in an enclosed housing such as a Zip disk, an abrupt trans
from one to two equilibria can occur. This equilibrium transitio
has many features that are compatible with experimental obse
tions, although more definitive experimental evidence is requ
to validate the model. The explanation of the phenomenon offe
by this simple model suggests that controlling the radial flow
floppy and Zip disks may be an important design objective.

Table 1 Jump magnitude and corresponding rotation speed
for disks displaying the jump phenomenon for both horizontal
and vertical orientations. All entries are the averages of mul-
tiple runs.

Horizontal Orientation Vertical Orientation
Disk # Jump~mm! V jump ~rpm! Disk # Jump~mm! V jump ~rpm!

1 0.08 4325 5 0.08 4650
2 0.02 3470 2 0.09 4080
3 0.12 4318 3 0.04 3714
4 0.05 4369 6 0.10 3929

Average: 0.0675 4120 Average: 0.0775 4093
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2 Experimental Results

We begin by describing a series of experiments performed
I-Omega Zip disks in order to determine the steady-state equ
rium of the disk as a function of rotation speed. The magne
clamp and bearing of a Zip disk drive was removed and attac
to a rigid frame. A DC motor was also attached to the frame a
connected to the Zip disk clamp/bearing by a belt drive. Compu
control of the DC motor allowed variable Zip disk rotation from
to 5000 rpm. Zip disk drives normally operate at approximat
2800 rpm.

The sliding dust cover of a Zip disk was removed to perm
nently expose approximately one square cm of the peripher
the magnetic polymer disk. This was the only modification ma
to the Zip disk. The Zip disk was mounted on the clamp/bearing
the same manner as in a Zip disk drive. A Philtec Photonic d
placement sensor with a sensitivity of 0.61031023 m/V was po-
sitioned immediately above the magnetic polymer disk in orde
measure the transverse position of the disk. The probe meas
an average displacement of the disk over an area of approxima
5.0 square mm. For each experiment, only the relative displa
ment of the outer edge of the disk from its initial position w
measured. Since the initial position of the stationary disk w
uncontrolled and nonrepeatable, no attempt was made to mea
or control absolute position of the disk.

In each experiment, the disk was rotated at 238 distinct, equ
spaced speeds between 0 to 5000 rpm. At each fixed speed
data points were acquired at 1000 Hz and averaged. The rota
speeds were either increased from 0 to 5000 rpm, or decre
from 5000 to 0 rpm.

Figure 1 shows two representative plots of the relative displa
ment of the disk as a function of rotation speed. In Fig. 1~a!, the
displacement of the periphery of the disk varies continuou
throughout the experiment. The disk begins to ascend slightly
ter 3000 rpm reaching a peak at approximately 3700 rpm be
003 by ASME JANUARY 2003, Vol. 70 Õ 143
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declining steadily. In, Fig. 1~b!, however, the disk abruptly jump
approximately 0.2 mm at 4500 rpm. Before and after this jum
the curve varies in a continuous manner.

An abrupt jump occurred in 4 disks out of 11 tested in a ho
zontal position and 4 disks out of 11 tested in a vertical positi
Two disks demonstrated this behavior in both the horizontal
vertical position. The jump was repeatable during a particular
for both increasing and decreasing speed.

No significant vibration was detected when the frequency
sponse of the disk position was calculated except for disk run
which only occurred for low speeds~,500 rpm!. Above 500 rpm,
the disk position was steady both before and after the jump.
spatial distribution of the disk was not possible to determine w
out partially removing the Zip disk cover. Since the air flow d
pends significantly on the integrity of the cover, the spatial dis
bution of the disk was not measured.

Table 1 lists the jumps magnitude and rotation speed for
eight disks exhibiting the phenomenon. In both the horizontal
vertical orientations, the jumps occur above the normal opera
speed of a Zip disk~2800 rpm!; for the horizontal orientation, the
average rotation speed at which the jump occurs is 4120 rpm
the vertical orientation, the average rotation speed of the jum
4093 rpm. This suggests that gravity loading of the disk influen
the phenomenon only modestly, if at all.

While the jump phenomena was repeatable for a particular
as the disk was spun up and spun down, it was not necess
repeatable between tests conducted on different days. Some
would exhibit the behavior over the course of consecutive d
and consecutive tests, while others would vary from day to d
Over the course of testing even the most reliable of disks wo
vary, alternately displaying the jump behavior and not display
the behavior.

3 Modeling
We now develop a simple model to explain the jump pheno

enon. A thin, axisymmetric annular disk of outer radiusRo , den-
sity rD , and Poisson’s ration spins about its axis of symmetr
with constant angular velocityV while enclosed within an axi-
symmetric housing, as shown in Fig. 2. The disk is clamped
inner radiusRi , its thickness isD, and its transverse deflection
W. The in-plane radial stress iss r* . The upper and lower clear
ances between the undeflected disk and the housing walls arCu
andCL , and air leakage through the housing is measured by
volumetric radial upper and lower flowsQU and QL . The air
pressure in the clearances isPU andPL . The surrounding air is of
densityrF and viscositym. When present, gravityg acts down-
ward.R measures radial position.

Dimensionless variables are defined by
144 Õ Vol. 70, JANUARY 2003
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r 5R/Ro w5W/~CL1CU! s r5s r* /rDV2Ro
2. (1)

The component of the pressure fields generated by centripeta
celeration produces equal and opposite pressures on the uppe
lower surfaces of the disk. We take advantage of this and de
the dimensionless pressurespL andpU by

P5
3

20
rFV2Ro

2~r 221!1rDD~CL1CU!V2p (2)

where, for brevity, the subscriptsL andU have been omitted.
We assume the disk/air equilibria are axisymmetric and neg

the bending stiffness of the disk. Transverse equilibrium of a sp
ning disk written in the stationary frame of reference requires,@1#,

1

r
~rs rw,r ! ,r1pL2pU2G50 (3)

where a comma indicates differentiation. Pelech and Shapi
model for the axisymmetric pressure distributions reduce to,@7#,

pL,r52
6qL

pr ~cL1w!3 (4)

PU,r52
6qU

pr ~cU2w!3 . (5)

Boundary conditions for the coupled ordinary differential Eq
~3!–~5! are

w~k!5pL~1!5pU~1!50 limr→1s rw,r50. (6)

The six dimensionless parameters in the model are the cla
ing ratio

k5Ri /Ro , (7)

gravity

G5g/~CL1CU!V2, (8)

fractional clearances

cL5CL /~CL1CU! cU5CU /~CL1CU!, (9)

and radial flows

qL5mQL /rDDV2~CL1CU!4 qU5mQU /rDDV2~CL1CU!4.
(10)

The radial stresses are given by the standard generalized p
stress solution with vanishing in-plane radial displacement ar
5k and vanishing traction atr 51, @11#:
Fig. 2 Schematic of the rotating disk enclosed in a housing
Transactions of the ASME
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k2~12n!~31n2k22nk2!

8~11n1k22nk2!r 2

1
~11n!~31n1k42nk4!

8~11n1k22nk2!
2

~31n!r 2

8
. (11)

For an I-Omega Zip disk:Ri512.5 mm; Ro543 mm; CL

5CU50.5 mm; D50.05 mm; rd51300 kg/m3; V52800 rpm;
r f51.2 kg/m3; and m52.031025 kg/s/m. This givek50.291
andG50.114.qL andqU are unknown. We can estimate the ord
of magnitude forqL andqU by examining the experimental stud
ies of Pelech and Shapiro@7# in which radial flow was measure
for a disk rotating close to a rigid wall. In their experiments,G
range from 0.2 to 0.7 whileqL varies from 0.02 to 20. We suspe
that these values ofqL are higher than those for the Zip dis
geometry since there is no housing in Pelech and Shapiro’s
periment to restrict flow. In addition, in Pelech and Shapiro’s
periments only one side of the rotating disk is pressurized so
both components of the total pressureP in ~2! contribute to the
disk deflection. In the experiments of Pelech and Shapiro@7# as
well as for the Zip disk, the nominal centrifugal pressu
rFV2Ro

2, is approximately 103 times greater than the nomina
Reynolds pressure,rDD(CL1CU)V2. Such a large pressure dif
ference would be expected to strongly influence the order of m
nitude ofqL . From these considerations, we estimateqL andqU

to range from 1023 to 1021.

4 Numerical Solution
As described in@7#, the coupled ordinary differential Eqs.~3!–

~5! can be solved using a shooting scheme. If one guesses a
of w(1), Eqs. ~3!–~5! can be integrated as an initial value pro

lem fromr 51 to r 5k. The error in the guess ofw(1) is given by
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w(k), which must vanish in order to satisfy the boundary con
tions~6!. A root finding technique can be used to determine valu
of w(1) corresponding to solutions. The root finding is ma
easier by the fact that2cL,w(1),cU . However, the root find-
ing is not entirely straightforward in that for values ofw(1) close
to either2cL or cU , it can be impossible to integrate the diffe
ential equations tor 5k. When the disk deflectionw comes suf-
ficiently close to either2cL or cU at some interior locationk
,r ,1, the right-hand side of either~4! or ~5! can become large
enough that it causes the integration stepsize to be reduced u
becomes numerically zero and the integration fails. This integ
tion failure frequently occurs for values ofw(1) which are quite
close to solution values. Consequently, the root finding sche
should approach roots from an interior value ofw(1) and must be
able to correctly handle failed numerical integration.

The only other special feature of the shooting scheme is ev
ating the derivatives atr 51, which is a regular singular point o
~3! sinces r(1)50, @12#. Substitution ofr 51 into ~3! gives

w,r~1!5G/s r ,r ur 51 . (12)

Differentiation of~3! with respect tor followed by substitution of
r 51 gives

w,rr ~1!5@2pL ,r1pU ,r2~rs r ,r !,rw,r /r #/2s r ,r ur 51 .
(13)

Equations~12! and~13! should be used to evaluate the derivativ
of w at r 51; everywhere else, Eq.~3! should be used.

5 Results
Figure 3 shows a contour plot of the number of equilibria

functions ofqL andqU for the Zip disk geometry given in Table 2
k50.291,n50.3, G50.114, andcL5cU50.5.
Fig. 3 Contour plot of the number of equilibria as functions of q L and q U . k
Ä0.291; nÄ0.3; GÄ0.114; c LÄc UÄ0.5. The number of equilibria in each region is
superimposed on the plot except for the lower left quadrant.
JANUARY 2003, Vol. 70 Õ 145
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A more detailed understanding of Fig. 3 is obtained by exa
ining the error plots ofw(k) versusw(1) given in Fig. 4 where
we letqU52qL . This corresponds to a slice through the conto
plot in Fig. 3 with a slope of21.

In Fig. 4, for the most negative values ofqL , the error curve is
concave up and entirely above thew(k)50 axis. These curves
have no equilibrium solutions. AsqL increases,~at qL50 in
both figures! the curve loses its upward concavity for larg
negative values ofw(1) and intersects thew(k)50 axis once. As
qL is further increased, the curve becomes concave down
large positive values ofw(1), showing two equilibria, and
then moves entirely downwards so that there are no equilib
The plots are slightly asymmetric about theqL5qU axis due
to GÞ0.

From these results, we postulate that the jumps in Zip d
displacement described in Section 2 correspond to a change
a configuration with two equilibria to a configuration with on
one equilibrium. These transitions are shown in Fig. 3 by

Table 2 Data for an I-Omega Zip disk

Ri (mm) 12.5
Ro (mm) 43
CL (mm) 0.5
CU (mm) 0.5
D (mm) 0.05

rd (kg/m3) 1300

V (rpm) 2800

r f (kg/m3) 1.2

m ~kg/s/m! 2.00E-05
k 0.291
G 0.114
146 Õ Vol. 70, JANUARY 2003
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contour atqL.0 and qU50 and, over a smaller range, by th
contourqL50 andqU.0. In these transitions from two equilibria
to one equilibrium, one equilibrium changes continuously wh
the other vanishes. If the disk were in the continuously vary
equilibrium, no sudden displacement change would be obser
If the disk were in the other equilibrium, an abrupt displacem
change would occur.

The structure of this equilibrium change is consistent with e
perimental observations. Since the jump requires the disk to
sume one particular equilibrium of the two allowable, any chan
in the disk that predispose its deflection to one or the other e
librium would affect whether or not a jump is observed. Th
possibly explains why the jump phenomenon is repeatable on
given day, but not necessarily over several days: overnight sto
could lead to creep in both the disk and the surrounding gauz
the disk that could alter the preferred equilibrium state. In ad
tion, thermal stresses may play a role.

We can estimate the maximum possible jump size by comp
ing (w̃(1)1cL) wherew̃(1) is the value ofw(1) for the continu-
ously varying equilibrium. The maximum jump size varies b
tween 0.50 and 0.76 over the range 0<qL<0.2 and 0<G<0.2. In
most cases, the continuously varying equilibrium is close to
center of the housing. The results indicate that the magnitud
the observed jumps should not vary significantly when the ori
tation of the disk is rotated from a horizontal to vertical positio
i.e., changingG from 0 to 0.114. This is borne out by the data
Table 1.

6 Discussion
Although the proposed model is simple, it appears to desc

the experimentally observed phenomenon. This contrasts
prior research that has often proposed and analyzed more com
Fig. 4 w „1… versus w „k… for different q L assuming q UÄÀq L . Roots indicate equilibrium
solutions. kÄ0.291; nÄ0.3; GÄ0.114; c LÄc UÄ0.5.
Transactions of the ASME
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Finite Element Analysis of Brittle
Cracking due to Single Grit Rotating
Scratch

G. Subhash1

W. Zhang2

Department of Mechanical Engineering–Engineering
Mechanics, Michigan Technological University,
Houghton, MI 49931

Finite element analysis of single grit rotating scratch on brittle
materials was conducted using an ‘‘elastic-plastic-cracking’’
(EPC) model. The brittle material removal mechanism was mod-
eled based on a critical crack-opening displacement criterion. It
was found that the tangential and normal force profiles as well as
the damage morphology observed in scratch experiments were
fully captured by the EPC model. The results revealed that the
induced damage zone size increases linearly with a brittleness
parameter ~EY/s f

2!1/3 as well as the maximum depth of cut.
@DOI: 10.1115/1.1526119#

1 Introduction
Grinding with diamond wheels is the most common process for

finishing high-strength ceramic components. A summary of ex-
perimental investigations and empirical modeling of grinding pro-
cess during the last two decades were reviewed by Li and Liao
@1#. More fundamental studies that relate strength of a finished
ceramic component to the grinding-induced damage continue to
be reported~e.g.,@2,3#!.

Fundamental studies that capture the interaction between grind-
ing medium and the workpiece were mainly conducted using
Vickers indentations@4–6#, and single-grit scratching models
@1,7#. Results of the scratch experiments on brittle materials re-
vealed distinct material removal patterns for different materials
@8,9#. It was observed that in Homalite-100 the material removal
occurs in periodic bursts with burst size increasing with instanta-
neous depth of cut, and accordingly, the force profiles reflected
periodic oscillations. In the case of Pyrex glass, the material re-
moval occurs in random bursts at irregular intervals and accord-
ingly, the force profiles reflected irregular force oscillations@9#.

In this paper, finite element analysis of the above single-grit
scratching experiments was carried out using an ‘‘elastic-plastic-
cracking’’ ~EPC! model recently presented by the authors@10,11#.
The numerical results are discussed and compared to the experi-
mental observations on the above model brittle materials.

2 Model Descriptions
In the EPC model@10#, the ceramic behavior is represented by

tensile cracking and compressive yielding. A material point is as-
sumed to fail in tension, and will be deleted from the finite ele-
ment model, if the effective crack-opening displacementud ex-
ceeds a critical valueuc , which is assumed to be 90% of overall
crack-opening displacementu0 , whereu055 mm. The model has

ent

ol-

01,
cated experimental results or analytical models without mu
corroboration. Such research makes it difficult to distinguish
primary and secondary physical effects.

Of course, the experimental results and analytical modeling
formed here are preliminary rather than definitive. A number
assumptions have been made analytically that may not be
equate: the disk deflection is assumed to be axisymmetric, ste
and linear; geometric imperfections of the disk, potential therm
stresses, and bending stiffness have been neglected; hyd
namic lubrication theory has been used even though the clear
is relatively large~although it is about the same as Pelech a
Shapiro@7#!. More complicated analysis of the system may lead
a different explanation of the observed phenomenon.

That being said, the present results suggest that the jump
nomenon of the disk can be avoided by precise control of the t
radial flows surrounding the disk. Whether or not such contro
practical or desirable remains an open question. Presently,
disk enclosures almost fully enclose the flow, which keeps
total radial flow small and makes small changes in radial fl
direction possible and perhaps even likely. A less restrictive fl
design may eliminate the jump phenomenon but may also d
more particles and debris into the enclosure.

7 Conclusion

1 Experimental results are presented showing a discontinu
jump phenomenon in I-Omega Zip disks. The jump was recor
on the transverse displacement of the disk at its outer periphe
the disk rotation speed varied. The jump behavior was not d
onstrated by each disk tested, nor was it necessarily repea
over several days.

2 A simple model was developed to explain this behavior. T
model takes into account the hydrodynamic coupling between
thin flexible disk and the air circulating within the Zip disk hou
ing. The model makes the simplifying assumptions of axisy
metry and negligible bending stiffness, which permit robust so
tion of the nonlinear system equations.

3 Results show that the number of disk equilibrium states
greatly affected by small changes in the air flow inside the
casing. The authors postulate that the jump phenomenon ca
attributed to these changes in the number of equilibria cause
small changes in the radial flow above and below the disk.
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package ABAQUS~Version 5.8! through the user subroutin
VUMAT. The details of the formulation can be obtained els
where@10,11#.

The finite element model is motivated by the experimental
up of Loukus@8# and Subhash et al.@9#. The specimen~33331.5
mm3! is constrained in horizontal and vertical directions similar
the experiments,@11#. The conical indenter with an apex angle
90 deg is pivoted at a radius 20 mm. The tangential forceFt and
the normal forceFn are recorded on the side and bottom surfac
respectively. Due to the symmetry of the problem, only half of
specimen was modeled as 22640 eight-node solid elements w
minimum element size of 10 microns. The indenter was mode
as a rigid surface and subjected to a constant angular velo
which resulted in a 2.2-mm length scratch with a maximum de
of cut of 30 mm. The friction coefficient between the specime
and the indenter was assumed to be 0.3. The typical run

Table 1 Material properties of Pyrex glass

Density
r ~g/cm3!

Young’s
Modulus
E ~GPa!

Poisson’s
Ratio

n

Yield
Stress

Y ~GPa!

Hardening
Modulus
Ep ~GPa!

Fracture
Stress

s f ~GPa!

2.2 70 0.24 3 0.7 0.2
148 Õ Vol. 70, JANUARY 2003 Copyright ©
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varied from 50 to 400 hours depending on material properties
scratching speed on a Sun Ultra 80 workstation with one 4
MHz processor.

3 Results and Discussions
The basic material properties are listed in Table 1. By vary

systematically the material properties~i.e., Young’s modulusE,
yield strengthY, and tensile fracture strengths f) and the scratch-
ing speed, the relationships between damage zone size, ma
removal volume, material properties and loading conditions w
investigated.

3.1 Influence of Scratch Speed. Figure 1 provides the in-
duced damage and the evolved force profiles due to a scratch
m/s. It shows that the effective crack-opening displacement on
top surface~Fig. 1~a!!, which represents the lateral damage zo
is more irregular compared to that beneath the surface~Fig. 1~b!!,
which is the median damage zone. The resulting tangential
normal force profiles~Fig. 1~c!! oscillate severely during the
scratch process. These oscillations are due to the instantan
stress release as a result of crack opening or the lack of con
between the indenter and the specimen when elements were
leted due to excessive damage as per the critical crack-ope
displacement criterion discussed before.
Fig. 1 Contours of evolved damage zone u d due to a scratch at velocity 31 m Õs and a duration of
76.7 ms. „a… Top view, „b… side view, and „c… the resulting tangential and normal force profiles.
2003 by ASME Transactions of the ASME



Journal of Ap
Fig. 2 Contours of evolved damage zone u d as a result of a scratch at velocity 209 m Õs and a
duration of 11.5 ms. „a… Top view, „b… side view, and „c… the resulting tangential and normal force
profiles. Here, L and M denotes lateral damage size and median damage size, respectively.
Fig. 3 Plot of induced damage zone size as a function of the
brittleness parameter „EYÕs f

2
…

1Õ3 indicating that damage zone
size increases linearly with brittleness parameter „depth of cut
is 30 microns …
plied Mechanics
Fig. 4 The relationship between the induced damage zone
size and the maximum depth of cut revealing that the scratch-
ing induced damage zone size is proportional to the imposed
maximum depth of cut
JANUARY 2003, Vol. 70 Õ 149
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In Fig. 2, the scratching speed was increased to 209 m/s w
other parameters were kept constant as those in Fig. 1. It is
that the lateral damage zone size seems to increase~from Fig. 1~a!
to Fig. 2~a!!. However, the median damage size appears to be
sensitive to the scratch speed~from Fig. 1~b! to Fig. 2~b!!. It is
interesting to see that the force profiles oscillate much less
quently in Fig. 2~c! than in Fig. 1~c!. This perhaps means les
frequent but larger material fragment removal at higher scra
velocities. The force profiles in Fig. 1~c! are similar to those of
Homalite, while the force profiles in Fig. 2~c! are more like those
of Pyrex glass due to high speed scratching@9#. It should be noted
that in our model the rate dependence of constitutive model
not considered. Therefore, the differences between Figs. 1 a
are completely due to the inertial effect.

3.2 Damage Zone Size. While keeping the maximum dept
of cut a constant at 30 microns, it is shown in Fig. 3 that
induced damage zone size increases almost linearly with a no
mensional brittleness parameter (EY/s f

2)1/3. This result is consis-
tent with the indentation induced cracking simulation results
ported earlier@10#. Figure 4 reveals that the damage zone si
also increase linearly with the maximum depth of cut. This
sult is also in agreement with the experimental observations
Loukus @8#.

3.3 Material Removal Volume. Since the depth of cut in
our rotating scratch process is not a constant, the material rem
per unit length is not an appropriate measure of material rem
rate. Thus, the material removal volume per scratch is use
study the relationships between material removal, material p
erties, and processing parameters. The material removal volum
simply the sum of the volumes of all the finite elements that w
removed as per the criterion discussed before. Figures 5 a
reveal that the volume of material removal increases margin
with brittleness parameter, but dramatically with the square of
maximum depth of cut, respectively. This implies that the dom
nant variable that affects material removal rate in an actual gr
ing process is depth of cut, which is consistent with the exp
mental reports presented elsewhere@1,12#.

Although the EPC model is capable of capturing the fundam
tal deformation mechanisms during single-grit scratching of bri
materials, it cannot measure a single crack size or identify a
cific crack direction@10#. However, the comparisons present

Fig. 5 The relationship between total material removal volume
during scratch and the brittleness parameter revealing that
brittleness parameter has marginal effect on the material
removal
150 Õ Vol. 70, JANUARY 2003
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here are partly based on the force profiles, the general trend
the damage zone sizes and the volume of material removed.

4 Conclusions

1 The EPC model is capable of capturing the salient feature
the tangential and normal force profiles as well as the dam
morphology during the scratching process.

2 The damage zone size appears to increase linearly wi
nondimensional brittleness parameter (EY/s f

2)1/3 as well as the
maximum depth of cut.

3 The material removal volume is affected more dramatica
by the maximum depth of cut rather than by the mater
properties.
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An Alternative Method of Solving
Multilayer Bending Problems
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Stress distributions in multilayers subjected to both resid
stresses and external bending are analyzed to derive closed-
analytical solutions. There are always three unknowns to
solved and three equilibrium conditions to be satisfied in
present analysis. In contrast, the numbers of unknowns and
ditions increase with the number of layers in the system in exis
analyses. @DOI: 10.1115/1.1526123#

1 Introduction
Residual stresses and bending in a film/substrate system

documented about a century ago,@1#. In 1865, Rosse tried to mak
flat bimetallic mirrors for a Newtonian telescope by coating gla
with silver via a chemical process and then electroplating w
copper. However, upon deposition, the copper film detached f
the glass and the planar glass became curved owing to the
traction of the copper film. Advances in technology have resu
in extensive applications of film/substrate and multilayer syste
as microelectronic, optical, and structural components,@2#; how-
ever, the issues of residual stresses and bending remain. Co
erable efforts have been devoted to analyzing these issues,@3–11#,
and the analyses are generally based on classical beam-be
theory, @12–14#. The ‘‘neutral axis’’ has been defined in bendin
theory as the line in the cross section of a beam where the no
stress is zero. When the beam is subjected to external ben
only, the normal strain in the cross section is proportional
the distance from the neutral axis and inversely proportiona
the radius of curvature. However, when external bending
axial loading are combined, the neutral axis may be anywh
within the cross section, at its edge, or outside it,@13,14#. In this
case, the strain is not proportional to the distance from the neu
axis.

The most widely adopted equation to predict residual stresse
films is the one derived by Stoney@3#, in which a film much
thinner than the substrate was considered. A general solution
bending of bilayers due to residual stresses was first derived

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the JOURNAL OF APPLIED MECHAN-
ICS. Manuscript received by theASME Applied Mechanics Division, Mar. 17, 2002
final revision , July 26, 2002. Associate Editor: D. A. Kouris.
Copyright © 2Journal of Applied Mechanics
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Timoshenko@4#. The analysis was based on classical bend
theory and started by assuming the individual force and bend
moment in each layer. The bending moment was related to
curvature of the layer, and both layers were assumed to have
same curvature. The solution was obtained by balancing the fo
and moments in the system and satisfying the strain contin
condition at the interface between the two layers. In this bila
case, there were three unknowns to be solved and three condi
to be satisfied. Timoshenko’s approach has been adopted by m
others to analyze residual stresses in multilayers,@5–10#. How-
ever, for multilayers, the numbers of both the unknowns and c
tinuity conditions at interfaces increase with the number of lay
in the system,@5–10#.

It should be noted that the definition of the neutral axis can
be used in solving the bending problem of bilayers~and multi-
layers! when residual stresses are involved. Instead, the neu
axis can only be obtained by finding the location with zero n
mal stress after solving the stress distribution in the system
analyzing residual stresses in bilayers, Hsueh and Evans fo
that if the neutral axis were defined as the line in the cross sec
of the bilayer where the bending strain component is zero,
definition could be readily used to solve the bending proble
@15#. The same finding was subsequently reported by Towns
et al. @16#.

As a complement to Hsueh and Evans’s analysis, the pre
study examines the physical significance of Hsueh and Ev
neutral axis and the extent to which it is also useful in solvi
the bending problem if multilayers are subjected to both resid
stresses and external bending. First, redefining Hsueh and Ev
neutral axis as the ‘‘bending axis’’ to avoid confusion, the gene
solution for multilayers subjected to residual stresses and exte
bending is derived. Then, the solution is reduced to that
bilayers and compared to existing solutions. The physical sign
cance of the bending axis is also examined. Finally, a compar
between the bending axis and the neutral axis is made by con
ering a bilayer subjected to both residual stresses and exte
bending.

2 Analyses
An elastic multilayer strip is shown in Fig. 1~a!, wheren layers

of films with individual thicknesses,t i , are bonded sequentially to
a substrate with a thickness,ts , at high temperatures. The sub
script, i, denotes the layer number for the film and ranges from
to n with layer 1 being the layer immediately adjacent to t
substrate. The coordinate system is defined such that the inte
between the substrate and layer 1 of the film is located atz5 0,
the substrate free surface is located atz52ts , the free surface of
film layers is located atz5hn , and the interface between layersi
and i 11 is located atz5hi . With this definition, the relation
betweenhi and t i is described by

hi5(
j 51

i

t j ~ i 51 to n!. (1)

The coefficients of thermal expansion of the substrate and fi
are as and a i , respectively. The system is cooled to room te
perature and is subsequently subjected to applied bending.
following analytic logic is used to determine the stress field in
system. First, the system experiences an unconstrained differe
shrinkage due to the cooling temperature,DT, such that thermal
strains,as DT anda i DT, exist in the substrate and film layer
respectively~Fig. 1~b!!. Second, uniform tensile and compressi
stresses are imposed on the individual layers to achieve disp
ment compatibility such that the strain in the multilayer is a co
stant,c, and the total force on the system remains zero~Fig. 1~c!!.
Third, bending occurs to balance the bending moment indu
bythe asymmetric stresses in the system~Fig. 1~d!!. Fourth, the
curvature of the system described in Fig. 1~d! is modified by an
applied bending moment,M ~Fig. 1~e!!.
003 by ASME JANUARY 2003, Vol. 70 Õ 151
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Based on the logic described in Fig. 1, the strain in
multilayer,«, can be decomposed into a uniform component an
bending component. While the uniform component,c, is dictated
by the logic in Fig. 1~c!, the bending component results from th
logic described by Figs. 1~d! and ~e!. With the present definition

Fig. 1 Schematics showing bending of a multilayer strip due
to residual stresses and external bending: „a… stress-free con-
dition, „b… unconstrained strains due to temperature change
DT, „c… constrained strain to maintain displacement compat-
ibility, „d… bending induced by asymmetric stresses, and „e… ex-
ternal bending
152 Õ Vol. 70, JANUARY 2003 Copyright ©
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of the bending axis, the bending strain component becomes
portional to the distance from the bending axis and inversely p
portional to the radius of curvature. Therefore, the total strain
the multilayer~Fig. 1~e!! can be formulated as

«5c1
z2tb

r
~ for 2ts<z<hn!, (2)

wherer is the radius of curvature andtb dictates the location of
the bending axis. The advantage of using Eq.~2! to describe the
strain in the system is that the strain continuity conditions at
interfaces between layers are automatically satisfied.

The normal stresses in the substrate and films,ss ands i , are
related to strains by

ss5Es~«2asDT! ~for 2ts<z<0), (3a)

s i5Ei~«2a iDT! ~for i 51 to n), (3b)

whereEs andEi are Young’s moduli of the substrate and layeri of
films, respectively. In the case of biaxial stresses~i.e., a planar
instead of a strip geometry!, Young’s modulus in Eq.~3! should be
replaced by the biaxial modulus,E/(12n), wheren is Poisson’s
ratio. The strain/stress distributions in the multilayer~i.e., Eqs.~2!
and ~3!! are contingent upon solutions of the three parametersc,
tb , andr, which can be determined from the following three equ
librium conditions. First, the resultant force due to the unifo
strain component~i.e., the total force in Fig. 1~c!! is zero. Second,
the resultant force due to the bending strain component is z
Third, the sum of bending moments is in equilibrium with th
applied moment. With the above three equilibrium conditions,
solutions are

c5
~Estsas1( i 51

n Ei t ia i !DT

Ests1( i 51
n Ei t i

, (4a)

tb5
2Ests

21( i 51
n Ei t i~2hi 211t i !

2~Ests1( i 51
n Ei t i !

, (4b)
1

r
5

3FEs~c2asDT!ts
22(

i 51

n

Ei t i~c2a iDT!~2hi 211t i !G16M

Ests
2~2ts13tb!1(

i 51

n

Ei t i@6hi 21
2 16hi 21t i12t i

223tb~2hi 211t i !#

(4c)
the
whereM is the applied moment per unit width of the strip. Whe
i 51, hi 21 ~i.e.,h0) is defined as zero in Eqs.~4b! and~4c!. Based
on Eq. ~4b!, the position of the bending axis remains unchang
whether the multilayer is subjected to residual stresses, exte
bending, or both.
n

ed
rnal

3 Results

A special case of one layer of film on a substrate~i.e., n51) is
considered to compare with existing solutions. In this case,
subscript 1 for the film is replaced by the subscriptf. When the
film is much thinner than the substrate~i.e., t f!ts), Eqs.~4a–c!
2003 by ASME Transactions of the ASME
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can be simplified, and it can be derived from Eq.~4b! that the
bending axis is always located at the centerline of the subs
~i.e., tb52ts/2). Furthermore, when the bilayer is subjected
residual stresses only~i.e., M50), the stresses in the system b
come

s f5Ef~as2a f !DT52
Ests

2

6t f r
~for 0<z<t f), (5a)

ss5
2Eft f~3z12ts!~a f2as!DT

ts
2

~ for 2ts<z<0!. (5b)

Equation~5a! is the same as the well-known Stoney’s equatio
@3#. Also, from Eq.~5b!, ss50 at z522ts/3, which defines the
location of the neutral axis. Conversely, in the presence of ex
nal bending only~i.e., DT50), the stresses become

s f5
6EfM

Ests
2

5
Efts

2r
~for 0<z<t f), (6a)

ss5
6~2z1ts!M

ts
3

~for 2ts<z<0). (6b)

In this case, the neutral axis is located atz52ts/2. Therefore,
depending upon whether the film/substrate system is subjecte
residual stresses or external bending, the neutral axis is locat
a depth 2/3 or 1/2 of the substrate thickness under the interf
However, this fact has not commonly been recognized, and
assumption that the neutral axis is located at the centerline o
substrate has been made erroneously when the system is sub
to residual stresses.

It can be shown that the solution for bilayer strips subjected
residual stresses given by Timoshenko@4# is the same as the
present general solution withn51 andM50. Bilayer strips sub-
jected to external bending only have also been analyzed by
moshenko, in which bending of a strip of homogeneous mate
with an equivalent cross section, as shown in Fig. 2~a! ~where
Es,Ef is assumed!, was considered to take into account the d
ference between Young’s moduli of the two layers,@4#. In this
case, the neutral axis passes through the centroid of the equiv
cross section. It can be derived that the neutral axis in Fig. 2~a! is
located at the same position as the bending axis defined in
present study~see Fig. 2~b!!. It can also be derived that when
beam with a cross section shown in Fig. 2~a! is subjected to an
applied moment,M, the curvature of the beam is the same as t
described by Eq.~4c! with n51 andDT50.

To illustrate how the combined residual stresses and exte
bending influence the location of the neutral axis, the Ga
film/Si substrate bilayer system, which has significant applicati
in semiconductors, is considered as an example. In this c

Fig. 2 Schematics showing „a… equivalent cross section of the
bilayer to account for different Young’s moduli between the two
layers when the bilayer is subjected to only external bending
and „b… the bending axis in the cross section of the bilayer is
located at the same position as the neutral axis in the equiva-
lent cross section
Journal of Applied Mechanics
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Young’s moduli areEf585 GPa andEs5130 GPa. The thickness
ratio t f /ts50.2 is assumed to elucidate the essential trends.
using Eqs.~2!, ~3!, and~4! with n51, the normalized position of
the neutral axis is shown in Fig. 3 as a function of normaliz
applied moment,M /Ests

2(a f2as)DT. The position of the bend-
ing axis given by Eq.~4b! with n51 is also shown. The bending
axis is fixed, but the neutral axis shifts with the normalized a
plied moment. It can be seen in Fig. 3 that when20.1<ZM/
Ests

2(a f2as)DT<20.05, there is no neutral axis in the bilaye
When 0.11<M /Ests

2(a f2as)DT<0.19, a neutral axis also ap
pears in the film which, in turn, results in dual neutral axes in
system.

4 Conclusions
The neutral axis defined in classical bending theory canno

used to analyze the bending problem of bilayer strips subjecte
residual stresses. Instead, the neutral axis can only be obta
after the stress distribution in the system is solved. The neu
axis shifts with the combined residual stresses and external b
ing, and there can be zero, one, or two neutral axes in the bila
~Fig. 3!. The bending axis as we have defined it overcomes
limitation. It can be utilized to readily solve the bending proble
presented by not only bilayers but also multilayers. The locat
of the bending axis remains unchanged whether the system
subjected to residual stresses, external bending, or both. The b
ing axis has the physical meaning of passing through the cent
of the equivalent cross section of the system~Fig. 2!. Also, for a
multilayer system, there are always three unknowns and th
equilibrium conditions to be solved by adopting the bending a
in the analysis. However, the numbers of unknowns and co
tions increase with number of layers in the existing analys
@5–10#.
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On the Quest for the Best Timoshenko
Shear Coefficient

M. B. Rubin
Faculty of Mechanical Engineering, Technion–Israel
Institute of Technology, 32000 Haifa, Israel
e-mail: mbrubin@tx.technion.ac.il

Classical Timoshenko beam theory includes a shear correc
factor k which is often used to match natural vibrational freque
cies of the beam. In this note, a number of static and dyna
examples are considered which provide a theoretical basis
specifyingk51. Within the context of Cosserat theory, natur
frequencies of the beam can be matched by appropriate spec
tion of the director inertia coefficients withk51.
@DOI: 10.1115/1.1526122#

Introduction
For two-dimensional deformation of a Timoshenko beam,

kinematics are characterized by the lateral displacementu and the
rotationd of the beam’s cross section

u5u~x3 ,t !, (1a)

d5d~x3 ,t !, (1b)

wherex3 denotes the axial coordinate andt denotes time. In this
theory the shear forceV is specified by the constitutive equatio

V5km* A~u,31d!, (2)

wherem* is the shear modulus,A is the area of the beam’s cros
section, and throughout the text a comma is used to denote pa

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, March
2002; final revision, July 26, 2002. Associate Editor: O. O’Reilly.
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differentiation with respect to the rectangular Cartesian coo
natesxi ( i 51,2,3). Moreover, the Timoshenko shear coefficienk
in ~2! is introduced as a modification of the shear modulus
account for the fact that the shear strain is not necessarily unif
over the beam’s cross section.

The history of determining the value ofk in Timoshenko beam
theory is as old as the theory itself,@1,2#. This coefficient was
initially studied within the context of transverse vibrations
beams,@1,2#, and its value seems to be problem-dependent,@3#.
The review by Kaneko@3# and the recent discussions by Hutc
inson @4,5# and Stephen@6# consider much of the literature an
ideas related to the determination of the shear coefficient.

The solution of a particular initial, boundary value problem
three-dimensional linear elasticity provides values for the d
placement fieldu* (xi ,t) and the stress fieldT* (xi ,t). Within the
context of the linear theory of a Cosserat beam,@7–11#, the beam
kinematicsu andd generalize to

u5u~x3 ,t !, da5da~x3 ,t !, (3)

and the three-dimensional displacementu* is approximated by

u* 5u* ~xi ,t !5u~x3 ,t !1xada~x3 ,t !. (4)

Here, and throughout the text, the usual summation conventio
employed over repeated indices, with Latin letters having
range (i 51,2,3) and Greek letters having the range (a51,2).
Also, a superposed~* ! is used to denote variables that are relat
to the exact three-dimensional theory. In this beam theory,u is the
displacement vector of material points on the beam’s refere
line andda are the rotations and extensions of line elements wh
in the reference configuration were oriented in two orthogo
directions in the beam’s normal cross section.

In order to analyze the accuracy of a solution in beam theor
is necessary to specify formulas for calculating the values

ū5ū~x3 ,t !, d̄a5d̄a~x3 ,t !, (5)

in terms of theu* , which are considered to be exact values c
responding tou andda , respectively. These values are referred
as the ‘‘exact beam kinematics.’’

The quest for the best Timoshenko shear coefficient has focu
mainly on determining a value fork that predicts the best natura
frequencies of the beam. The objective of this note is to emp
size the following points.
~P1! The constitutive equations for the beam are considered
yield the ‘‘best’’ solution if the predicted beam kinematics~3!
closely approximate the exact values~5! for both static and dy-
namic responses.
~P2! The beam kinematics~4! are exact for all homogeneous de
formations. Thus, ifkÞ1, then the resulting beam theory will no
correctly predict the static problem of simple shear.
~P3! The resultant force and moment are uniquely defined in te
of integrals of the three-dimensional traction vectort* acting on
the cross section of the beam~see~11a,b! below!. In contrast, the
exact beam kinematics~5! are not uniquely defined in terms ofu*
for deformation fields which are nonlinear functions of the cro
sectional coordinatesxa . Consequently, the value ofk that yields
the ‘‘best’’ solution depends explicitly on the functional form
proposed for~5!. This is one reason that different expressions
k have been proposed in the literature.
~P4! The tensorial structure of the Cosserat theory reveals th
particular functional form for~5! is consistent with the usual defi
nitions of average strain and average stress in effective st
theory whenk51.
~P5! The director inertia coefficients in the Cosserat theory
measures of the distribution of inertia in vibrational modes a
can be used to match natural frequencies of beams.
~P6! The standard Timoshenko theory predicts the correct re
that short wavelength waves travel at the shear wave speecs
only whenk51.
The remaining sections of this note justify these points.

3,
2003 by ASME Transactions of the ASME
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Throughout the text, boldfaced symbols denote vectors
second-order tensors,a"b denotes the scalar product between tw
vectorsa and b, A"B5tr(ABT) denotes the scalar product b
tween two second order tensorsA andB, and the symbol̂ de-
notes the tensor product which is defined so that (a^ b)c
5(b"c)a andc(a^ b)5(c"a)b for arbitrary vectorsa, b, c. Also,
the components of these tensors are referred to fixed orthono
base vectorsei of a rectangular Cartesian coordinate system w
coordinatesxi .

Linear Equations of Cosserat Beam Theory
Here, attention is confined to a uniform, homogeneous be

that in its stress-free reference configuration occupies a ri
cylindrical region with a uniform cross sectionA, which is
bounded by the closed curve]C. More specifically, the areaA and
the second moment of areaI ab of the cross section are defined b

A5E
A
da, (6a)

I ab5E
A
xaxbda, (6b)

whereda is the element of area. Also, it is convenient to take
reference line to be the centroid of the cross section and to
the coordinate directions to be oriented in the principal directi
of the cross section, so that

E
A
xada50, (7a)

I 125I 2150. (7b)

Within the context of the three-dimensional linear theory of
elastic isotropic material, the strain energyS* , stress tensorT*
and strain tensorE* are given by

r0* S* 5r0* S* ~E* !5m* F H n*

122n* J ~E* "I !21E* "E* G ,
(8a)

T* 5r0*
]S*

]E*
52m* F H n*

122n* J ~E* "I !I1E* G , (8b)

E* 5
1
2 ~u,i* ^ ei1ei ^ u,i* !, (8c)

wherer0* is the reference mass density andn* is Poisson’s ratio.
Also, the balance of linear momentum can be written in the fo

r0* ü* 5r0* b* 1t,i*
i , (9a)

t* i5T* ei , (9b)

T* 5t* i
^ ei , (9c)

where a superposed~•! denotes partial differentiation with respe
to time t, b* is the external body force per unity mass, and t
symbols with superscripts are introduced for ease of compar
with more general formulas developed in@11#.

Within the context of the three-dimensional approach, the b
ance laws of the linearized Cosserat beam theory can be d
oped by taking weighted averages of the three-dimensional
ance of linear momentum~9a!. Specifically, the Cosserat balanc
of linear momentum can be obtained by averaging~9a! over the
cross section, and the balances of director momentum can be
tained by weighting~9a! by xa and then averaging the result ov
the cross section. This approach is similar to that used by Cow
@12# and details can be found in@@11#, Sec. 5.25;@13##. In particu-
lar, the resulting Cosserat balance laws become
Copyright © 2Journal of Applied Mechanics
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mü5mb1t,3
3 , (10a)

myabd̈b5mba2ta1m,3
a , (10b)

where the intrinsic director couplest i , the director couplesma,
the external assigned director couplesbi due to body force and
surface tractions on the lateral surface of the beam, the massm per
unit length, and the constant director inertia coefficientsya and
yab have been defined by

t i5E
A
t* ida, (11a)

ma5E
A
xat* 3da, (11b)

mb5E
A
r0* b* da1E

]C
t* ds, (11c)

mba5E
A
xar0* b* da1E

]C
xat* ds, (11d)

m5E
A
r0* da5r0* A, (11e)

mya5E
A
xar0* da50, (11f)

myab5myba5E
A
xaxbr0* da (11g)

with the constitutive assumption~11f! being motivated by the
condition ~7a!. Also, integration of~9c! over the cross section
yields

T5E
A
T* da, (12a)

T5t i
^ ei . (12b)

The homogeneous strainE and the inhomogeneous strainsba
in the Cosserat theory are defined by

E5
1
2 ~di ^ ei1e^ di !5Ei j ~ei ^ ej !, (13a)

ba5da,3 , (13b)

d35d3~x3 ,t !5u,3 . (13c)

Moreover, for an elastic beam the strain energyS, and the consti-
tutive equations forT andma are given by

S5S~E,ba!, T5m
]S

]E
, ma5m

]S

]ba
. (14)

It was shown in@10# that restrictions can be placed on the stra
energy which ensure that the Cosserat theory will predict soluti
that are consistent with exact three-dimensional solutions for
homogeneous deformations. These restrictions are satisfied w
S is specified in the form

S5S* ~E!1C~ba!, (15)

whereS* is three-dimensional strain energy function~8a! andC
represents the strain energy of inhomogeneous deformat
which is a quadratic function of its argument. For the simpl
theoryC is taken in the form

mC5
1
2 E* @ I 11~k13!

21I 22~k23!
2#1

1
2 m* @Jb2#, (16)

whereE* 52(11n* )m* is Young’s modulus,J is a constant, and
the strainska i andb have been defined by
003 by ASME JANUARY 2003, Vol. 70 Õ 155
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1
2 ~k122k21!. (17)

It then follows from ~14!–~17! that the constitutive equation
become

T52Am* F H n*

122n* J ~E"I !I1EG , (18a)

t i5Tei , (18b)

t152Am* F H 1

122n* J $~12n* !E111n* E221n* E33%e1

1E12e21E13e3G , (18c)

t252Am* FE12e11H 1

122n* J $n* E111~12n* !E221n* E33%e2

1E23e3G , (18d)

t352Am* FE13e11E23e21H 1

122n* J $n* E111n* E22

1~12n* !E33%e3G , (18e)

m15
1
2 m* Jbe21E* I 11k13e3 , (18f)

m252
1
2 m* Jbe11E* I 22k23e3 . (18g)

In order to interpret the meaning of these quantities it is no
that, with respect to an arbitrary cross section with unit outw
normal e3 , the resultant forcen and the resultant momentm
~about the centroid of the cross section! are given by

n5t3, m5ea3ma5miei ,

m15E* I 22k23, m252E* I 11k13, m35m* Jb. (19)

Consequently,E* I 11 andE* I 22 are the bending rigidities assoc
ated with the bending strainsk13 andk23, respectively, andm* J
is the torsional rigidity associated with the twist per unit lengthb.
Furthermore, the value ofJ can be specified to be equal to th
exact value for any given cross section even though warping is
included in this model.

For the simple case of bending in thee12e3 plane, in the ab-
sence of body force and tractions on the lateral surface of
beam (b50 andba50), the kinematic variables can be express
in the forms

u5u~x3 ,t !e1 , d15d~x3 ,t !e3 , d250, k135d ,3 ,

2E135d1u,3 , (20)

and the kinetic quantities become

t15V~x3 ,t !e3 , t250, t35Ve1 , m152M ~x3 ,t !e3 ,

m250, (21)

where the shear forceV and the momentM are given by the
constitutive equations

V52Am* E135Am* ~d1u,3!, (22a)

M52E* I 11k1352E* I 11d ,3 . (22b)

Then, the equations of motion~10! reduce to

mü5V,3 , (23a)

my11d̈52V2M ,3 . (23b)
156 Õ Vol. 70, JANUARY 2003
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Discussion
Returning to the points~P1!–~P6! made in the introduction it is

obvious that~P1! is merely a statement of how to assess the
curacy of a solution in beam theory. The validity of point~P2! is
deduced by the constitutive Eq.~22a! which results from the re-
striction on the Cosserat strain energy function that ensures
sistency with exact solutions for all homogeneous deformatio

With regard to point~P3! it is noted that expressions for th
exact beam kinematics~5! are either specified explicitly,@10,12#,
or are made tacitly when an assumed displacement field is su
tuted into a variational principle like that used in@4#, or when
different specifications are made for the strain energy function
the beam in terms of the three-dimensional strain energy funct
@14#.

In the discussion of effective properties of inhomogeneous m
terials it is common to define the average strainĒ and average
stressT̄ in terms of integrals of the exact quantitiesE* and T*
over the volume of a representative volume element. Here, th
average quantities are defined in terms of integrals over the cr
section of the beam

Ē5
1

A E
A
E* da, (24a)

T̄5
1

A E
A
T* da. (24b)

Moreover, with reference to a rectangular cross section, Ru
@10# has considered three specifications forū andd̄a , the third of
which can be generalized to the form

ū5
1

A E
A
u* da, (25a)

d̄a5
1

A E
A
u,a* da, (25b)

d̄35ū,3 , (25c)

so that the exact resultĒ in ~24a! and is given by

Ē5
1
2 ~ d̄i ^ ei1ei ^ d̄i !. (26)

Also, the result~12a! shows thatT is related to the average stres
T̄ by the formula

T5AT̄. (27)

Consequently, the specifications~25! with (u5ū,da5d̄a) are
consistent with these definitions of average stress and strain
vided that the functional dependence ofT on E, and ofT̄ on Ē is
the same as that ofT* on E* for general anisotropic linear elasti
materials. This means that for the special case of isotropic m
rials, the shear coefficientk must be unity, which validates poin
~P4!.

To explain point~P5! it is recalled that within the context of the
Cosserat theory, the director inertia coefficientsyab require con-
stitutive equations and they are not necessarily determined by
expression~11g!, which in view of~7b! and~11e! yields the com-
mon assumption that

myab5r0* I ab , (28a)

m5r0* A. (28b)

Moreover, the research in@10,11,13,15# suggests that the directo
inertia coefficientsyab model not only the distribution of mass i
the cross section but they model the distribution of inertia in
particular vibrational mode. Specifically, for the case of a rect
gular cross section with heightH in the e1-direction and depthW
in thee2-direction, the work in@15# for free vibrations of a paral-
Transactions of the ASME
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the
lelepiped, and the work in@11, Sec. 5.17# for forced shearing
vibrations through the thickness of the beam, suggests that
director inertia coefficients be specified by

y115
H2

p2 , y225
W2

p2 , y125y2150, (29)

instead of the values obtained by exact integration of~11f!. In this
regard, it should be mentioned that the values ofyab for different
cross-sectional shapes need to be determined by matching v
tional frequencies.

Finally, to justify point ~P6! consider wave propagation in a
infinite beam which is characterized by

u5B1 sin@k~x32ct!#, (30a)

d5B2k cos@k~x32ct!#, (30b)

whereB1 andB2 are the amplitudes,k is the wave number andc
is the wave speed. Then, using the Timoshenko constitutive
~2!, and with the help of~22b! and~28b!, the equations of motion
~23! can be reduced to the forms

~k2C2!B11kB250, (31a)

kB11@k2YK2C222~11n* !K2#B250, (31b)

where the shear wave speedcs and the nondimensional quantitie
$C, Y, K% have been defined by

cs5Am*

r0*
, C5

c

cs
, Y5

Ay11

I 11
, K5kAI 11

A
. (32)

The Eqs.~31! have a nontrivial solution when the normalize
wave speedC is given by

C25
a12Aa1

224a0a2

2a2
, a052~11n* !kK2,

a15k1@kY12~11n* !K2#, a25YK2. (33)

Thus, in the limit of short wavelengths@K→`, with kY,2(1
1n* )] the solution of~31! yields

c→csAk, (34a)

d→0. (34b)
Journal of Applied Mechanics
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In this limit, the transverse wave~30a! is essentially insensitive to
the free lateral surface of the beam so the wave should trave
the shear wave speedcs in an infinite media withk51. In view of
the solution~34b!, this result is independent of the director inert
coefficient. Consequently, this restriction onk is independent of
the Cosserat theory and can be obtained by considering the
of short wavelengths in the original Timoshenko formulation,@1#.
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Dr. Daniel C. Drucker, 83, died Sept. 1, 2001
leukemia in Gainesville, FL. Few people have serv
the engineering profession with such dedication a
distinction as did Dan Drucker. He was known as
brilliant scientist, a leader in engineering educatio
and an eloquent spokesman for the engineering pro
sion. Dan was a past president of the American Soc
of Mechanical Engineers~ASME!, the American Soci-
ety for Engineering Education~ASEE!, the American
Academy of Mechanics~AAM !, and the Society for
Experimental Stress Analysis~SESA! ~now known as
the Society for Experimental Mechanics, SEM!. He
also served as president of the International Union
Theoretical and Applied Mechanics~IUTAM !, being
only the second American ever to serve in that offic
Dan was one of the most honored persons in the fi
of applied mechanics.

Dan was known throughout the world for contribu
tions to the theory of plasticity and its application
analysis and design in metal structures. He introdu
the concept of material stability, now known a
‘‘Drucker’s Stability Postulate,’’ which provided a uni
fied approach for the derivation of stress-strain re
tions for plastic behavior of metals. His theorems l
directly to limit design; a technique to predict the loa
carrying capacity of engineering structures. Dan a
made lasting contributions to the field of photoelast
ity. His 1940 paper on three-dimensional photoelas
ity has become a classic and ‘‘Drucker’s Oblique Inc
dence Method’’ is widely used in university an
industrial photoelastic laboratories.

ASME established the Daniel C. Drucker Medal
1997 to honor him for his contributions to applied m
chanics in research, education, and leadership.
medal is bestowed on individuals in recognition of su
tained, outstanding contributions to applied mechan
and mechanical engineering through research, teach
and/or service to the community. Dan was the first
cipient of the award, which was presented at an 8
birthday luncheon honoring him during the Thirteen
U.S. National Congress of Applied Mechanics
Gainesville, FL, in June 1998. ASME also honore
Dan with the Timoshenko Medal, the Thurston Le
tureship, the ASME Medal, and Honorary Membersh
For 12 years he was the Editor of theJournal of Ap-
plied Mechanics.

Dan was a highly esteemed member of SESA/SE
and received that Society’s two highest honors,
Murray Lecturership and Honorary Membership;
also received SESA’s M. M. Frocht Award. ASEE co
ferred upon Dan the Lamme Medal, the Distinguish
Educator Award of the Mechanics Division; he was
Founding Fellow of ASEE, and was elected to its H
of Fame. ASCE presented to him the von Karm
Medal. The University of Liege gave Dan the Gust
Trasenter Medal and Columbia University conferr
upon him the Egleston and Illig Medals. From the S
ciety of Engineering Sciences he received the first W
liam Prager Medal; the Founder Engineering Societ
gave him the John Fritz Medal. Dan had honorary do
torates from Lehigh, the Technion, Brown, Northwes
ern, and the University of Illinois at Urbana
ol. 70, JANUARY 2003
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Champaign. After Dan’s death, his daughter fou
among his mementos a ‘‘Medal for Getting the Mo
Medals’’ which someone had jokingly presented
him.

In 1988 Dan received the National Medal of Scienc
He was a member of the National Academy of Eng
neering and of the American Academy of Arts and S
ences, and was a Foreign Member of the Polish Ac
emy of Science. He was listed in national an
international editions ofWho’s Who.

He had a reputation as an incisive thinker, and
advice was eagerly sought and generously given at
university, state and national levels. An articula
speaker who consistently gave stimulating and inf
mative talks, Dan was frequently invited to give ke
note or other major addresses at engineering meeti
A list of such participation is too long to be given her
but recent examples include: the National Academy
Sciences Committee on Human Rights, the Natio
Research Council Engineering Research Board, the
tional Science Board and the chairmanship of the N
tional Academy of Engineering Committee on Mem
bership Policy.

Dan Drucker was born in New York City and starte
his engineering career as a student at Columbia Univ
sity. His ambition at that time was to design bridge
While still an undergraduate at Columbia he met
young instructor named Raymond D. Mindlin~later a
SESA Founding Member, President, and Honora
Member!, who told Dan that ‘‘hewouldpursue a Ph.D.
degree and hewould write a thesis on photoelasticity.’
Dan complied, and received his doctorate in 1940.
was during his student days that Dan met a young la
named Ann Bodin. They eloped and were married
1939, living as a loving and devoted couple for mo
than 61 years. Dan and Ann, who predeceased him,
Transactions of the ASME
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a son, Dr. David Drucker now of Utica, NY, and
daughter, Mrs. Mady Drucker Upham now of Roc
port, MA; and four grandchildren.

Dan taught at Cornell University from 1940 to 194
before joining the Armour Research Foundation. Aft
serving in the U.S. Army Air Corps, he went back
the Illinois Institute of Technology for a short time be
fore joining the faculty of Brown University in 1947
During his tenure at Brown he did much of his pionee
ing work on plasticity. Dan joined the University o
Illinois at Urbana-Champaign in 1968 as Dean of E
gineering. During his more than 15 years there,
UIUC College of Engineering was consistently rank
among the best five in the nation. Although known f
its insistence upon technical excellence, his college w
also recognized for its total commitment to equal o
portunity for all. He left Illinois in 1984 to become a
graduate research professor at the University
Florida, from which he retired in 1994.

I met Dan during my first SESA meeting in 1949. A
that time I had just started working toward a Ph.D.
the University of Illinois and intended to write a thes
on three-dimensional photoelasticity. Tom Dolan, w
was my advisor, also attended the meeting and m
sure that I met the important SESA members. When
saw Ray Mindlin and Dan Drucker standing across
room, he said to me, ‘‘Come over here, I want you
meet these two. They think things through pretty w
before they speak, and are usually right.’’ That was m
introduction to Dan Drucker, and Tom was right. Afte
that I started to see Dan regularly at meetings and
always greeted me with a big smile and a handsha
He had just written the chapter on three-dimensio
photoelasticity in theHandbook of Experimental Stres
Analysis, so I often talked with him about my propose
thesis. He was easy to talk with and always very he
ful. In a sense he was a mentor for me while he w
of Applied Mechanics
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f

t
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e

e
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still at Brown University. That happy relationship con
tinued while we both worked through the various SES
offices, and while he was a very busy dean at the U
versity of Illinois. He always made time to talk with m
about technical subjects or SESA business.

When Dan came to Florida he immediately joine
our department’s ‘‘lunch bunch’’ which met ever
school day at noon. At various times that include
Knox Millsaps, Larry Malvern, Ray Bisplinghoff, Hans
von Ohain, Chia-Shun~Gus! Yih, plus Dan Drucker
and me. What a wonderful group of colleagues. No
all of those special friends have passed away except
me, but I feel truly blessed to have been among the

Up until the last month of his life, Dan and I stil
tried to have lunch three days a week. Those w
happy occasions, even though we both realized that
inevitable was sneaking up on him. We didn’t dwell o
that and found lots of things to laugh about. In all
the thousands of hours we spent together, I never he
him utter a single swear word. He had a great sense
humor, but he never told a joke and he never spre
gossip. I have never met a more honest man or p
person. Dan Drucker was the kind of person that we
try to be.

Of course, the Drucker family received letters
condolence from all over the world. Mady was kin
enough to give me copies of most of those letters. T
common thread that went through all of those lette
was that Dan was highly respected as an enginee
leader, but that he was also greatly admired as a hum
being. Everyone mentioned that his kindness and h
had influenced their careers and their lives. What
impact he made and what a legacy he left!

Charles E. Taylor
JANUARY 2003, Vol. 70 Õ 159
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