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For the streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin for-
mulations for flow problems, we present in this paper a comparative study of the stabili-
zation parameters defined in different ways. The stabilization parameters are closely
related to the local length scales (“element length”), and our comparisons include pa-
rameters defined based on the element-level matrices and vectors, some earlier definitions
. of element lengths, and extensions of these to higher-order elements. We also compare the
S. Mittal numerical viscosities ili i i i i
A generated by these stabilized formulations with the eddy viscosity
Aerospace Engineering, associated with a Smagorinsky turbulence model that is based on element length scales.

IIT Kanpur, DOI: 10.1115/1.152
Kanpur 208016, India [DOI: 10-1115/1.1526569

1 Introduction nolds number. Based on these definitions,can be calculated for
In recent decades. we have seen a substantial interest in S& h element, or even for each element node or degree-of-freedom
! % lement equation. It was also showr{ 19] that thesers, when

emphasis on using stabilized formulations in flow simulation a lculated for each element, yield values quite comparable to
modeling with the finite element method. Streamline-upwin ose calculated based on the definition introducgdjnin con-

Petrov-GaIerkin(SU_PG formulation_ for incompressib_le flows, junction with these stabilization parameters, ifll], a
[1], SUPG formulation for compressible flow], Gglgr}(ln/least- discontinuity-capturing directional dissipation stabilization was
squares(GLS) formulation, [3], and pressure-stabilizing/Petrov-ingqqyced as a potential alternative or complement to the LSIC
Galerkin (PSPG formulation for incompressible flowdA] are  (east-squares on incompressibility constragtabilization. A sec-
some of the most significant stabilized formulations that founghqy element length scale based on the solution gradient was also
usage in a wide range of applications. Many real-world flow probsiroguced in[11]. This new element length scale would be used
lems are included among the applications that were addressgghether with the element length scales already defid@éctly
These stabilized formulations became so attractive primarily bgr indirectly) in [10]. New stabilization parameters for the diffu-
cause they stabilize the method without introducing excessive Njge limit were introduced if12]. These new parameters are
merical dissipation. It is in this mindful way that they prevengjosely related to the second element length scale that was intro-
numerical oscillations and other instabilities in solving problemgyced in[11]. That second element length scale can be recognized
with high Reynolds and/or Mach numbers and shocks and stropg[12] as a diffusion length scale.
boundary layers, as well as when using equal-order interpolationn this paper we carry out a comparative investigation of the
functions for velocity and pressure and other unknowns. It wagabilization parameters and element length scales defined in the
pointed out in[5] that these stabilized formulations also substarabove references, as well as the element length scales defined in
tially improve the convergence rate in iterative solution of thether work(see[6,13]). These comparisons include extensions of
large, matrix systems. Such matrix systems are solved at evely these stabilization parameters and element length scales to
Newton-Raphson step in iterative solution of the coupled nonlimigher-order elements. Furthermore, we compare the numerical
ear equation systems generated at every time level of a simulativiscosities generated by the SUPG stabilization with the eddy vis-
The SUPG, GLS and PSPG formulations all include a stabilcosity introduced by a Smagorinsky turbulence moftkl], spe-
zation parameter that is mostly referred to in the literaturea$ “ cifically one that is based on element length scdl&s].
In general, this parameter might involve a measure of the local
length scaldi.e., the “element lengthf and other factors such as
the local Reynolds and Courant numbers. Various element lengths Formulations and Stabilization Parameters
and 7s were proposed for the SUPG formulation, starting with
those proposed if6] and[2], and followed by the one introduced 2.1 Advection-Diffusion Equation. Consider over a do-
in [7]. More element lengths ands were prescribed for the maan with bo_undaryl_“ the following time-dependent advection-
SUPG, GLS, and PSPG methods reported later. Some other diffusion equation, written o) andVte (0,T) as
dependent upon spatial and temporal discretizations, were intro- o
duced and tested if8]. Later, 7s which are applicable to higher- —+u-V¢—V-(vV¢)=0, (1)
order elements were proposed[B1. at
Recently, new ways of computing the based on the element-where represents the transported quantitys a divergence-free
level matrices and vectors were introduced[®]. These new advection field, and is the diffusivity. The essential and natural
definitions are expressed in terms of the ratios of the norms of theundary conditions associated with E#) are
relevant matrices or vectors. They automatically take into account
the local length scales, advection field, and the element-level Rey- ¢=g onlg,n-vVé=h onTly, 2
wherel'y andl";, are complementary subsets of the boundam
Contributed by theprpliebd“cl\gllﬁgzam?hgi/\gi&réthhFLZEAtMgFEC':g ;SS;TI\YAEF is the unit normal vector, and and h are given functions. A
gi&\ﬁ%??\ﬂiﬁigsﬁﬁ rg(r:e?\tled by the ASME Applied Mechanics Division, Jan. 18f’unc.t|on d)O(.X) IS spe.0|f|ed.a's th? Inltla.l Condl.tlon' .
2002; final revision, June 11, 2002. Associate Editor: L. T. Wheeler. Discussion on GiVen suitably defined finite-dimensional trial solution and test
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depdtmction spaceé‘g) and V", the stabilized finite element formu-

ment of Mechanical and Environmental Engineering University of California—Sanfa ,: B s h h
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months a)%pon of Eq.(1) can be written as follows: fing" S¢ such that

final publication of the paper itself in the ASMIBURNAL OF APPLIED MECHANICS ‘V’Wh € Vt; .
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fﬂw( p +u"-Vo¢

dQ+J th-quﬁthfJ’ w'hdl’
Q T

h

Ne|

e=1J0O°

9 h
+> Tsupdﬂv\lvh(ai:+uh-v¢h—V~(vV¢“))dQ where

=l

1 1 1\
(Tsupdv=|w—+——+—| a7
Tsvi  Tsv2  Tsva

lovll

=0. ©)) Tsv1= m ' (18)
V
Hereny, is the number of element§)© is the domain for element
e, and 7gypg is the SUPG stabilization parameter. llevll
With the notationb: [ ge( . ..)dQ:by, denoting the element- Tov2= = (19)
level matrixb and element-level vectds, corresponding to the llevl
element-level integraf ge( . . . )dQ. The element-level matrices
and vectors are defined as follows: Teva= TSVlRe:( HNCVH ) Re (20)
g [kl
: —dQ : 4
m erW at d My “) 2.2 Navier-Stokes Equations of Incompressible Flows.
The Navier-Stokes equations for incompressible flows can be
c f whu". v ¢hd Q) oy (5) written as
o au
p —+u-Vu—f)—V-o-:0 on Q, (21)
k: f vw" pV ¢"dQ Ky, (6) at
¢ V.u=0 onQ, 22)
k: f . vwiuh. veda (7) wherep, u andf are the density, velocity, and the external force,
a¢ respectively. The stress tenseris defined as
-~ A" -~
: f v e, ® o(pu)=—pl+2pe(u). @3)
Qe

Herep is the pressurd, is the identity tensoru=pwv is the vis-
From [10], the element-level Reynolds and Courant numbeggsity, » is the kinematic viscosity, ane(u) is the strain-rate

can be written as tensor:
Ul el 1 ;
V m, 9) (W)= ((Vu)+(Vu)). (24)
At ||d (10) The essential and natural boundary conditions associated with Eq.
== T
uT2 (iml (21) are
At [|K]| u=g on I'g,n-o=h on Ty, (25)
Cr”_7m’ (1) where g and h are given functions. A divergence-free velocity
~ field ug(x) is specified as the initial condition.
c _At Ikl 1 Given suitably defined finite-dimensional trial solution and test
=g TSUPSm[ (12) " function spaces for velocity and pressugd, V", SpandVy

where| b|| is the norm of matrixy. Also from[10], we write the
components of the element-matrix-basegpg:

T =M (13)
K
T =EM (14)
2 g
B lcl
7'53— TSlRe: m Re, (15)
and the construction ofgpg:
1
1 1 1\ 7
TsupGT | T Tt (16)
Ts1 Ts2  Ts3

We note thatrg;, 755, andrgzare the limiting values for, respec-
tively, the advection-dominated, transient-dominated, and
diffusion-dominated cases. We should also note that ®gs(15)
involve the ratios of matrix norms. Our experience has shown that
these ratios are relatively insensitive to the definition of the norm.
Examples herein employ the Frobenius norm.

In [10], the element-vector-based,pgis defined as

Journal of Applied Mechanics

=SB, the stabilized finite element formulation of Eq21)—(22)
can be written as follows: Find"e S|} and p"e S}y such that
vw'eVy andqe V}:

auh
jwh~p(—+uh-Vuh—f)dQ
QO

ot

+J e(Wh):a(ph,uh)dQ—f wh- hdT
Q T

h
+f q"Vv -u"dQ
Q

Ne|

1
+ —[ 7supapu™ VW' + 7pspV "]
e=1 JoeP

h

Jau
x| p Wntuh-Vuh)—V-a-(ph,uh)—pf dQ
Ne|
+> | 7scV-wpV-udQ=0. (26)
e=1 JQ¢

Here mpgpg and 7, gc are the PSPG and LSIQeast-squares on
incompressibility constraintstabilization parameters.
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We now define the following element-level matrices and veavhere

tors:
h Tpv1= TP1 (44)
f ST m (27) [l
m: W' p—— My, Yv
o° at Tpv2= TPVl_”B I (45)
\
¢ fQGWh ' p(Uh ’ Vuh)dQ Cv, (28) Tpv3™— TleRe. (46)
Lastly from [10], the element-matrix-based, g and the
K: f e(W"):2ue(uMdQ Ky, (29) element-vector-baset| 5 c are given as
QE
el
hh TS g (47)
o Qe(V-W )p"dQ Ov, (30)
(TLsic)v= TLsic - (48)
g f q"(V-uMdQ 0y, (31) For the purpose of comparison, we also define here stabilization
a° parameters that are based on an earlier definition of the length
_ 5 scaleh first introduced in(7]:
k: f (uh-vwh. pu"-vuMdQ  ky, (32) . .
Oe en
auh hUGN:2|uh|( 21 UM VN[ | (49)
~ - =
c f (u"-vwh.p—dQ cy, (33)
Qe at whereN, is the interpolation function associated with n@dhe
B B stabilization parameters are defined as
v f (u".vwh . vphdQ W (34)
(05 - huen
h TSUGNI™ _ pi? (50)
. au 2[u
B Vo' —-do By, (39)
Qe ot At
TSUGNZ= 5 » (51)
v: f vag (u'- vuMdQ Y (36)
Q® hEJGN
TSUGNS™ "4 7 (52)
0: f Vq"-vVp'dQ 10y, (37)
0e 1
( = ! + ! + t)? (53)
& JQG(V.Wh)p(V.Uh)dQ S (38) euruen= TéUGNl TgUGNZ TgUGN
The element-level Reynolds and Courant numbers are defined (7pspduen= (Tsupd UGN » (54)
in the same way as they were defined before, given by €4s.
(12). The components of the element-matrix-basegpg are de- (TL510) :hUGNHuth (55)
fined in the same way as they were defined before, given by Egs. LSICJUGN™ 5 '
(13)—(15). 7gypgis constructed from its components in the samﬁ o )
way as it was constructed before, given by Etf). The compo- H€réz s given as follows:
nents of the element-vector-baseg| ¢ are defined in the same ReLen
way as they were defined before, given by EG®)—(20). The ( ) Reyen=3,
construction of ¢sypgdy is also the same as it was before, given z= 3 (56)
by Eg. (17). 1 R&,on> 3,
From[10], we write the element-matrix-baseg@spgas 1
u
1 1 1 ,% where RgGNzﬁ.
Tpspe= | — + — + — i (39) Remark 1 The discontinuity-capturing directional dissipation
Th1 Thy Thy (DCDD) stabilization was introduced if11] as a potential alter-

native or complement to the LSIC stabilization. As part of the

where DCDD stabilization, a second element length scale that is based
lg'll on the solution gradient was also introduced[ ]
L (40) Remark 2 New definitions for the diffusion-dominated limits of
the SUPG and PSPG stabilization parameters were introduced in
At [|g7) [12]. These new definitions are (_:Iosely related to the second ele-
TP W (41) ment length scale that was first introduced[iri] and later em-

ployed in[12] as a diffusion length scale.
Tp3= TpiRE= (m

Also from [10], the element-vector-baseg@spgis written as ~ 2||u"|.

(42) and PSPG stabilization parameters, equivalent length scales can

HQTH) Remark 3 For the advection-dominated limits of the SUPG
Re.
be defined by simply multiplying the stabilization parameter with

1 For the comparative investigation we would like to carry out,
1 1\°7 we also provide here element length scales defined in other stud-
(7pspdv (r—+ -—+ r—) , (43) ies, based on the element shapes and advection field. For nota-
Tpvi  Tpv2  Tpv3 tional convenience, we first define the following unit vector:

4 | Vol. 70, JANUARY 2003 Transactions of the ASME



uh
s= —h—”u T (57)

The element length given ii6] for a quadrilateral element can be

written as

h Xo+Xg  Xgt+Xq X3+ X4  Xg+Xo
= —_— ] . + R
SAL 2 2 2 2 '
(58)
whereXx, is the nodal coordinate vector associated with nade
For triangular elements, we use the following expression from

[13]:

1
hSA1:Z[|(X2_Xl)’S|+|(X3_X2)'S|+|(X1_X3)'S|]- (59)

To write some of the other element lengths givenlB], we first
define a special sign function:

-1 <0
' ] (60)

SSgr(y)=[+1 y>0

Fig. 1 For linear elements, Galerkin  (broken line ) and SUPG
(solid line ) functions, assembled for a global node A

where hgyag IS the square-rootor cube-rook of the area(or
volume of the element.

4 Comparisons

and the streamwise components of the nodal “radial” position 3.1 Element Length Comparisons. We first inspect in one

vectors:
0a=(Xa=Xo)"S, (61)

where

Nen
on( 21 Xa)/nen- (62)
a=

dimension the functionsN,) and (N,+ 7syenu™ VN,), which

we will call, respectively, “Galerkin function” and “SUPG func-
tion.” Figs. 1-3 show, for linear, quadratic, and cubic elements,
these functions after they are assembled for a global node. While
the Galerkin functions are continuous across element boundaries,
the SUPG perturbations to them are not. For a linear element the
perturbation is constant over an element, but for quadratic and
cubic elements it is not. The same thing can be said for the ele-

The number of upstream and downstream element nodes canmmnt lengthhygy (see Fig. 4 When averaged over an element,

expressed as

nen

1
Nuer= 2, 5(1-SSg5,)), (63)

nen

Ngen= >, = (1+SSgr(3,)). (64)

a=1 2

Then one of the element lengths given[ i8] can be written as

Nen 1
hSAZZ(E 5(14‘339”(531))5.3)/ Ngen

a=1
Nen 4
—(gl 5(1—SSgr(6a>>5a) / Nuen-  (65)
Another one of the element lengths giver] 18] can be written as
hgaz=max(81,0,, ...6, )—min(8y,6,, .. .5nen). (66)

en

A third element length given ifil3] is the node-based version of

the one given by Eq65):

nen 1
5a—(215<1—589r15a>>6a> / Myen

a=

(hsad)a= - (67)

2.3 Streamline-UpwindPetrov-Galerkin (SUPG) Stabili-
zation and Smagorinsky Turbulence Viscosities. To compare

and normalized by the element length for a linear element, the
normalized average values bf,gy for quadratic and cubic ele-
ments are approximately 0.52 and 0.30. The normalized average
values of the equivalent length scale computed fryn(with the
1-norm of the element level matrigefor quadratic and cubic
elements are approximately 1/4 and 1/6.

Stabilization parameters and element lengths based on different
definitions, including those based on element-level matrices and
vectors and fsypduen and (rpspducn, Were calculated and
tested in[10]. The matrix norm used ifil0] was the 1-norm. The
tests were carried out for several shapes of bilinear quadrilateral

Flow

the numerical viscosities generated by the SUPG stabilization
with the eddy viscosity introduced by a Smagorinsky turbulence
model, we first write an equivalent “viscosity” based on the
SUPG stabilization parameter:

vsupc= Tsupd U"%. (68)

The eddy viscosity introduced by a Smagorinsky turbulence

model that is based on the element length sddlBkis written as  Fig. 2 For quadratic elements, Galerkin  (broken line ) and
SUPG (solid line ) functions, assembled for a global node  A. For

VsMAG= (O.ZIJ’]SMAG)Z(Zs(uh):e(uh))llz, (69) nodes at element boundaries

Journal of Applied Mechanics

(top) and interiors (bottom ).
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Linear Linear (zoomed x 2)

Flow N M
0.2
0
-0.2

~

-0.2 0 0.2
Quadratic (zoomed x 2)

-0.5 0 0.5 -0.2 0 0.2
Cubic Cubic (zoomed x 2)
Flow
——
Fig. 3 For cubic elements, Galerkin  (broken line ) and SUPG B——————=8  Tau 81 *——————x UGN
(solid line ) functions, assembled for a global node  A. For nodes
at element boundaries (top), upstream interiors (middle ), and — hSm oo hs8AR

downstream interiors  (bottom ). ©  Element ®  Node
——————— lement

Fig. 5 For a square Lagrangian element, the element length

and linear triangular elements, wita| =1.0 andAt=1.0, and as calculated with different definitions and as function of advec-
function of the advection direction. The test flow computation&o" direction

reported in[10] show that the definitions based on the element-

level matrices and vectors perform well. _

Here, element lengths are calculated and compared for liné@piq for triangular elements. Both Lagrangian and serendipity
quadratic and cubic elements in two-dimensions, based on fourQfaqrilaterals have been evaluated. The element lengths calcu-
the definitions given in this paper: the equivalent length scajgeq pased on the definitions listed above are shown in Figs. 5-7.
computed fromrg, (with the Frobenius norm of the element levelrye glement shape is indicated by a dashed line and the nodes are
matrices, hyen, hsa1, andhsx,. Definitions that depend on the ingicated by a circled cross. Each closed curve represents a dif-
location within an element are evaluated at the origin of the natisent element length definition. For each advection direction, the
ral coordinate system for quadrilateral elements and at the cellsment length is that of a line through the element center, parallel

to the advection, bounded by its intersections with the closed
curve. In other words, let us imagine a line passing through the

1.2 T T T center and find its two intersection points with the closed curve.
Then the distance between those two points is the element length
1.0 foreemee e nmmmenenemoesssanensessssssssssinonos - inthat advection direction. Although the results displayed here for
Tg1 are based on the Frobenius norm of the element level matrices,
Linear «------ we see little difference between thg;s calculated with different
0.8 1 Quadratic —— - 1 matrix norms. From Figs. 5-7, we note that the difference be-
tween different element length definitions is more pronounced for
0.6 i NG T higher-order elements. In general, the element length decreases
with the increase in the order of the element. This observation
0.4 is consistent with what we see fbygy in one dimensiorisee Fig.
4).
02 3.2 Comparison of Streamline-UpwindPetrov-Galerkin
. | . (SUPG) Stabilization and Smagorinsky Turbulence Viscosi-
097 o5 0.0 0.5 1.0 lies. Flow pasta cylinder at Re3,000 and Re-50,000 are used
’ as test problems to compare the numerical viscosities generated
Fig. 4 Variation of hygy within linear and higher-order one- by the SUPG stabilization with the numerical viscosity introduced
dimensional elements by a Smagorinsky turbulence model. The stabilization parameters

6 / Vol. 70, JANUARY 2003 Transactions of the ASME



Linear Linear (zoomed x 2) Linear Linear (zoomed x 2)

0.2 N M 0.2
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Quadratic (zoomed x 2) Quadratic Quadratic (zoomed x 2)

0.2 ?/( 02

0.1

0 0
—0.1 13}

-0.2 §§\ / -0.2

-0.2 0 0.2
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-0.2 0 0.2
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0.2 / \

0.2}
0.1
0 0
-0.1
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-0.2 0 0.2
L m—— Tau_8S1 e x UGN 8 Tau_S1 e UGN
0 h_SA1 o0 h_SA2 — h_SA1 O—————©  h_SA2
_______ © Element ® Node - ==® Element ®  Node

Fig. 6 For a square serendipity element, the element length

calculated with different definitions and as function of advec- Fig. 7 For an equilateral triangular element, the element

tion direction length calculated with different definitions and as function of
advection direction

are computed as given by Eqgel9)—(56), but with the 75ygn2
component dropped. When calculating 8g used in Eq.(56), Vsmag IS @n isotropic viscosityysypcis the maximum value of a
the kinematic viscosity is augmented withvgyag. Velocity and  directional viscosity, with the maximum value attained in the ad-
pressure are both interpolated with bilinear functions. A mesh witgction direction. However, in most of the domaigyag/vsupc
14,960 nodes and 14,700 quadrilateral elements is employ&yS0 Small that, except for directions nearly perpendicular to the
Close to the cylinder surface, the radial distance between the m&gyection directionysyag will still be substantially less than the
points (normalized by the cylinder diamejeis 2.5 10 * at Re direction-adjusted value ofsypg. It is also important to remem-
3,000 and 5 10°5 at Re=50,000. A close-up view of the mesh ber tha_tvsupgls generated by a residual-based formulation, while
for the latter case is shown in Fig. 8. In each case, the comput&MAC Is not.
tions are carried out until a developed unsteady solution is ob-
tained. Then, based on the velocity field at a given instant.
VSMAG/VSUPG |S Calculated

Figure 9 shows the vorticity andsyac/vsupg for Re=3,000.
Shades of gray represent values 1@/ vsupg ranging from W77
0.00(white) to 0.05, with black indicating 0.05 and higher values
Except for the regions in blackisyac/vsupc is less than 5%.
Because Fig. 9 shows pictures zoomed into a small part of the fi
domain, one can also infer that most of the full domain is marke
in white, and therefore for those regions the ratio is essential H 3
0%. As additional information, we would like to note that when|
we inspect the overall data fotsyac/ vsupe, We See that in most
of the domain it is less than 1%. The turbulence model is activ TN
only in regions with significant vorticity. Except for a very few
points in the near wakeyg,pc dominatesvgyac. When a wall
damping function is used with the turbulence modej,5¢ be-
comes even smaller. Similar observations can be made for Rg. 8 Flow past a cylinder. A close-up view of the finite ele-
=50,000(see Fig. 1D It is important to remember that while ment mesh with 14,960 nodes and 14,700 elements.

J1\
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Vsmac/Vsupag, without wall function

Fig. 9 Flow past a cylinder at Re =3,000. Vorticity (top) and
vsuac/ Vsupe With (middle ) and without (bottom ) the wall func-

tion in computation of  wgyag. In displaying vsyac/Vsurc
shades of gray represent the values ranging from 0.00 (white )
to 0.05, with 0.05 and higher values indicated by black.

4 Concluding Remarks

Vsmac [Vsupa, without wall function

Fig. 10 Flow past a cylinder at Re =50,000. Vorticity (top) and
vsuac/ Vsupe With (middle ) and without (bottom ) the wall func-

tion in computation of  wgyag. In displaying vswac/Vsupc
shades of gray represent the values ranging from 0.00 (white )
to 0.05, with 0.05 and higher values indicated by black.
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| Chessa An Extended Finite Element
e | Vlethod for Two-Phase Fluids
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T. Belytschko An extended finite element method with arbitrary interior discontinuous gradients is ap-
Walter P. Murphy Professor plied to two-phase immiscible flow problems. The discontinuity in the derivative of the
of Mechanical Engineering, velocity field is introduced by an enrichment with an extended basis whose gradient is
e-mail: t-belytschko@northwestern.edu discontinuous across the interface. Therefore, the finite element approximation can cap-
ture the discontinuities at the interface without requiring the mesh to conform to the
Department of Mechanical Engineering, interface, eliminating the need for remeshing. The equations for incompressible flow are
Northwestern University, solved by a fractional step method where the advection terms are stabilized by a charac-
Evanston, IL 60208 teristic Galerkin method. The phase interfaces are tracked by level set functions which are

discretized by the same finite element mesh and are updated via a stabilized conservation
law. The method is demonstrated in several examp[&0I: 10.1115/1.1526599

1 Introduction interface by a signed scalar distance function, generally denoted

Two-ph fl bl I ived by two t $(x,t) on _the compl_JtationaI domain. _The intgrface position is
wo-phase oW pronems are generatly sovea by two ypes e set of points at which the level set field vanishes.

methods, interface-tracking algorithms or interface-capturing al . .
gorithms. Interface tracking methods use a deforming mesh orThe extended finite element method coupl_es n_aturally with the
grid which conforms to the interface or tracks the interface Vel Set method. In the method proposed in this paper the en-

some other explicit manner. Examples are arbitrary Euleriaf¢hed basis is constructed directly in terms of the level set
Lagrangian method$1], and deforming space-time finite element?(X;t). Sinceg(xt) is approximated by the same finite element
formulations,[2,3]. In interface-capturing methods, an auxiliarynesh, the location of the discontinuity is expressed entirely in
function is defined on a fixed grid that describes the interfacirms of nodal values ab. Thus, as will be seen, the structure of
Some examples of interface-capturing methods are volume tbe discontinuity and its approximation of the discontinuous field
fluid methods[4,5], level set method§s,7], and marker and cell are expressed entirely in terms of nodal values of the velocity and
methods/8]. level set function.

The method described in this paper is an interface trackingWe extend the level set methods presented by Peng G
method that shares many of the advantages of interface capturiodinite element meshes to track the phase interface. The formu-
methods: A fixed mesh is used, but we employ an enriched bakition by finite elements enhances the versatility of the method; it
that includes the discontinuities at the interface. By embedding tkeapplicable to problems that would be difficult to solve on a
interface jump conditions in the finite element basis, the accuragytuctured grid, i.e., problems that require local mesh refinement
of typical interface tracking methods is retained while remeshing problems involving complicated geometries and/or boundaries.
is avoided. Remeshing can be quite expensive and can fail wherginjte element formulations of level set methods were first dis-
the interface topology is significantly altered, as when phases jQi[jsseq by Barth and Sethifa1] with respect to triangulated do-

together or separate. " ains. Since then several papers have used the level set method in
The methodology is called the extended finite element meth finite element context: Rao et &22], Chessa et a[15], and

The extended finite element method was first introduced by B&-
g i~ uecedo and Past¢R3]. However, level set methods are more
lytschko and Black9] and Moss et al[10]. Ageneral description r(%ommonly seen in finite difference schemes. This is probably due

of the method for modeling arbitrary discontinuities in a functiot the fact that finite diff thod idel di
and/or its derivatives is given by Belytschko et[dll]. The idea 0 the tact that Tinite difference methods are more widely used in
Iving the conservation law equations that are used to update the

for modeling discontinuities in derivatives used here originat )
from Krongauz and BelytschKd.2], who developed it in the con- evel set. Furthermore, some level set techniques rely on struc-

text of meshless methods. The extended finite element metH§&d grids, i.e., fast marching methods. However, level set tech-
was originally developed for crack problems but the methodolodyjdues are also very robust in finite element schemes. For ex-
has been extended to several other problem classes. Suku@f@ple, Peng et aJ20] present an efficient PDE-based method for
et al.[13] introduced a combined level set and discontinuous expdating the level set field in a region about the interface. They
tended finite element method to solve elastic problems involvirupe finite difference schemes that are directly applicable to un-
holes and inclusions. Wagner et gl4] solve problems involving structured grids with no significant increase in cost or complexity.
particulate Stokes flow. Chessa et 5], Dolbow and Merle  The level set method has been used by Sussman [@4at27]
[16], and Renaud and Dolboyi7] applied extended finite ele- to solve two-phase incompressible flow problems with finite dif-
ment method to solidification problems. ference methods. Fedkiw et 428,29 have used level sets in
We employ the level set method to track the interface, Osher apgnjunction with ghost fluid methods to solve compressible-
Sethian [6,7]. The level set method is similar to pseudocompressible and compressible-incompressible two-phase flows
concentration method$18,19; it describes the location of the ysing finite difference schemes.
- The outline of this paper is as follows; in Section 2 the govern-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ing equations are presented In Section 3 we present the discon-
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- . _ . . . .
CHANICS. Manuscript received by the Applied Mechanics Division, Dec. 4, 2001'5,!n_uous finite element_ approximation for the velocity field. The
final revision, Mar. 12, 2002. Associate Editor: T. E. Tezduyar. Discussion on tfftnite element formulations for the level set update and the Navier-
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Depatitokeg equations are presented in Sections 4 and 5 respectively
ment of Mechanics and Environmental Engineering, University of California—San . . . ’ . ’
ction 6 presents examples illustrating the accuracy and applica-

Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months aft
final publication in the paper itself in the ASMBURNAL OF APPLIEDMECHANICS.  tion of these methods.
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n-m(x,t)=t, Vxel,. (10)

H The vectom is an outward unit normal t&). Assuming negligible
surface tension, no-slip and immiscible flow, the stress and veloc-
ity fields must satisfy the following conditions across the inter-
face:

[Nini- 0]=0 (11)
[ul=0 (12)

wheren;,; is an outward unit normal frorf),. To track the fluid
interface we define a level set field(x,t) on  such that it

n conforms to the following sign convention:
>0 Vxe,
d(xt){ =0  Vxeliy (13)
<0 Vxe,.
F Using this convention we can define the material properties on the
u entire domain as a function @f
Fig. 1 Problem domain p1 ¢=0
)=[ Vxe) 14
p(d p, $<0 (14)
m1 =0
2 Governing Equations m()= py  $<0 Vxe (15)
In this paper we consider isothermal incompressible two-phagge
flow which is described by the following equations for both
phases: p(P)=p2tH(P)(p1—p2) VXel) (16)
au wu(P)=potH(P) (1~ p2) Vxel) 17
o &1V (ueu)—f|-V-0=0 N , 2 Lo .
at V\(hereH(_-) is the HeQV|S|de function. Furthermore, we define a
V.u=0 @) signed distance functiod(x,t) as
whereu is the velocity field,p is the fluid densityp is the hydro- d0xt)= min IIx=Xlsigr(n: (x=%)) (18)

int

static pressuref, is an applied body force, ana is the Cauchy
stress, which is decomposed into the deviatoric stressd the and we require that initially
hydrostatic pressure as follows:

¢(x,t=0)=d(x,t=0). (19)
o=7-pl. () since the fluids are immiscible we prohibit flow across the inter-
For a Newtonian fluid the deviatoric stresss given by face i.e.,
=2uD 4 d
ek @ 24X, )=0 ¥XeTyy (20)
with the rate of deformation tens@r defined as at

whereX denotes the position of a point that remains on the inter-

D= E(Vu+ uv) (5) face. Expressing this condition in terms of spacial coordinates, we
2 arrive at the standard level set evolution equation
Substituting(2-2) into (1), we obtain i
—+u-V¢=0. (21)

ot

This equation is used to update the level set and consequently

These equations hold over a dom&lrwhich is shown in Fig. 1. update the interface location.

The domain() is partitioned into(},, {1, where(); and(}, are

regions composed of fluids 1 and 2, respectively, Bpgis the 3 Enriched Finite Element With Interior Discontinu-
interface between the two fluids. We assume that both phases g Gradient

homogeneous and therefore the material properties are constant in . ) . .

Q, andQ), but since we solvés) and(2) on Q we considep and The_ domalr_l of the problen{) is subdivided mto_element@_e
u to be functions of position and time due to the motion of th@SSociated with a set of nodes, I=1 to n. The interpolation
interface. The closure of, 4 is partitioned intol’, and T'r function (shape function associated with nodé is denoted by
which are the boundaries where velocity and traction conditiof(X) and the set of all nodes by’ Recall that the support of

+Vp=V-(uVu)+f (6)

8U+V
pl oy +V-(usu)

are specified as follows: N;(x), which is the area over which itis nonzero, is limited to the
elements connected to the nddee., the support is compact. The
u(x,t)y=u Vxel, (7)  support of a typical nodé is shown in Fig. 2. Since we are
_ dealing with a second-order partial differential equatié®ls we
n-o(x,t)=t vxel;. (8)  choose the shape functions to be piecewise continuously differen-
We split the traction boundary condition into its normal and déiable, i.e.,C%(Q). S .
viatoric components The extended finite element approximation is constructed in
_ terms of the level set function defined k%9 and the shape
p(x,t)=p Vxel} (9)  functions N, . In constructing the approximation, we distinguish
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Fig. 2 A typical finite element mesh with interface I';e show- N.‘
ing the support of a generic node | and the enriched notes

Fig. 3 Example of an enriched finite element shape function in
Rl
the nodes whose support is intersected by the inteffggdrom
all others; this set of nodes is denoted &y ich-
Figure 2 illustrates which nodes are enriched for a typical e

ample. The enriched approximation is given by fihere sigii-) is the sign of the number function and second equal-

ity follows from the fact thatp is distance function and therefore
N X |V p|=1, see(18)—(19). Substituting(27) into (26) gives
W= 2 NOUD+ X NiGO( (x|

& Nenrich

VU= U(HRVN+ D Ay
leN J e Nenrich

—["(x3, DA (D) (22)

whereU(t) are the nodal parameters for the standard finite ele- & (VN 3+ Njsign @) nine) - (28)
ment approximation ané;(t) are additional nodal parameters a

. . h . . .
the enriched nodé. For convenience, we also write the above a herefore the jump ini"(x,t) across the interface is given by

) hy= ) )
U= NMOOUD+ X N DAL (29 [vu ZJE%W NGAI® N 0N L (29)
€ € Nenrich
and
where
NS™Mx, 1) = Ny () W 5(x,t) (24) [Vu'nd=2 > NyA; on Ty (30)
€ Nenrich
W (x,t) = (x,t)| | dN(x5,1)]. 25
J(_ ) _|¢ (. |¢_ (x5.0)] ) ( ) ) The magnitude of the jump depends Ay(t) and varies smoothly
The second t(ﬁrm i25) is not essential but yields the desirableyjong the interface as can be seen fré80) since its spacial
property that”(x; ,t) =U,(t). . o character results from the projection of tf¥ shape functions
~ We next examine the character of this approximation around thfito the interface. Note, that as with all piecewise continuous
interfacel’;,.. Taking the gradient of22) we obtain finite element approximationfY u]#0 on the element edges, see
[30].
vu'= 2 U (H®VN,+ E A;(H)® (VNP ,+ N,V ), The enrichment functions for a linear two-node element in one
leN J e Nenrich dimension are illustrated in Fig. 3. Each enrichment function is a
(26)  product of the shape functiaN,, and the corresponding enrich-
We next note that ment functionW(x,t). Note that the enriched shape functions
) ) vanish at the nodes. The enrichment functions for a three-node
VW ,=sign(¢) Vd=sign¢)niy (27) linear triangle are shown in Fig. 4. As can be seen, each enrich-

Fig. 4 Enriched finite element shape function for a three-node linear triangular
element
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where§is the cutoff distance from the interface apdbs transition
distance. A characteristic method is used to stabilize the non-self-

H A b : i adjoint term,32]. This, in conjunction with a forward Euler tem-
- uncoriched elemels poral discretization, yields the following update equation:
o 3 - H o g H 3
partially enriched elements A : At
. . e o P "=—AlC(Pu V- 5 V(KB (usU) V)
| g e r, : 7 = T % ;.
o i fully enriched elements E3£1)
L ,
v ) e : where the superscript indicates the time-step numben\dris the
e £ kL o ftime-step. Using the standard Galerkin procedure, i.e., the test and
]";-,” e e ~ trial functions, ¢"(x,t) and #"(x) are in the same finite element
A h o j I function spacev';,, we get the following variational form of the
- of ’ Wk s update equation:
o Lt

At?
J ¢(¢“+1—¢“)dv:—mf wc(¢)u-V¢dV+7J Vi
Fig. 5 Enrichment for a typical finite element mesh, showing @ Q Q
elements that are fully enriched, partially enriched, and unen- (2 .
riched. Also illustrated is the boundary where the enrichment (c(p)udu)-VeodV. (35)

vanishes. Because the hyperbolic nature @f1), a nonlinear viscous shock

capturing operatoBg( ¢) is added, see Hanslj83]. This mini-

) ) ) mizes the oscillations that may occur at discontinuities in curva-
ment function vanishes along two of the edges. On the third edgfe on the front. This operator is given by

a kink, similar to that what appears in the one-dimensional ele-
ment, can be seen.

The character of this enrichment is of two types. The first type Bsc( ) = J vsd @) (Vip-V)dV. (36)
is within the elements cut by the interface; here all nodes are a
enriched and the enrichment is a partition of urfiBi], so the ; ; ; ; )
enrichment function®(x,t) is reproduced exactly. The second\’\merevsc 's & nonlinear viscosity defined as
type is within the elements adjacent to the fully enriched ele- b
ments; here not all of the elements nodes are enriched. In these —
partially enriched elements the enrichment providddeandingso at
that the enrichment vanishes at the edge of the support of the
bisected nodes. Figure 5 illustrates which elements are of the first . . .
and second types as well as those that are not enriched. The &S & parameter used to control the degree of added viscosity
richment is local and the resulting system matrices are sparse.typically o5c~0.1) andh® is a measure of elemeset The fol-

The enrichment modifies the velocity field only in the element@wing variational formulation is used to update the level set field:
crossed by the interface and in the adjacent elements that share th AR
enriched nodes, see Fig. 5. In other words, only the elements th n+l_ amydy— Rt 20
lie entirely within the supports of shape functions cut by the in-{lw(d) ¢7)dv Atfndjc(d))u Vgidvt 2 nVl/f
terface are affected by the enrichment.

The additional degrees-of-freedofry can be handled by add-
ing nodes to the element or increasing the number of degrees-of-
freedom for the enriched nodes. In either case, the modifications
required in a standard finite element code are minimal. -VodV. (38)

+u- Vqﬁ‘
Vsc((ﬁ):heﬂscm- (37)

-(c?(p)ueu)-VodV+ fQVSCV¢

4 Level Set Formulation Because of the cutoff functic_)n,_only th_e Ie_vel_ set in tht_e _region
) ) ) ) ¢|< 5 needs to be updated in time. This significantly minimizes
The level set function that tracks the interface is approximatgfe computational overhead.
by the same mesh and shape functions that are used for the velog=or some velocity fieldsp may deviate significantly from a
ity and pressure fields. However, no enrichment is needed for tgned distance function after even a few time-steps. This may
level set function since it is continuously differentiable across theyuse high gradients i near the interface and introduce signifi-

interface. Thus the level set approximation is given by cant error in the interface position. These errors cause a loss of
conservation of the phase volumes. This has often been cited as a
S(x1)= E N (X) ¢ (1) (31) shortcoming of the level set method and many interface-capturing
leN

methods,[34,35. Extensional velocity fields and reinitialization

where ¢,(t) = ¢(x, ,t) are the nodal values of the level set. Were used to circumvent these difficulti¢g,25,26,36.
follow the level set update method outlined in Peng ef20]. In
this form Eq.(21) is modified as follows:

b 5 Navier-Stokes Formulation
ot +e(p)u-Vé=0 (32) We solve the Navier-Stokes equations by a characteristic based
. . . ) split CBS algorithm based on the projection method of Chorin
wherec(¢) is a cutoff function that is defined by [37] as described in Zienkiewicz and Codiha8] and Zienk-
1 if |¢p|<é iewicz and Taylof32]. In this method an auxiliary velocity field

_ 2 _ _ . u* is introduced to uncouple the momentum and continuity equa-
c(¢)=1 (l=N*2dl+y=30)/(y=0) it 5<[¢<Y  yons: a characteristic method is used to stabilize the non-self-
0 if |p|>y adjoint operators ii6). The characteristic based split formulation
of (6) can be written as
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Fig. 6 Initial configuration of interstitial fluid problem

At At whereW is a test function. Similarly, the weak form fo41) is
u* —u”=7{—V~(pu® u+V-r—pf+ ?(u~V) obtained by multiplying by the pressure test functvdn
1
. n+lqyvy— n+1_ Ny,
X (V- (pueu)+ pf) (39) LVV vp"titdv At(LUVV(p p")-ndS+ fQVV
t=tn
The fina_ll vglocity field is ‘torrected by the pressure increment -(pu*)dV—J V(pu*)-nds|. (43)
so that is divergence free .
N+l EV nil 40 To eliminate the boundary pressure terms we 4§ and require
u U= p pe (40) thatu* =u on I, yielding

By taking the divergence d#0) and recalling that the velocity at il 1 .
time t"*1 must be divergence fre@e., Eq.(2)) we arrive at the QVV’VP dv= 1 QVV'(pU ydv—

V(pu*)-ndS)
following Poisson equation for the pressure:

u

2o+l (44)
AtV =V (put). (41)  and for the velocity correction Ed@41)
Applying the standard Galerkin procedure 89) for the frac-
tional velocity fieldu* we get the following: f W-(pu“+1)dv=f W-(pu*)dV+Atf W-Vp"tidv.
Q Q Q
At
fw.(u*—u")dv=—[—J W-V-(pueu)dV (45)
@ p @ For the derivation of the finite element equations it is convenient
to write the enriched approximation as
—f (VW):7dV+j W-(n-7)dS . _ _
o Iy u(x, 1) =N(x,$)U(t) (46)
At where
—f W-(pf)dV—7J (V-(ueW)) _
o o NOG@) =[N, Nz ... Ny, Nyg, Nago ..o Npn ]
(47)
-(V-(pu®u)+pf)dV} (42) _
i U()=[Uy, U ... Uy, A, Ay ... Al (48)

Fig. 7 Phase interface at several time-steps for interstitial fluid problem
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The finite element approximations are

W=N"" 1w (49)
u"=N"U" (50)
u* = Nn-# 16* (51)
V=NV (52)
p"=Np" (53)
where the superscript on N" indicates that enriched shape func-Vy = (1.0 V.= 0.0
tions are a function ofp"(x,t) (due to the moving enrichment * :
Substituting(50)—(53) into Eq.(42)—(45) we obtain the following
finite element equations:
_ _ — At
M*U* =MU"— At CU"+KU“—f"—7(KuU"+fg) (54)
AtK p" =G U* —f, (55)
Un+1=U*—AtM_1GTpn+1 (56)
v}r= U.ﬂ
where
o o Fig. 8 Rising bubble problem
M* = f (Nn+1)TpnNndV (57)
Q
M= j (N TpIN gy (58) 2
Q
lo= 2 (69)
c= f (N HT(V(p"u"N")dV (59) 1
O
2 m=[1 1 0]". (70)
K= [ (B"™HTu" 1,— §mmT B"dV (60)
¢ It should be noted that when evaluating the gradient of the en-
1 _ _ riched shape function the chain rule must be employed due to
Ky=— Ef (VTN 1) Tp"(VT(U"N™)dV  (61) the spacial dependence of the level set fig)dso
Q
f= J N 1pgdV+ f N1t dS (62)
Q T
Kp= fQ(VN)TVNdV (63)
G,= f (VN")Tp"N"dV (64)
Q
fp= J N™n-u"*1ds (65)
Iy
G=f (VN )TN V. (66)
Q
In the aboveB is the gradient matrix defined as
B"=[B] B; -~ Byl (67)
OND
B'=| O ! (68)
Xy
AN ANT _ _ . .
_— Fig. 9 Phase interface for several time-steps for rising bubble
L 5X2 0X1- problem
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An Unstructured Finite Element
s.eacia | Solver for Ship Hydrodynamics

e-mail: Julio@cimne.upc.es

e oiate | Problems

International Gentre for Numerical Methods A stabilized semi-implicit fractional step algorithm based on the finite element method for
_ inEnginegring, solving ship wave problems using unstructured meshes is presented. The stabilized gov-
Universidad Politecnica de Cataluna, erning equations for the viscous incompressible fluid and the free surface are derived at a
Gran Capitan s/n, differential level via a finite calculus procedure. This allows us to obtain a stabilized
08034 Barcelona, Spain numerical solution scheme. Some particular aspects of the problem solution, such as the

mesh updating procedure and the transom stern treatment, are presented. Examples of the
efficiency of the semi-implicit algorithm for the analysis of ship hydrodynamics problems
are presented[DOI: 10.1115/1.1530631

Introduction surface wave boundary effects are accounted for in the flow solu-

tion either by moving the free surface nodes in a Lagrangean

The prediction of the wave pattern and resistance joint to trP‘ﬁanner, or else for via the introduction of a prescribed pressure at
study of the flow around a ship are topics of major relevance We free surface computed from the wave height

naval architecture. The analytical and numerical solutions of this 1, =" it Of the paper is structured as follows. First the sta-
problem have challenged mathematicians and hydrodynamlug}ﬁzed semi-implicit fractional step approach using the finite ele-

forDover_ta centur;t/. d . tational fluid d .ment method is then described. Details of the computation of the
espite recent advances in computational fluld dynamitgy i ation parameters are also given. Finally some examples of

(CFD.) methods and computer hardware, the _nu_meric_al SOIUtiOQﬁplications of the unstructured-grid solver for ship hydrodynam-
of ship wave problems is still a challenge. This is mainly due g problems are presented

the difficulties in solving the incompressible flow equations

coupled to the free boundary constraint stating that at this boungyite Calculus (FIC) Formulation of Viscous Turbulent
ary the fluid particles must remain on the water surface, who??

position is in turn unknown. ow and Free Surface Equations

This paper presents advances in recent work of the authorsWe consider the motion around a body of a viscous incompress-
[1-10Q], to derive a stabilized finite element method which allowible fluid including a free surface.
us to overcome the above mentioned problems. The starting pointd he finite calculus form of the governing differential equations
are the modified governing differential equations for the inconfor the three-dimensional problem can be written[&s;10Q| fol-
pressible flow and the free surface condition incorporating tHews:
necessary stabilization terms vidiaite calculus(FIC) procedure Momentum
developed by the authors8—10]. The FIC technique is based on

writing the different balance equations over a domain of finite size r —Eh ﬁ: 0 on Q i,j=123 Q)

and retaining higher order terms. These terms incorporate the in- M2 ax ' -

gredients for the necessary stabilization of any transient amﬂ

steady-state numerical soluti@ready at the differential equa- MasS Balance

tions level In addition, the modified differential equations can be 1 arg _

used to derive a numerical scheme for computing the stabilization ra=5h; o 0 on Q j=123 (2
]

parameters,5,6,7,9.

The stabilized differential equations are first solved in time us-
ing a semi-implicit fractional step approach. Application of the
standard Galerkin finite element formulation to the fractional steps (a))
equations leads to a stabilized system of discretized equations
which overcomes the above-mentioned problems, allowing for
equal order linear interpolations of the velocity and pressure vari-
ables over the elements. Unstructured grids of linear tetrahedra
have been used in this work. The approach is similar to semi-
implicit fractional methods proposed {11-13. The particular
features of the algorithm here proposed are the additional stabili-
zation terms introduced by the FIC formulation. These terms en-
sure the stabilization of the algorithm for small time-step sizes and (b)
enhance the convergence towards the steady-state solution. Fre

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, July 26, 2001;
final revision, Mar. 12, 2002. Associate Editor: T. E. Tezduyar. Discussion on the
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Depart-
ment of Mechanics and Environmental Engineering, University of California—Santa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months aftég. 1 Transom stern model. (a) Regular stern flow, (b) tran-
final publication in the paper itself in the ASMBURNAL OF APPLIEDMECHANICS.  som stern flow.
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Fig. 2 DTMB 5415 model. Geometrical definition based on
NURBS surfaces.

Free Surface

Ly, 2 r, j=1,2
rﬁ—z ’61'(9_)(]-70 on B =1, (3)
where
(9Ui+ (9 +(9p (97'”
m =" ﬁ_)(j(uiuj) o
M 103
rd_ﬁ_Xi' I=1,z,
B B .
Ig g u; X, uz, 1=1,2

In the abovey; is the velocity along theth global reference

Fig. 3 DTMB 5415 model. Surface mesh used in the analysis.

where n; are the components of the unit normal vector to the
boundary and; andujP are prescribed tractions and displacements
on the boundarief; andTl",, respectively.

The underlined terms in Eq$1)—(3) introduce the necessary
stabilization for the numerical solution. Additional time stabiliza-
tion terms can be accounted for in E¢¥)—(3), [4,5,9], although
they have been found unnecessary for the type of problems solved
here.

The characteristic lengtidistancedy; represent the dimensions
of the finite domain where balance of momentum and mass is
enforced,[4,8]. The characteristic distancda%j in Eq. (3) repre-
sent the dimensions of a finite domain surrounding a point where
the velocity is constrained to be tangent to the free surfa;8].

Equationg1)—(6) are the starting point for deriving a variety of
stabilized numerical methods for solving the incompressible
Navier-Stokes equations with a free surface using equal-order in-
terpolations for the velocities, the pressure, and the wave height,

axis, p is the dynamic pressur@& p(p—gz) wherep is the total [1-4,8,9.

pressurep is the density and is the gravity acceleratiorg is the

wave elevation, and;; are the deviatoric viscous stresses related ]

to the kinematic viscosity: by the standard expression Fractional Step Approach

au;  du; 2 duy

Let us discretize in time the stabilized momentum Ecp)(&s

= +—=6iz—]|. 4
T a3 @ ut—ul Loop" am 1 rm,
The boundary conditions for the stabilized problem are written At + (9_xj(uiui) + X (9_)(] N Ehi a_xl =0. (7
as . . . o
A fractional step method can be simply derived by splitting Eq.
1 (7) as follows:
anij—tiJrEhjnjrmi:O on T (5) .
JE— %x_.n A d (77'”' 1 h armi 8
u-uP=0 on T, (6) e P L ®
DTMB 5415
‘Yvave Profile on Hull
i = f\
’\ x Experimental L \
7 <[
AR Vo
T YA | .
42 -0.00% 04 * X ¥y " x“x t x 12

Fig. 4 DTMB 5415 model. Wave profile on the hull.
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Fig. 5 DTMB 5415 model. Wave profile at y/L=0.082. -*- experimental values,
[24]. —numerical results.

ap" au;  d(ujup) T
Ntl_, %k _ As P [ L A §
Ui T=ui - At ax; ©) A" X X b
Note that addition of Eq¥8) and(9) gives the original stabilized  Equation(13) is used to compute the pressure. The left-hand
momentum Eq(7). side is a Laplacian equation for the pressure values at time

=1,23. (14)

Substitution of Eq(9) into Eq. (2) gives whereas the right-hand side includes known values of the frac-
Ppt ou* orn tional velocities, the velocit_ies and the viscous stresses atrtime
= oy (10) Remark 1 Standard fractional step procedures neglect the con-
axiox;  axax tribution from the terms involvingr, in Eq. (13). These terms

where, are intrinsic time parameters definedas h;/2u; . improve the stabilization properties of the algorithm as they en-

The free surface wave E€B) can be also discretized in time toSU"® the solution of Eq13) when the values okt are small. Also
the influence of the; terms has proven to be essential for obtain-

give,[2,7,9, el ) .
ing improved and fully converged solutions in steady-state prob-
he1 o a0 1 Bl lems.
BT =B AU - —us— Shg =) 1j=12. (11)  The finite calculus procedure can be also applied to derive a
' ! stabilized pressure increment split scheme. This can be simply
Pressure Stabilization derived by splitting Eq(7) only for the pressure increment simi-
) ) ] ) larly as described if14].
Using Eq.(1) and neglecting high-order terms it can be ob- Remark 21n Eq.(13) the cross derivative terms of the pressure
tained: have been neglected. These terms can be accounted for if a proper
definition of ther; parameters is used. For details $8¢
J [ du: I
ui—(—’) — (12) Remark 3 The residualr{ can be discretized using the finite
X\ 9x; ) X elements method15] as
Substituting Eq(12) into Eg. (10) gives f =N (15)
#p"  aut ar! " . '
(At+7)——=——1| — (13) whereN=[Ny,N,, ---,N,] contains the shape functioi and
XidX; - IX IXi (*) denotes nodal values.

Application of the Galerkin method to E@L3) gives after in-

with .
tegration by parts

Fig. 6 Wave map of the DTMB 5415 model obtained in the Fig. 7 KVLCC2 model. Geometrical definition based on
simulation (above) compared to the experimental data (below) NURBS surfaces.
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where 7} is the Reynolds stress tensor. In this wetkhas been
modeled using the standard Boussinesq’s approximation.

Remark 5 The value of the intrinsic time parametershave
been taken a$8,9],

4 2u;\ 7t
Ti_(3_hi2+ h_l) . (20)

Equation(20) provides the standard values of the intrinsic time

parameter for the convective limiu{—0) and the viscous limit

(u—0).
The characteristic length distandesare defined here using the

Fig. 8 KVLCC2 model. Surface mesh used in the analysis. SUPG assumptions giving4,8,16
h={ihzf =hro 1)
oN oN
Hk@":f (?—kufdﬂ—f — N "dQ (16) s
o X o 7% whereh=[V®1¥3 whereV® is the volume of the tetrahedral

where Hy = [ o(At+7)dN, /dx;(IN, /9%, )dQ is the standard element. o _ )
Laplacian matrix. The characteristic lenght distandeg in the free-surface Egs.

s(3) are defined by an identical expression to Egl) with h
=[A®1¥2 A pheing the area of the triangular element over the
sea surface.

The values of | can now be computed by projecting the pre
sure gradients. Neglecting the stabilization terms in(Egwe can

write . . I
More details on the computation of the stabilization parameters
, ap can be found if4-10|.
ri=—-—. a7
IXi
Application of the Galerkin method to E@L7) gives using Eq. Finite Element Discretization

(15 Space discretization is carried out using the finite element

Mr/"=q" (18a) method,[15]. A linear interpolation over four-node tetrahedra for
with both u; and p is chosen in the examples shown in next section.

Similarly, linear triangles are chosen to interpol@ten the free-
ap" surface mesh.
Mk':f NN dQ  and qg= —f NdeQ. (18) The discretized integral form in space is obtained by applying
Q Q Xi the standard Galerkin procedure to E¢R), (13), (9), and (11
and the boundary condition&) and (6). Solution of the dis-
cretized problem follows the pattern given below.
tep 1. Solve Eq.(8) for the nodal fractional velocities. The
irichlet boundary conditions on the nodal velocities are imposed
when solving Eq(8). Note that the fractional step method can be
interpreted as an incomplete block LU factorization of the mono-

Equation (1&) can be solved for the values of" using an
iterative Jacobian scheme.

Remark 4 The above formulation can also be aplied to th
Reynolds(RANSE) equations. In this case the valuer(p,fi in the

stabilized momentum equations is given Bgj}:

U 9 op A Tinj +70) lithic problem,[14,17]. _
M= — + —(Uu;) + — — —— (19) Step 2. Solve Eq(13) for the nodal pressures at time nt+1. The
Poodt o ox; 7 ax X pressures computed from Step 4 are used as a boundary condition
KvLcc2
Wave Profile on Hull
0.012
0.01
0.006
-3+ Experimental ==—Numerical
0.008

0.002 \
A
-0.002 EX ) j‘

-0.004

-0.000

Fig. 9 KVLCC2 model. Wave profile on the hull compared to experimental
data, [25]. Thick line shows numerical results.
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KvLCC2
Wave Profile y/L=0.0964

--x--- Experimental Numerical

3

~:

Fig. 10 KVLCC2 model. Wave profile on a cut at  y/L=0.0964 compared to
experimental data, [25]. Thick line shows numerical results.

- 29.238
25352
21.488
17.579
13.683
9.8067
5.9204
2034

-1.8623
-5.7383

Fig. 11 KVLCC2 model. Map of the X component of the velocity on a plane at 2.71 m from the
orthogonal aft. Comparison with the experimental data, [25].

Fig. 12 KVLCC2 model. Map of the X component of the velocity on a plane at 2.82 m from the
orthogonal aft. Comparison with the experimental data, [25].
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Fig. 13 KVLCC2 model. Map of the eddy kinetic energy ~ (K) on a plane at 2.71 m from the
orthogonal aft. Comparison with the experimental data, [25].

when solving Eq(9).
Step 4. Solve for the new free surface height at time-h1. The
new free-surface elevatiof”*? in the fluid domain is computed
from Eq. (12).

The pressure at the free surface is obtained from the balance of
tractions at the surfac¢l18],

_ Y
anTij_niP:anaTﬁ—niﬁa"‘niﬁ (22)

wherep is the pressure field on watg? is the air pressure:f} is
the air viscous stress tenset, is the air density;y is the surface
tension coefficientR is the average curvature radius of the free
surface, and; is the vector in the normal direction to the free
surface. Assuming/B/dx<1 and dB/dy<<1 it can be takem
=[0,0,-1].

In Eq. (22) the turbulent stresses are neglected close to the free
surface as shown experimentall$.8,19.

Assuming that air is at respf=0 andr{"}=0), Eq.(22) can be
Fig. 14 Bravo Espan a sail racing boat. Mesh used in the simplified as
analysis.

— Y
njpTij—nip=ni§. (23)
The third component of above equation gives

— Y
P=pTt - (24)

The dynamic pressure is finally obtained from

Fig. 15 Bravo Espan a. Velocity contours.

for solution of Eq.(13) (viz. Eq. (18)).
Step 3. Solve Eq(9) for the nodal velocities at time m-1. The
Dirichlet boundary conditions on the nodal velocities are imposed Fig. 16 Bravo Espan a. Streamlines.
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Fig. 17 Bravo Espan” a. Resistance test. Comparison of numerical results with experimental data.

The solution to this problem is to apply adequate free-surface

Y " . -
p=1733— R +9B8 (25) boundary conditions at the transom boundary. The obvious condi-
P tion is to fix both the free-surface elevatighand its derivative
whereg is the modulus of the acceleration of the gravity. along the corresponding streamline to values given by the transom

Reaching this point the fluid domain has to be updated due position and the surface gradient. However, prescribing those val-
the new position of the free surface. This is an expensive process can influence the transition between the transom flux and the
and a simplified solution can be found by neglecting the changelaferal flux, resulting in unaccurate wave maps.
the free surface and taking into account its effects by prescribingThe method here proposed is to extend the free surface below
the pressure acting on the free surface. In order to increase the ship. In this way the neccesary Dirichlet boundary conditions
accuracy of the solution, the free-surface equation is modified byposed at the inflow domain are enough to achieve the well-
making use of a Taylor series expansiongoih the Oz direction, possessed properties of the problem. We note that is not an ad hoc
[20]. condition, as Eq(11) has to be satisfied also in the wetted surface

Remark 6 The conceptually simplest way to carry out the meshelow the ship. Obviously, this way to proceed is valid both for
updating due to the new position of the free surface and of tilee wetted and dry transom cases and it can be also applied to
ship is by remeshing the new fluid domain. A number of algcships with regular stern. In Fig. 1 the nodes marked wigf “
rithms for computation of moving boundaries and interfaces ifRclude the standard degrees-of-freed¢@) of the free-surface
cluding free-surface flows using interface-tracking and interfacproblem; those nodes marked withb™ introduce the new
capturing techniques and remeshing algorithms have begegrees-of-freedom, while wave elevatignis prescribed at the
proposed in recent yeargl3,21. Indeed, the use of tetrahedranodes marked asc:”
elements and unstructured grids simplifies this process. Howeverlndeed, accounting for every surface element of the wetted ship
remeshing is nowadays too expensive if industrial applications sidirface is not neccesary. Just the first row of elements is enough as
the algorithm are sought. the rest usually have a fixed wave elevation and will not influence

Chiandussi, Bugeda, and & [22] have proposed a simple the results.
method for movement of mesh nodes ensuring minimum elementThis scheme can not be used in the case of partially wetted
distorsion, thereby reducing the need of remeshing. The methodrsnsom when the flow remains adhered to the transom instead of
based on the iterative solution of a fictitious linear elastic problemdetatched flow. These phenomena usually appear for highly un-
on the mesh domain. In order to minimize mesh deformation tisteady flows where wake vortex induces the deformation of the
“elastic” properties of each mesh element are adequately selecfeee surface. To favor the convergence of the free surface to a
so that elements suffering greater distortions are stiffer. Applicatable state an artificial viscosity term has been added to the free-
tions of this technique to ship hydrodynamic problems can tsurface equations in the vecinity of the transom in these cases.
found in[3,7,9.

Examples

Transom Stern Model All examples have been solved in a standard single processor

It is well known that the transom flow occuring at a sufficien£ C using the computer code SHYNE25] based on the algorithm

high speed has a singularity for the standard solution of the fr ere presented anq the pre/post_pro_cem developed at Cl-

surface Eq(11). Several authors have proposed solutions to the E, [26]. Recent industrial applications of the CFD formulation

problem,[23,24], mainly based on experimental observations d?resented can be found [@7].

this phenomena. Next, a more natural solution to solve the tran-Example 1. DTMB 5415 Model. The first case analyzed is

som flow is presented. the David Taylor Model Basin 5415 benchmark model. The ge-
The standard solution of convective equations such as the fregnetry used in the analysis was obtained from the Gothenburg

surface equation requires prescribing the Dirichlet conditions 2000 Workshop databasg28]. The NURBS definition is shown

the inflow. As the transom causes a discontinuity in the domaiim, Fig. 2. The obtained results are compared with experimental

the solution of the free-surface equation close to this region dgta available[28]. The main characteristics of the analysis are

inconsistent with the convective nature of the equation. The direct

solution of the free surface equation in this case results in the® length: 5.72 m, beam: 0.5 m, draught: 0.248 m, wetted sur-

instability of the wave height close to the transom region. This face: 4.861 m,

instability is found experimentally for low speeds. The flow at a * velocity: 2.1 m/seg, Froude number: 0.28, and

sufficient high speed is physically more stable although it still * viscosity: 0.001 Kg/mseg, density: 1000 KgimReynolds

cannot be reproduced by standard numerical techniques. number: 12.31%
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The analysis was carried out for three different gri®m Conclusions
150,000 to 600,000 linear tetrahedra, corresponding to 25,000 anci.h - . -
) e . e finite calculus method provides modified forms of the gov-
115,000 nodesin order to qualitatively analyze the influence of ning differential equations for a viscous fluid with a free surface.

A : e
the element size in the solution. Here only the resuilts COrreSpoggglution of the modified equations with a semi-implicit fractional

ing to the finest grid are shown. The smallest element size us . . .
> p finite element method provides a straight forward and stable
was 0.002 m and the maximum 0.750 m. The surface mesh of @J orithm for analysis of ship hydrodynamic problems.

DTMB 5415 used in the last analysis is shown in Fig. 3. The Numerical results obtained in the three-dimensional viscous

Smagorinsky turbulence model with the extended law of the wal : : o
was ?:hosen%/The tramsom stern flow model presented was usg&alyss of complex ship geometries indicate that the proposed

Figures 4 and 5 show the wave profile on the hull and in a ) merical method can be used with confidence for practical hy-

aty/L=0.082, respectively. Numerical results obtained are co fodynamic design purposes in naval architecture.
pared with the experimental data.
Figure 6 shows the comparison of the wave map obtained wiffcknowledgments
the experimental data available. Financial support for this work was provided by the European

Example 2. KVLCC2 Model. The next example is the analy- Community through projects Brite-Euram BR 967-4342 SHEAKS
sis of the KVLCC2 benchmark model. Here a partially wettegnd Esprit 24903 FLASH. Thanks are given to Dr. H. Sierra from

tramsom stern is expected due to the low Froude number of &Ny useful suggestions. The authors are also grateful to Copa
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available in the KRISO databad@9]. puting some of the examples presented.

The smallest element size used was 0.001 m and the larg S‘{he authors also thank Prof._S. Ide_Isohn, Prof. R. Lohner, and
0.50 m. The surface mesh chosen is shown in Fig. 8. A total ﬁf C. Sacco for many useful discussions.

550,000 tetrahedra were used in the analysis. The tramsom stern
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Numerical Solutions of
Cauchy-Riemann Equations for
Two and Three-Dimensional
Flows

For two-dimensional flows, the conservation of mass and the definition of vorticity com-
prise a generalized Cauchy-Riemann system for the velocity components assuming the
vorticity is given. If the flow is compressible, the density is a function of the speed and
the entropy, and the latter is assumed to be known. Introducing artificial time, a
symmetric hyperbolic system can be easily constructed. Artificial viscosity is needed
for numerical stability and is obtained from a least-squares formulation. The augmented
system is solved explicitly with a standard point relaxation algorithm which is
highly parallelizable. For an extension to three-dimensional flows the continuity equation
is combined with the definitions of two vorticity components, and are solved for the three
velocity components. Second-order accurate results are compared with exact solutions for
incompressible, irrotational, and rotational flows around cylinders and spheres. Results
for compressible (subsonic) flows are also includgoiOl: 10.1115/1.1530632

M. Hafez
J. Housman

Department of Mechanics and Aerospace
Engineering,

University of California,

Davis, CA 95616

1 Introduction for incompressible flows. First the spurious solution must be ex-

cluded via imposing the first-order equations on the boundary.

Numerical flow simulations are usually based on the SOIut'orﬁoreover mass may not be conserved at the discrete level. Special

of Euler and Navier-Stokes equations in terms of primitive g .
. : ! . rrangements, for example, r rids m n r
conservative variables. Alternative formulations based on the v drra gements, for example, staggered grids may be necessary to

. . ) - ) Hfisure conservation of numerical fluxes. For the vorticity, ob-
tor potential or in terms of velocity—vorticity equations are nofineq from the curl of the momentum equations, special treatment
popular because of the associated difficulties and limitations. Rgyequired to guarantee that its divergence vanishes identically at
cently there are some efforts to construct numerical schemgs giscrete level.

based on decoupling the kinematics and the dynamics of the moy the following we will solve generalized Cauchy-Riemann
tion. The motivations and the advantages of such formulations &gyations embedded in an artificial time process governed by a
discussed in Ref.1]. symmetric hyperbolic system leading to a well-posed initial

In this work we are interested in CalCUlating the Ve|OCity ﬁel(!)oundary value pr0b|em_ Since we are interested 0n|y in the
using the continuity equation and the definition of vorticity. Fogteady-state solution, the accuracy of the transient behavior is not
steady, incompressible, inviscid, irrotational flow the two velocityn issue. Standard convergence acceleration techniques such as
components can be obtained from the standard Cauchy-Riemamiltigrid can be employed to improve the efficiency of the calcu-
system. The two first-order equations are equivalent to oftions(see Appendix A
second-order Laplace equation in terms of the potential or theTo avoid odd and even decoupling and to insure numerical
stream function. Also, a least-squares procedure results in tembility, artificial viscosity must be introduced. To guarantee
Laplace equations for the two velocity components. second-order accuracfor incompressible and subsonic flpver-

If the flow is not irrotational and there are also sources in thicial viscosity based on the least-squares formulation is used
field, the nonhomogeneous Cauchy-Riemann equations are not(g@e Hughes et &dl2] and Tezduyar and Hughé€3]). The scheme
ducible to a single second-order equation. The velocity vector cénalso similar to Lerat’s recent work4], at least for subsonic
be represented as the gradient of a potential plus the curl of dlews. The second-order terms vanish identically at the continuous
other vector. The first component is curl-free and the second col@vel since they are consistent with the Cauchy-Riemann equa-
ponent is divergence-free. This decomposition is always possiiiens. At the discrete level they produce higher-order dissipation.
under very general conditions according to the Helmholtz the§lch a construction can be viewed as a compact method to re-
rem. However, for general three-dimensional flows, the boundaP{ace the commonly used fourth order dissipation schemes pro-
conditions are complicated. On the other hand, the least-squab@§ed by McCormackS] and by Jamesof]. _ ,
procedure produces three second-order equations for the three ve-N€ Paper is organized in four sections; governing relations,
locity components. It is not clear, however, how to impose easi merical algorithms, numerical results, and conclusions with
the entropy condition, in such a formulation, in order to excludg®Me general remarks.
expansion shocks for simulation of transonic flows.

The least-squares formulation has other problems as well, ev;n Governing Equations and Boundary Conditions

Contributed by the Applied Mechanics Division offf AMERICAN SOCIETY OF The equations for flow over a cylinder and over a sphere writ-
MECHANICAL ENGINEERsfor publication in the ASME QURNAL OFAPPLIEDME-  tan in lindrical an herical rdinat r iven
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 24,e cy drical and spherical coo dinates are given.
2001; final revision, June 11, 2002. Associate Editor: T. E. Tezduyar. Discussion onFlow Over a Cylinder
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Continuity Equation
Department of Mechanical and Environmental Engineering University of California— ’

Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four 101 a(rpv 1 d(pv
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Vorticity Definition. Table 1 Shown are the total number of iterations and final max
norm error of (v,,vy,v,) for the computed solution where the
error is the difference between the exact analytic solution and
-z w,. ) the numerical results

r o oJar r do

€ Number of Iterations Absolute Error
Three-Dimensional Flow Around a Sphere System 1 1757 0.0084
Continuity E ti System 2 1 1805 0.0147
ontinuity Equation. System 3 _AZ[ 381 0.0309
1[1 a(r?pv,) 1 d(sinfpuy) 1 dpvy
plr? or rsing a6 rsing d¢é
®3)
v, =0 atr=r; (6)
Vorticity Definitions. .
vy andv, are given atr=r,, ()]
1 dv, 1d(rvy) .
- 7z =w, (4) Wherer; andr, are the radii of inner and outer spheres.
rsinfg d¢p r or
1 (9(rv9) 1 (9vr
T T =0 5)

(b)
- = = - ° ! 2 y ‘ Fig. 2 (a) Plot of the local Mach number for compressible flow
(b) around a cylinder with M, =0.2. (b) Plot of the local Mach num-
ber for compressible flow over sphere with M,.=0.2. (c) Ex-
Fig. 1 (a) Streamlines for incompressible flow over a cylinder ample 2: Convergence history for the  ||r|.. norm for systems 1
with @,=0. (b) Streamlines for incompressible axisymmetric and 2. (d) Convergence history for the  ||r||,, norm for systems 1
flow around a sphere with @ ,=0. and 2.
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Example 6: Convergence History for Residual M = 0.1
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Example 7: Convergence History for Residual M = 0.2
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Fig. 2 (continued )

In case of irrotational, isentropic flows the vorticity vanishesvhere M., is the freestream Mach number. For incompressible
identically and the density is related to the speed according flows M =0.

Bernoulli’s law: )
3  Numerical Methods

-1 1ly—-1 ] . .
p=|1— YTM?L( g?2-1) , (8) Incompressible and compressil{gibsoni¢ flows around cyl-
inder and spheres are calculated using a least-squares formulation
Table 2 Shown are the total number of iterations to reach a Table 3 Shown are the total number of iterations to reach a
residual tolerance of 10 ~° for the computed solutions with e residual tolerance of 10 ~° for the computed solutions with €
=1 and e= Ar/2 and freestream Mach numbers 0.1 and 0.2 =1 and e= Ar/2 and freestream Mach numbers 0.1 and 0.2
€ Iterations(M=0.1) Iterations(M-=0.2) € Iterations(M=0.1) Iterations(M-=0.2)
System 1 1 1467 1481 System 1 1 3657 3647
System 2 Ar/2 231 228 System 2 Ar/2 341 344
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Table 4 Convergence results

V-Cycle Point Relaxation
N Iterations le]l-. Time(sec) Iterations le]l.. Time(sec)
322 15 1.40e-2 3 532 1.40e-2 58
642 15 3.52e-3 12 1754 3.52e-3 823
128 20 8.80e-4 69 6787 8.89e-4 11810
256 23 2.19e-4 337 26982 2.27e-4 107622

as well as Cauchy-Riemann equations embedded in a symmefrie grid dimensions are 3637 and the radius of the cylinder is
hyperbolic system which is augmented by artificial viscosity. Alhondimensionalized to 1, the circulation around the cylinder is
spatial derivatives are discretized using second-order accurateképt atl’=0, the vorticityw,= 0.0, and Mach numbers of 0.1 and
nite volume schemes. The time derivative terms are discretize® are used. The program is run until a residual tolerance of
via first-order time differences. The discretized systems are solveéde-5 is met(See Figs. @,c) and Table 2.

using a point Gauss-Seidel relaxation scheme. The source code isxample 3. We solve for compressible flow over a sphere
implemented in G-+ and run on an HP-Visualize C3000 work-ysinge=1 ande= Ar/2 for a spherical coordinate system in two
station. In the following, the problems we solved are stafédn-  space dimensions. The grid spacingAis=0.1 andA 6= 7/18.
sonic flows with shocks are calculated [7] using similar The grid dimensions are 3637 and the radius of the sphere is

schemes but with linearized boundary conditions. nondimensionalized to 1, the vorticiy,= 0.0, and Mach num-

The governing equations, denoted bers of 0.1 and 0.2 are used. The program is run until a residual
tolerance of 1.0e-5 is metSee Figs. 2§,d) and Table 3.

L(w), 9) All of the above results are obtained using constant artificial

viscosity, e. In general, howevere can vary from point to point
can be imbedded in the following system: and from iteration to iteration and it can be optimized, depending
on local flow conditions, to accelerate the convergence of the

dw=L(w)+ eL*L(w) (10) calculations.

whereL* is the adjoint of the operatdr. For cartesian coordi- © Concluding Remarks
nates and incompressible irrotational flowlstL(w) are the Given the vorticity and the density, the velocity components for
Laplacians of thev components. two and three-dimensional flows can be calculated from a gener-
The boundary conditions we imposed are alized system of Cauchy-Riemann equations. Standard numerical
On Solid SurfaceA Dirchlet condition is used for the radial algorithms are applicable to achieve the expected accuracy and
velocity v, and a Neumann condition derived from the vorticityefficiency. For a complete flow simulation, the dynamics of the
equation is used for the angular velocity (andv ,). motion must be included to provide the entropy and the total
Far-Field: A Dirchlet condition is used for the angular velocityenthalpy and hence the vorticity. The full simulation is still under
v, (andv 4) and a Neumann condition derived from the continuityprogress and will be reported separately.
equation is used for the radial velocity .
Flow Field: Periodic boundary conditions are used within the
flow field for bothv, andv, (andv ;). Appendix

4 Numerical Results Multigrid Convergence Results. The convergence of the

. point relaxation schemes can be enhanced by implementing a
4.1 Incompressible Flow. We tested the present formula-myltigrid V-Cycle scheme. The V-Cycle scheme from Briggs,
tion for cases with analytical solutions, for example, flow withjenson, and McCormick9] was modified to compute the incom-
circulation over a cylinder, uniform and shear, as well as a cylifyessible, irrotational flow over a cyclinder using the Cauchy-
der in a rotating fluidsee Bachelof8]). We have also calculated Riemann equations wite= /8. The fine grids used for the com-
flow over a sphere using axisymmetric as well as the full thregyiations areN=322. 642 128 256. The coarsest grid used for
@mensnona! equations. In Fig. 1, the streamlines are plotted 9% ch run isN=82. A comparison of point relaxation and V-Cycle
incompressible flows over a cylinder and a sphere. In all the abo 9 12) is shown below. The parameterd =1 is the number of
cases, the results are satisfactory in terms of accuracy and con glréxations used going aown the grids ari=2 is the number of
gence.fFﬁr example the results of flow calculations over a sphefg,, ations used coming up the grids. The comparison includes
are as Tollows. the number of iterations until convergence [of|..<10e-5, the

Example 1. In this example we assume axisymmetric irrotagpsolute errof|e|.. between the computed solution and the ana-
tional flow around a sphere, but we solve for each of the velocifytic solution, and the CPU runtiméSee Table 4.
componentsy; ,v,,v,), as in a fully three-dimensional flow. Nu-
merical solutions are computed in a spherical coordinate SySt%ferences
with three space dimensions. The grid spacings usedAare
=0.1, AG=/18, andA ¢==/18. The grid dimensions are 36 [1] Tang, C., and Hafez, M., 2003, “N_um?rical Simulation of Steady Compress-
% 19x 37 and the radius of the sphere is nondimensionalized to 1,.,, '°'¢ Flows Using a Zonal Formulation,” Comput. Fluids, o appear.

. X A _ 2] Hughes, T.J.R., Franca, L.P., and Hulbert, G.M., 1989, “A New Finite Element
The program is ran until a residual tolerance of 1.0e-5 is met and ~ Formulation for Computational Fluid Dynamics: Viil. The Galerkin/Least

the results are shown in Table 1. Squares Method for Advective-Diffusive Equations,” Comput. Methods Appl.
Mech. Eng.,73, pp. 173-189.
4.2 Compressible Flow [3] Tezduyar, T.E., and Hughes, T.J.R., 1983, “Finite Element Formulations for

Convection Dominated Flows With Particular Emphasis on the Compressible

Example 2. We solve for compressible flow over a cylinder 4l Eule{ quuatlzn(s:," AIA/é(8g—0001325, RJarj(L;ar)I/ gapet; l‘\:k)- 83-0t1§5-h or Ml

: : [ _ : ; erat, A., and Corre, C., , “Residual-Based Compact Schemes for Mul-

with and without denSIty in .the. least squgres formUIatlc.m using tidimensional Hyperbolic Systems of Conservation Laws,” Comput. Fluids, to
e=1 and e= Ar/2 for a cylindrical coordinate system in two appear.

space dimensions. The grid spacingAis=0.1 andA 6= 7/18. [5] McCormack, R.W., and Paullay, A.J., 1974, “The Influence of the Computa-
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tional Mesh on Accuracy for Initial Value Problems With Discontinuous or the Generalized Cauchy Riemann Equations and Simulation of Invicid Rota-
Non-linear Solutions,” Comput. Fluid®, pp. 339-361. tional Flows,” Comput. Fluids, to appear.

[6] Jameson, A., Schmidt, W., and Turkel, E., 1981, “Numerical Solutions for the [8] Bachelor, G.K., 1967An Introduction to Fluid DynamicsCambridge Univer-
Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping sity Press, Cambridge, UK.
Schemes.” AIAA Paper No. 81-1259. [9] Briggs, W.L., Hensen, V.E., and McCormick, S.F., 208QVultigrid Tutorial.

[7] Roy, J., Hafez, M., and Chattot, J., 2003, “Explicit Methods for the Solution of SIAM.
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Hitachi Ltd., A numerical method for the prediction of an unsteady fluid flow in a complex geometry
Ibaraki, Japan that involves moving boundary interfaces is presented in this paper. The method is also
applicable to the prediction of the far-field sound that results from an unsteady fluid flow.
A. Manahe The flow field is computed by large-eddy simulation (LES), while surface-pressure fluc-
Senior Engineer, tuations obtained by the LES are used to predict the far-field sound. To deal with a moving
Research & Development Laboratory, boundary interface in the flow field, a form of the finite element method in which overset
Hitachi Industries Co., Ltd., grids are applied from multiple dynamic frames of reference has been developed. The
Ibaraki, Japan method is implemented as a parallel program by applying a domain-decomposition pro-

gramming model. The validity of the proposed method is shown through two numerical
examples: prediction of the internal flows of a hydraulic pump stage and prediction of the
far-field sound that results from unsteady flow around an insulator mounted on a high-
speed train.[DOI: 10.1115/1.1530637

1 Introduction static pressure fluctuations predicted by their computations agreed
Compuatonl id dynaics s aready become an na8XT1IE01E) 1L i Meoses ores He o Sisoueoner
pensable tool for turbomachinery design mainly because of t g ; ; ; ;

: . . ~ Ible flows in turbomachinery, and applied the method to predict
advances in numerical methods for wrbomachingse, for ex the internal flows in a centrifugal pump stage. A reasonably good

ample, Moore et al[1], Dawes[2], Hah et al.[3], and Denton . .
. . agreement has been obtained between the predicted and measured
[4]) and the remarkable progress in the performance of high-en lues of the impeller’s exit flow.

computers. Regarding internal flow simulations of a hydraull\é Because the RANS equations are in terms of time averages,

pump, where our primary interest lies, G4t used the incom- : X S X g
pressible version of Dawes’ three-dimensional Navier-Stokes coﬁ wever, RANS computation has .|nherent Il.mltatlons in predict
(Dawes[2]) to investigate the internal flows of a mixed-flow"! the unsteady nature of a flow field. Solutions from the RANS

rﬁquatlons usually deteriorate when the flow field of interest in-

pump impeller with various tip clearances. Although the overa] ’ : .
loss tends to be underestimated, the Euler head as well as the fyé%}\yes the Iarge scale sepgranons t.hat are often enpountgred n
ernal flows in turbomachinery particularly at off-design points.

patterns at the impeller’s exit are reasonably well predicted. Take- ! - - )
mura and Gotd6] applied the Denton’s viscous code LOSS3I§§n the qther hand, large-eddy simulatigrEs), in ‘.Nh'Ch Wb“' .
and its multistage version, MULTISTAGE iDenton[4]) to com- ent eddies of a scale larger than the cqmputatlonal grid are di-
pute the internal flows of a low-specific-speed bowl pump stagECtly .computed,. has the pot.entlal to predict unsteady flqws and/or
Despite the highly distorted nature of the diffuser flow, Takemu pw fields that include regions of Iarge-scalg separat_lon much
and Goto[6] found that the distributions of the total pressur ore accuyately than RANS-based computation does in general.
predicted by the stage computations qualitatively agree with t ince the first achievement of LES of a turbulent channel flow by

: : eardorff [10], numerous researchers have investigated the
measured equivalent. Kaupert et &f] computed the internal %pbgrid-scale model&ermano et a[11], Lilly [12], Jordar{13],

flows of a high-specific-speed radial pump impeller by using — o
commercial code, TASCflow version 2.3. Their computations suf—nd Hughes et all14]), initial and boundary conditionLund

cessfully predicted the discontinuities in the measured impelle %5]'| Sn;i_rnov |ﬁt1a7|'[1f6])’|_a|5nsd rl;umer_ical mlet_hocliése_e, f;)r ﬁx'
head-flow characteristics, including the hysteresis of the flow ra@&Pe: Piomellif17]) for , by using relatively simple flow
eometries such as homogeneous turbulence or a plane channel

at which the discontinuities take place. Although the internal flo . : .

of a pump are essentially unsteady, the steady Reynolds-aver 2Y: Little \_Nork, hpwe_ver, can be fc_)und n the literature concern-

Navier-Stokes(RANS) equations were used as the governin g |ndustr|{;1I applications of LES, in particular for turbomachin-

equations in all the computations mentioned above. More recenffyy- 1 "€ ultimate goal of our study is therefore to develop a prac-
tical engineering tool that is based on LES, with a particular

Shi and Tsukamot§8] applied the unsteady form of the RANS hasi : - imulati t turb hi d
equations for computing unsteady interactions that take placeqﬁ'pl"’ls"s onf internal-flow K5|mu at|0|n51801 turbomachinery an
the region between the impeller blades and diffuser vanes. THE Ulations o _aeroacoustmﬁ ato et "’."[ ' %'. .

he simulation of aeroacoustics is a promising area for LES

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF a_lppllcatlon(Tam [20]’ and We”S and Renalﬂﬁl]) smcg Informa-.
MECHANICAL ENGINEERSfor publication in the ASME GURNAL OF AppLIEDME-  iON ON the unsteady flow fields that generate sound is essential for
CHANICS. Manuscript received by the Applied Mechanics Division, July 30, 2001many applications. The work that has been published regarding
final revision, June 11, 2002. Associate Editor: T. E. Tezduyar. Discussion on tm\N-Speed wake sound, where our primary interest lies, is rela-
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, DePEiely sparse compared to that on aeroacoustics resulting from
ment of Mechanics and Environmental Engineering, University of California—Sanfa . . . .

Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months a gh-speed ﬂOWS_- The key issue in aeroacoustics resulting from
final publication in the paper itself in the ASMBURNAL OF APPLIEDMECHANICS.  low-speed flows is how accurately one can compute the fluctua-
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tions in the flow field that compose the source term of the acoushereu; (i=1,2,3) is the grid-scale velocity component in the
tics computations. After pioneering work done by Hardin ang;-direction, p is the grid-scale static pressuie,js the density,
Lamkin[22], who computed aerodynamic sound generated fromamd v is the kinematic viscosity.

laminar wake of a circular cylinder by using acoustic analogy f; is the inertial force associated with the motion of the frames
proposed by How¢23], several researchefékishita et al.[24] of reference. In particular, for a stationary frame of reference,
Haruna et al[25], and Adachi et al[26]) applied essentially the .

same method as Hardin and LamKkR22] to compute the aerody- fi=0 =123 ©)
namic sound that is generated from a turbulent wake of & wingiije for a rotational frame of reference the centrifugal forces and
They all used a third-order upwind finite difference scheme 18 ,iqiis forces must be added:

compute unsteady flow fields. Although the overall tendency of

the aerodynamic sound could be captured through their computa- ~ f,=02x;+2QU,; f,=02%x,—2QUu;; f3=0 4)
tions, the agreement between the computed sound spectra and the ] . o
measured equivalent was not very satisfactory. Kato and Ikegafg€re<? is the angular velocity of the frame of reference, which is
[27] first applied LES in the finite element context to simulate th@ssumed to be rotating about the positkgeaxis. S
unsteady turbulent wake of a circular cylinder at a subcritical The effects of eddies that are not resolved by the Gidbgrid-
Reynolds number. Kato et aJ28] also computed the far-field scale eddigsare modeled after Smagorinsk$2], and incorpo-
sound that is generated from such a wake by using an acoudgted with the Van-Driest wall-damping function that represents
analogy proposed by CurlR9] (see also Lighthill[30] in this the near-wall effects:

regard. They compared the predicted sound-pressure spectra to N T g Ju

their wind-tunnel measurements and obtained fairly good agree- —u/u/+ _5””((”';:,,56&(_' 1 (5)
ment up to a Strouhal frequency of about ZeDfrequency ten '3 aXj X

times as high as the Karman vortex shedding frequenBut, 190 go

again, their computations were limited to a relatively simple flow Vsey—(Csz)ZQSjSij)o's; s Z_(_f + _J) (6)
geometry such as a cylinder wake. Recently, Siegert g§Gal. 2\ 9x; 0%

attempted to simulate aerodynamic sound generated from a more N

realistic flow field, such as a flow around an automobile mirror. f=1—exd — y At=250 @

However, their computation indicated that considerable room for AT’ e

improvement remains concerning our capability to predict aerody- - L o

namic sound. Our work described here therefore concentratesﬁ?‘? model coefficienC; is fixed to 0.15, which is a standard
glue for flows with large separation, and the filter sizes com-

improving prediction accuracy regarding the aerodynamic soud S
geﬁerate%l Ff)rom a complex flox/v figld gegmetry. y puted as the cube-root of the volume of each finite element.

For turbomachinery simulations, it is necessary to deal with Detailed explanations of both the frames of reference and the
i o'ggundary conditions will be given in Sections 3 and 4.

moving boundary interfaces between flow fields, such as th
that appear between a rotating impeller and a stationary casing. Irp 2 Computation of the Acoustic Field. In this study, the
our study, the moving boundary interface is taken into account Brodynamic sound is assumed to be generated by flows, at rela-

the overall grid is composed of sevetabually from two to fiveé  radiated from a flow at a low Mach number can be calculated
grid sets and appropriate transactions take place at the interfgegn Lighthill-Curle’s equation[29,30}:

regions. The overset-grid approach is also applied to increase the

grid resolution around the body of interest for computations in the 1 & Tij(y,t=rla)

field of aeroacoustics. This is essential as a way of obtaining an Pa= 7 o r d°y

accurate sound-pressure spectrum. In consideration of its applica- Y

tions to a complex geometry, the finite element method is used to 1 9 nip(y,t—ria)

discretize the governing equations of the flow field. It is imple- —d (8)

mented for parallel processing, therefore enabling us to complete 4m X Js r

a large-scale flow-field computation within a practical period Qf herea denotes the speed of sound in the ambient fipidhe
computation on a current-model distributed-memory parallel COMiatic pressure in the flow fielg, the far-field sound pressure,

pulter. hat foll h . . f the flow field he location of the sound-observation pointthe coordinates at

n what follows, the governing equations of the flow field angy,q yise sourca, the distance between the noise source and the
the acoustic field will be explained in Section 2. The numerical, ,nq_observation point, amg the outward unit vector normal to
method, including the overset-grid approach, the formulation @lg sq)iq houndaries. In the above expression, the assumption that
finite elements, and the implementation for parallel processinge fio, has a high Reynolds number makes the contribution of
will then be described in Section 3. Finally, in Section 4, tw

- 3 Qiscous stresses to the surface integral negligible.
numerical examples, one from turbomachinery-related computa-r.

X X : . ij in the volume integral denotes Lighthill's acoustic tensor
tion and the other from computations of aeroacoustics, will bfn ;
: N d can be written as
given to demonstrate the validity of the proposed method.
Tij=puiuj+(p—a’p) &+ )
2 Governing Equations
(10)

au;  du; 2 duy
2.1 Flow-Field Computation. The governing equations on Mij = (e KJF x| §l“5ii X
which the present study is based are the spatially filtered continu- ! '
ity Eq. (1) and the Navier-Stokes Eqg2) for the flow of an  The volume integral in Eq8) represents the contribution to the
incompressible fluid, as represented in Cartesian coordinates sound of the vortices in the flow fielgluadrupole sourcgswhile
_ the surface integral represents the contribution of the sound scat-
ﬁ:o N tering at the solid boundaries in the flow fieldipole sources
IX; For low-frequency sound generated from a flow at a low Mach
number, which is of our primary interest, the contribution of the
quadrupole sources to the far-field sound is, in general, negligible
in comparison with the contribution of dipole sourcez9]. More-
(2) over, if the dimensions of the body are much smaller than the

_uIIuJ!

J J 1dp @ du;  du;
u; p {V( ! ) + fi

_UI u=——- —+ — _
ot 14 (?Xi (9XJ (7XJ (9Xi

+—uu; =
ax;
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Fig. 1 Schematic view of an example of overset grids from

dual frames of reference

wavelength of the sound, as is the case in this study, the dipc
term can be converted to the time-derivative form as follows:

_ 1 x 0 /a)dS,
Pa=7 27251 Snip(y,t—f a) (11)

Thus, we can calculate the far-field sound from the quctuatinFq ) N
surface pressure obtained by LES. Ig. 2 Example of a subdomain mesh partitioned by the RGB

method (computational mesh for flow in a cubic cavity parti-
tioned into eight subdomains )

3 Numerical Method

3.1 Overset Grids From Multiple Dynamic Frames of Ref-  first-order upwind methods and hybrid methods that are often
erence. In this study, a moving boundary interface in the flonused for RANS-based computations are, in general, not appropri-
field is treated with overset grids from multiple dynamic frames aite for use in LES. The excessive numerical dissipation that is
reference. The application of this method to the interaction bassociated with such schemes almost invariably dampens the mo-
tween a rotating impeller and a stationary casing in a pump tion of large eddies. Instead, we used a streamline-upwind finite
schematically depicted in Fig. 1. A computational mesh that r@lement formulation, which was previously reported by one of the
tates along with the impeller is used to compute the flow withiauthors(Kato and Ikegaw#§27]), to discretize the governing equa-
the impeller. On the other hand, a dedicated stationary computi@ns of the flow field. This formulation is based on the SU-PG
tional mesh for each part computes the flow in stationary parts wiethod originally proposed by Brooks and Hughes$] and
the pump, such as the inlet whirl-stop, vaned diffuser, and di$ezduyar and Hughg87], which shifts the governing equations
charge casing. Each mesh includes appropriate margins of overlaphe streamwise direction by modifying the weighting function.
with its neighboring meshes upstream and downstream. At evépyr formulation combines the SU-PG method and the Taylor-
time-step, the velocity components and static pressure within edgalerkin method proposed by Donea et[&B], which recursively
such margin are the values interpolated in the computational mestes the governing equations to modify their discretized form.
of the corresponding neighbor. Element-wise trilinear functionBhis combination results in a shift of the governing equations with
are used to interpolate both the velocity components and the statimagnitude equal to one-half of the time increment multiplied by
pressure. When velocity components are overset, an approprid@ magnitude of the local flow velocity. This shift exactly cancels
coordinate transformation must be applied to take the differencest the negative numerical dissipation that is otherwise the result
between the frames of reference into account. For the impellef, applying the conventional first-order explicit Euler’s method
because of its rotation, the finite elements at the interface betwesdl guarantees stability and the accuracy of solutions. The pro-
the stationary and rotating parts, at which the given interpolatiopesed formulation essentially possesses second-order accuracy in
take place, change for every time-step. The interaction betwet@ims of both time and space, and has been successfully applied to
the stationary and rotating parts is thus taken into account. ~ the LES of external as well as internal flo\it¢ato et al.[18,28)).

Numerous methods that are able to deal with moving and/orThe pressure algorithm is based on the ABMAC method pro-
deforming boundaries in fluid flow have been proposed in th@sed by Viecelli[39], in which the velocity components and
finite element contextsee, for example, TezduyfB3]). A great static pressure are simultaneously corrected until the maximum
advantage of our method is its flexibility. Computational meshekivergence of the flow field decreases to less than a prescribed
are generated for parts, and the meshes can then be combined witical value.
each other to investigate a flow field in which one has a particularDetails of this formulation, along with the results of validation
interest. In fact, the method is thus also applicable to the simulstudies, have been given by Kato and Ikeg§#g and Kato et al.
tion of multistage turbomachinery. [28].

The margin of overlap and the procedure for interpolation have
been discussed in detail by lkegawa et[84] and Kaiho etal. 3.3 Parallel Implementation. Most flow fields encountered
[35]. in engineering applications are complex and their Reynolds num-

bers are generally higtusually in the range £910%). An LES for

3.2 Finite Element Formulation. The accuracy and stabil- such a flow field requires a huge number of grid cells. We have,
ity of the discretizing method is of great importance in LES betherefore, implemented the formulation described in the previous
cause the motion of large eddies has to be directly computed. T$estions as a parallel program by using the domain-decomposition
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Table 1 Results of benchmark tests

Hitachi's SR8000 )

(CPU time needed to advance by a single time-step in a cubic-cavity flow simulation on

Seconds Taken Performancéd GFLOPS
Number of Number of by CPU per - Ratio
Processing Nodes Elements Time-Step Peak[A] Sustained B] [BI/[A]
1 1.0 M 3.45 14.4 2.03 14.1%
2 20 M 3.62 28.8 3.87 13.4%
4 40 M 3.89 57.6 7.23 12.6%
8 8.0 M 3.99 115.2 14.04 12.2%
16 16.0 M 4.06 230.4 27.60 12.0%

programming model, so that the implementation efficiently usesance of 14.4 GFLOPS per processing node. In this benchmark
the resources of a distributed-memory parallel computer andtést, the number of finite elements per processing node was fixed
thus suitable for computing large-scale problems. to one million and the total number of finite elements was in-

In the domain-decomposition programming model, the globateased to 16 millioriwith 16 processing nodgsThe results are
computational domain is partitioned into a prescribed number shown in terms of the time needed to advance by one time-step,
subdomains, and each of the subdomains is assigned to a d#ui- sustained overall performance, and the ratio of the sustained
cated processing node. Computation in the various subdomaingésformance to the peak performance. As the number of process-
unified by implementing appropriate forms of inter-subdomaiimg nodes increased, the ratio of the sustained performance to the
communication. Various partitioning algorithnisee Simor40] peak performance gradually deteriorated. The sustained perfor-
and Farhat and Lesoinrid1] for detaily have been evaluated in mance, however, ranged from 12% to 14% of the peak perfor-
terms of the quality of their partitioning and of the memory andhance. This is a fairly high value for a finite-element-based flow
CPU time required by the partitioning process. From this exteselver, which generally requires the indirect and random-access
sive comparative study, we have concluded that the recursieading of data from memory. Figure 3 is a plot of the overall
graph-bisection(RGB) algorithm is best suited to the presensustained performance against the number of processing nodes for
study. A simple example of the partitioning of a computationgdhe same benchmark test. A parallel computing efficiency of over
mesh using this algorithm is shown in Fig. 2. 85% was achieved on this platform, which confirmed that a large-

The communicating pairs and/or local coordinates where inteseale computation of flow with a grid containing more than 10
polations are taking place change at the moving-boundary intenillion divisions can be completed within a practical period of
faces for every time step, as was briefly described in Subsectigme on a high-end computer of the current generation.

3.1. The usuafunsophisticatedparallel implementation therefore
includes broadcast communications at each time-step as the pyo-
cessing node searches for its new communication pairs. This cdfn- Simulation Examples

munication overhead seriously degrades the overall parallel com-After ensuring the validity of the LES code we developed by
puting performance on most hardware platforms. In our study, th@plying it to the calculation of basic flows of various tygksito
communication pairs are searched for in advance by serial coand Ikegawg 27] and Kato et al[28]), the code is now being
putation and fed to the parallel flow solver as input data at each
time-step. This procedure not only avoids the otherwise inevitable
communications overhead but also brings in greater flexibility
with the flow solver. By preparing appropriate input data for the
moving-boundary interfaces, the flow solver is capable of comput-
ing flow fields with an arbitrary number of moving-boundary in-
terfaces that move in an arbitrafigput defined manner.

The performance of the proposed method in terms of parallel
computing was evaluated on various hardware platforms. Table 1
shows one such example, where the method was tested on Hita-
chi's SR8000 supercomputer, which has a theoretical peak perfor-

|
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Fig. 4 Cross-sectional views of the test pump (note: arrow-
heads in the figure indicate the positions where pressure fluc-

Fig. 3 Sustained parallel computing performance tuations were measured )
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casing
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Inlet whirl stop

Fig. 5 Computational mesh for a mixed-flow pump, composed
of meshes for an inlet whirl-stop, an impeller, and a double-
volute discharge casing

tested on real-world problems. Two examples will be describe
below: one from the simulation of turbomachinery and the othe

from aeroacoustical simulations.

4.1 Simulation of Unsteady Flow in a Mixed-Flow Pump

Fig. 7 Computed instantaneous distributions of surface pres-

Configuration of the Test PumpThe internal flow in a mixed- sure (Q/Qy=60%)
flow pump stage that has a high specific-speed was computed

under two operating conditions: at the design poi@/Qq
=100%) and at an off-design poinQ(Qy=60%) (Kato et al.

[18]). Horizontal and vertical cross sections through the test purgguple-volute discharge casing. The designed specific spgefi
are shown in Fig. 4. This pump is composed of an inlet whirl-stoe pump is 2.1. Such a pump is typically used for drainage pur-
(not shown, a four-blade open-shroud mixed-flow impeller, and 8,565, and can pump a huge amount of watgrto 50 ni/s) from

Fig. 6 Computed instantaneous distributions of surface pres-
sure (Q/Q,=100%)

36 / Vol. 70, JANUARY 2003

a river at a lower level. Therefore, it is important to evaluate the
steady and unsteady fluid forces on the impeller, since they may
sometimes cause problems of vibration and/or noise. To obtain
comparative data for use in validation, load cells were placed in
the bearing housings to measure the axial and radial fluid forces
acting on the impeller and semiconductor pressure transducers
were installed in the casing walls to measure static pressures.

The Computational Mesh and Its Boundary Condition§he
computational mesh used in this study is shown in Fig. 5. The
overall mesh is composed of the meshes for each of three parts: an
inlet whirl-stop, a mixed-flow impeller, and a double-volute cas-
ing. These are overset as described in Section 3. The actual im-
peller has a tip clearance of 0.1% of the impeller diameter, but this
clearance was not taken into account in the simulation. The num-

1.5
—e—: Measured
o :LES
1.0
3
X =
0.5
0.0
0 50 100 150
Q (%)
Qq

Fig. 8 Comparison of head-flow characteristics
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Table 2 Comparisons of normalized thrust forces on impeller
0.04 Impeller forces (Q/ Q,=100%)
: fx, ——: f - -
o 00 x y Radial Thrust Axial Thrust
P Ng 0.0 Average RMS Average RMS
Q N Measured 0.0189 0.0156 0.449 0.0117
-0.02 LES 0.0178 0.0143 0.340 0.0096
-0.04
20 220 240 260 280 30
ot suction surface of the impeller blades and on the casing liner for
2n the design-point case, and Fig. 7 shows the corresponding distri-
_ _ ) ) butions for the off-design-point case.
Fig. 9 Computed fluid forces acting on the impeller (Q/Qq The static pressure is normalized by twice the dynamic pressure
=100%) that corresponds to the circumferential veloaityat the impeller

exit diameterD. The interval between the contour lines of the
normalized values is 0.02. At the design point, the impeller blade

bers of grid points are approximately 150,000 for the inlet whirvas almost uniformly loaded in the spanwise direction. No sig-
stop, 500,000 for the impeller, and 200,000 for the volute casingificant differences in the flow field were seen between blade
for a total of about 850,000 grid points. passages. On the other hand, in the off-design case, each blade

The boundary conditions were as follows. A uniform distribuwas highly loaded near its tip due to the positive incidence of the
tion of velocity was assumed for the upstream boundary of th@coming flow. The boundary layers on the suction side of the
inlet-whirl-stop mesh. The pre-rotation was assumed to be zéMdes separated from the blades just after the leading edge and
and the boundary layer at the inlet was not considered. At tf/lmed separation bubbles in that region. However, this separation
downstream boundary of the volute-casing mesh, the fluid tractiglifl not lead to stall conditions. This is also confirmed by the
was assumed to be zero in all three directions. On the solid wall§ad-flow characteristics as described below. This was probably
a no-slip boundary condition was prescribed, and was incorpdue to the relatively small pitch/chord ratio of this particular
rated with the Van-Driest damping function described in SubseRUmPp. Note also that the pressure distributions on each blade ex-
tion 2.1. Note that the wall of the casing liner of the impeller mesfibit & nonuniformity that appears to be associated with the un-
is moving in the negativé} direction in the rotational frame of steady flow field in the off-design case.

reference, thus the wall velocity was given in this form. The reso- Computed Head-Flow CharacteristicsThe computed total
lution of the grid near the wall's surface was not necessarily fing, 5 heads, together with their measured equivalents, are plotted
enough for the no-slip wall boundary condition to actually bg, rig g \where they are normalized by using the circumferential
correct. However, since reliable wall-stress boundary Cond't'o(}élocityuz at the impeller exit diameter. Although only two points
that are applicable to the LES of complex turbulent flows have rﬁire computed in this study, the predicted pump heads quantita-

been proposed, the no-slip wall condition was used in this studye|y agree with the values measured at the corresponding points,
The time increment for the computation was set so that 40Qf,ich s quite encouraging.

time-steps corresponded to a single revolution of the impeller.
Starting from an initial flow field in which all of the velocity =~ Computed Fluctuations of Fluid Force on the Impellefig-
components and the static pressure were set to zero, the flow fietd 9 shows the fluid forces computed as acting on the impeller at
in the pump stage became statistically stable within about téime design point over a time period that corresponds to ten impel-
revolutions of the impeller and remained in a statistical state & revolutions. In this figureB is the width of the impeller’s exit,
equilibrium after that. The total pump head, the fluctuating fluidndf, andf, , respectively, denote the fluid forces exerted on the
forces, and the fluctuating static pressures were calculated by awpeller in thex andy-directions of the stationary frame of ref-
eraging the flow field during the subsequent ten revolutions of tiegence. The power spectra of the computed fluid forces are shown
impeller. The computations were carried out by using four praa Fig. 10, wherefg and f,, respectively, denote the radial and
cessing nodes on the Hitachi SR8000 supercomputer. The requisgéal thrust forces. For both components, the higher harmonics of
CPU time was about one second per time-step. The total CRlie blade passing frequenc¢BPF) are also computed. Table 2
time for a single operating condition was thus about 22 hours. compares, for the design-point case, the computed and measured
. . . values of radial and axial fluid forces. Except for the time-
_Computed Instantaneous Flow Fields-or a typical flow field, 5y eraged axial thrust force, the computed fluid forces agree with
Fig. 6 shows the instantaneous static pressure distributions on {ng experimental results within a maximum difference of 12%.

0.15
—e—: Measured
o :LES
. 0.1
S 2|,
= ]| g
A 0.05
0.0
0 50 100 150
0 100 200 300 400 500 Q (%)
f ") Q
Fig. 10 Computed power spectra of fluid forces on the impel- Fig. 11 Comparison of fluctuations in radial thrust force on
ler (Q/ Q,=100%) the impeller
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Table 3 Comparison between measured and calculated values
of normalized fluctuations in static pressure at the inner tip of

~~~~~~~~~~~ : top, : midspan _
021 - bottom the tongue (Q/ Q4=100%, rms values )
Bottom Midspan Top
Measured 0.0144 0.0200 0.0152
LES 0.0171 0.0187 0.0166

4
200 220 240

ot
2n

260 280 30

Fig. 12 Computed static-pressure fluctuations at the inner tip
of the tongue (Q/Q,=100%)

rately captured by these computations, and that the unsteady na-
ture of the flow fields has been taken into account.

Computed Fluctuations in Static Pressure at the Inner Tip of the
Tongue. Figure 12 shows the computed fluctuations in static
pressure at the inner tip of the tong(see Fig. 4 where the

The large discrepancy seen in the time-averaged axial thrust fofltetuations in pressure are most pronounced. The rms values of
is probably due to not including the gaps between the impelleitee computed and measured pressure fluctuations are given in
shroud and casing wall in the computation model. Figure 11 isTable 3. The computed pressure fluctuations agree with the mea-
plot of the computed and measured values for fluctuations in sured values, to within about 5% to 15%.

dial fluid forces against the flow-rate ratio. At both flow-rate ratios Although the data presented in this paper are limited to the
(60% and 100% the computed and measured fluid forces are icomputation of the flows in a particular mixed-flow pump stage,
very good agreement. This implies that the changes in the intertia¢ computed results are in good agreement with the measured
flow in response to changes in the flow rate ratio have been aceatues in some important respects. These results are quite encour-

Outer-domain mesh
Overset boundary of Overset boundary of
outer-domain mesh inner-domain mesh
A
Inner-domain
mesh

1111
T
iis

T
T

1l
T

Fig. 13 Overset meshes for flow around an insulator
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Fig. 14 Regions of instantaneous reverse flow

aging and the proposed method thus seems promising as a caadiatter of great concern in terms of the aerodynamic design of
date for use as a research and design tool for mixed-flow pumgse vehicle. Research has indicated that, among the various noise
or for turbomachinery in general. sources of a pantograph, the insulator provides the dominant con-
tribution to the overall noise level. We have therefore simulated
the near-wake of flow around an insulator and the resulting far-
Computational Model. To further increase the speeds of highfield sound, with the particular aim of identifying the primary

speed trains, which currently run at 300 km/h in Japan, the aegfurce of noise. We hope this will lead us to a new concept en-
dynamic noise generated by the pantogréiie electric-current abling further reductions in noise levels.

collector on the train’s roofmust be reduced, and this has become Figure 13 shows an overset mesh for the near-wake LES of the

4.2 Aeroacoustical Simulation of a Pantograph Insulator

Fig. 15 Instantaneous distribution of streamwise-velocity in the insulator’s mid-
height plane
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Fig. 16 Instantaneous distribution of surface pressure

insulator that was simulated in our study. The insulator is com- Figure 15 shows an instantaneous distribution of streamwise
posed of a main circular cylinder with a diameter of 220 mm aneklocity in the insulator's midheight plane. The wake still pos-
9 circular disks that guarantee an appropriate creepage distaneesses a large vortical structure, similar to the well-known Kar-

Two sets of overset grids with different resolution were used iman vortex, but this large structure is rather weak due to the
the LES and the effects of grid resolution on the fluctuations in tigyhancement of spanwise mixing effects by the circular disks.
near wake as well as on the resulting far-field sound were invegote also that no apparent discontinuity in the velocity is visible
tigated. The numbers of elements were approximately 2 milliqR the overset region that lies about one and a half diameters
for the coarse mesh and 6 million for the fine mesh. downstream from the insulator.

The boundary conditions correspond to the situation in a wind gigre 16 shows the instantaneous distribution of surface pres-
tunnel test where a 1:6 scale model of the actual insulator d§e around the insulator and base plate. The time sequence of the
placed on a flat plate in a uniform flow of air with a wind velocityg, s e pressure fluctuations is fed to the acoustical computation
Ic()efni(()e T(/) Srrglcg)g;(r:?s/hi.s-rhrztslcsr’itie (L;nf':;?r?]g?:Ogizgvrghsggt;g;bg; obtain the far-field sound-pressure fluctuation at some point of
outer-doma?in e oeh Apno-slip wall conditic?n incorporated Wiﬂ%?erest. Therefore, the smallest scale that is adequately captyred
the Van-Driest dambing function, is given for' the surface of th terms of the surface-presspre quctuatlop essentially determines
insulator as well as for the flat plate. The traction-free condition Fe ;rrt;gliﬁggy Irtagggn?:?trw:t/hrlggg:es:ﬁ;ﬁlggglesﬁbcmz)t/i:r?glfrzagy
applied at all of the remaining boundaries to avoid nonphysic ace pressure are captured by this LES because of the relatively

blockage effects. ; uti fthe i id
The Reynolds number based on this uniform wind velocity and'€ resolution of the inner grid.

the representative diameter of the model insulator is<1.¢. Velocity Fluctuations in the Near WakeTypical fluctuations

The computation was mainly carried out by using 16 processifyg streamwise velocity in the near wake and their power spectra,
nodes on the Hitachi SR8000 supercomputer. The CPU-time fgr hoth the coarse and fine-mesh cases, are shown in Fig. 17. The
quired was about 2.3 seconds per time-step for the fine-mesh caggnple point isx=1D, y=0, z=0.4D, whereD denotes the
The total CPU-time taken for integrating 64,000 time-steps, dyipresentative diameter of the insulator whiley, andz, respec-

ing which the time-averaged, rms, and spectral values of the flque|y  denote the streamwise, lateral, and spanwise coordinates
field and far-field sound were calculated, was thus approximatgfym the origin, which is set at the bottom-center of the insulator.
40 hours for the fine-mesh case. The frequency range that is resolvable by the coarse-mesh LES

Instantaneous Flow Field Around the Insulatorin the follow- has its upper bound at a Strouhal number of approximately 1.0
ing sections, we present results from the fine-mesh LES unless (fige times the usual Karman vortex frequenchhe upper bound
state otherwise. To illustrate the temporal wake structure, regidsextended to a Strouhal number of about 6 by the fine-mesh
of instantaneous reverse flow are shown in Fig. 14. The bounddf&S. Note also that the time-averaged value is higher for the
layer that develops on the surface of the insulator separates fréne-mesh LES than for the coarse-mesh LES. This is because the
the surface while the flow is still laminar, but a transition to turformer gives a narrower region of reverse flow than the latter, and
bulence takes place soon after that because of the pronountted is probably due to the improved mixing effects in the upper
three-dimensional structure created by the circular disks. portion of the wake.
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Fig. 17 Fluctuations in streamwise velocity in the near wake 92 -
(upper) and the power spectra of these fluctuations  (lower) T —a“Ve|p=V-(pwXu). (12)

This equation directly shows the contributions to the sound gen-
Field Sound and the Distribution of SourCgration from the vortical motions in the flow. Figure 19 shows the

The fluctuations in far-field sound pressure and the power speclf?b ta_nta;efous \;ﬁlu? fo;_ tlhde right Stidfr‘ of WB ), Whi(.:h. wetrﬁ
of these fluctuations are shown in Fig. 18, for both the coarsg?tained from the flow-field computation. By examining these
mesh and fine-mesh cases, together with experimental Valfggnd-source distributions, the longitudinal vortices generated by

Simulated Far-

measured in a low-noise-level wind tunnel. The sound was eva he circular disks are identified as being primarily responsible for

ated at a point 1 m, as expressed at the model's scale, from @”g];er;eratlon of lsound ti.y th'g flgw. q i Cai
center of the insulato(=0, y=1 m, z=0). For convenience, the e two examples mentioned aboesd many others not given

sound pressure is converted to actual values that correspond {6659 have clearly indicated that LES is now beginning to serve

vehicle speed of 350 km/97.2 m/3 by assuming Reynolds num- &5 2 vital design tool in at least some cases of mechanical
' gngineering.

ber similarity of the flow fields for the model and for the actua
structure. .
The sound-pressure levels predicted by the coarse-mesh L%S Conclusions
and the fine-mesh LES are surprisingly different. The fine-meshThis paper proposes a numerical method that is capable of pre-
LES provides a reasonably good prediction of the sound-pressdieting unsteady flow fields with large-scale separations in a com-
level at frequencies up to about 2.5 kHz, which corresponds tgpiex geometry that involves an arbitrary number of moving
Strouhal number of 6.4. This is approximately identical to thboundary interfaces. The method is also applicable to the predic-
resolved frequency range for the near-wake velocity fluctuatiortton of the fluctuations in far-field sound pressure that result from
For the coarse-mesh LES, which successfully resolved the neam unsteady turbulent wake. The flow field is computed by a
wake velocity fluctuation up to a Strouhal number of about 1.arge-eddy simulatiofLES), implemented with the standard Sma-
(390 H2, the predicted sound-pressure level deviates from tlgorinsky model, while the far-field sound is predicted by the
measured value throughout the frequency range. This implies tkatface-pressure fluctuations obtained by the LES.
there is some threshold in terms of the resolution of a meshThe method is based on a streamline-upwind finite element for-
around an object, above which the accurate prediction of far-fiehdulation with second-order accuracy in both time and space, and
sound becomes possible. The overset LES presented in this papeorporates the application of overset grids from multiple and
seems to be one way of meeting such criteria within a reasonabdimamic frames of reference. The overall flow field of interest is
computational cost. covered by using several grid sets, each of which is dedicated to
Finally, the instantaneous sound-source distributions were itthe computation of some portion of the flow field and has a frame
vestigated according to Powell’s equati@owell[42]), as shown of reference that is appropriate to that particular portion. The
as follows: method is implemented as a parallel program by a domain-
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=60%). In both cases, the predicted total pump head and un-
steady fluid forces on the impeller were in good agreement with
the measured values.

The near wake and the resulting far-field sound were then com-
puted for flow around an insulator that would be mounted on a
high-speed train. The predicted sound-pressure level was in rea-
sonably good agreement with the wind-tunnel measurement at
Strouhal frequencies of up to about 6. The sound sources in the
near wake were analyzed according to Powell’s equation and the
longitudinal vortices were identified as being primarily respon-
sible for the generation of sound by this flow.

The proposed method thus seems to be a promising candidate
for use as an aerodynamic/aeroacoustic design tool.
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for velocity in incompressible fluids. A reduced system of equations is solved in the
A. H. SamEh corresponding subspace by an appropriate iterative method. The basis is constructed from
Department of Computer Science, the matrix representing the incompressibility constraints by computing algebraic decom-
Purdue University, positions of local constraint matrices. A recursive strategy leads to a hierarchical basis
West Lafayette, IN 47907 with desirable properties such as fast matrix-vector products, a well-conditioned reduced
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1 Introduction After appropriate linearization and discretization, the following

The simulation of incompressible fluid flow is a computation-system must be solved:

ally intensive application that has challenged high-performance A B f
computing technology for several decades. The ability to solve ui_ } ()
large, sparse linear systems arising from Navier-Stokes equations B" ojlp] O

is critical to the success of such simulations. Linear systems of

equations are typically solved by iterative methods that have tiéiereu is the velocity vectorp is the pressure vectog’ andB
advantage of requiring storage proportional to the number of ute discrete operators for divergence and gradient, respectively.
knowns only. One can use the conjugate gradients me@@j, The matrixA denotes the discrete operator on velocitylin This

[1], for symmetric positive definite systems and the generalizéigear system is indefinite due to the incompressibility constraint
minimum residual metho€GMRES), [2], for nonsymmetric sys- on velocity which is enforced b'u=0 in (4).

tems. Although these methods are memory-efficient in comparisorA convenient way to circumvent the indefiniteness of the linear
to direct methods such as Gaussian elimination, the rate of c@ystem due to these constraints is to restrict the fluid velocity to
vergence to the solution can be unacceptably slow. Often odlyergence-free subspace. There are a number of techniques to
needs to accelerate convergence by using some preconditiortagstruct divergence-free velocity functions. These include dis-
strategy that computes an approximate solution at each step of ¢hetely divergence-free functions obtained from specially con-
iterative method. It is well known that commonly used precondbtructed finite element spacdd,5], as well as continuous func-
tioning schemes such as those based on incomplete factorizations derived from solenoidal functions such as those used in
(see, e.g.[3]) may not be effective for indefinite linear systemg/ortex methods. The problem is reduced to solving the momentum
with eigenvalues on both sides of the imaginary axis. Since tleguation for divergence-free velocity functions without the need
eigenvalue distribution of linear systems arising from the Navieto include continuity constraints. In many cases, the resulting re-
Stokes equations could produce such systems, it is a challengéltieed linear systems are no longer indefinite. Furthermore, these
devise robust and effective preconditioners for incompressibleduced systems can be preconditioned to accelerate the conver-

flows. gence of iterative solvers.
The Navier-Stokes equations governing incompressible fluid The existing schemes for divergence-free functions are compli-
are given as follows: cated and difficult to generalize to arbitrary discretizations. In this
paper, we present an algebraic scheme to compute a basis for
au discretely divergence-free velocity. Our scheme constructs a basis
p oy tpu-Vu=pg—Vp+V.r, (1) for the null space of the matrix representing the linear constraints
imposed on fluid velocity by(2). The algebraic nature of the
V-u=0, (2) scheme ensures applicability to a wide variety of methods includ-

ing finite difference, finite volume, and finite elements methods.
whereu denotes fluid velocityp denotes pressurp,denotes fluid Since the choice of the basis preconditions the reduced linear
density,g represents gravity, andrepresents the extra-stress tensystem implicitly, it is possible to compute an optimal basis that
sor. For Newtonian flowss takes the form leads to rapid convergence of the iterative solver. A more modest
target is to compute a well-conditioned basis that preconditions

— T
r=u(Vu+vu)). 3) the reduced system to some degree. The paper presents an algo-
—Foun § hould be add g rithm to construct a hierarchical basis of divergence-free functions
0 whom correspondence shou € aadressed. H Y
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF that is well co_ndmongd too. i .
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- The paper is organized as follows: Section 2 presents the algo-

CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 2rithm for hierarchical divergence-free basis and discusses compu-
2001, final revision, Apr. 9, 2002. Associate Editor: T. E. Tezduyar. Discussion on thigtional aspects. Section 3 outlines the extension of the scheme to

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmen ; : ; ;
Mechanical and Environmental Engineering University of California—Santa Barba}a):grtlcwate flow problems. In Section 4, we describe the behavior

Santa Barbara, CA 93106-5070, and will be accepted until four months after firfef our scheme on benchmark PrObIemS in particulate flows. Con-
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Fig. 1 The coarsening of a4 X4 mesh to a 2 X2 mesh

2 Hierarchical Divergence-Free Basis 0 -S;viBl,
A straightforward way to construct discretely divergence-free p{u } I 0 P 0 } 9)
bases is to compute the null space of the discrete divergence op- I 0 PW

erator matrixB'. This null space can be computed via full QR 0 '

factorization or singular value decompositi®®VD) of BT, [6]. whereP( is a null-space basis of the matEBE”T:VEBIut. With

For anm by n matrix (m<n), the computation is proportional o ;<" +ansformation, the problem of computing the null-space of

2 : ) . T
m"n while storage is proportional tmn For the matrixB ", the the original matrixB™ is reduced to a problem of smaller size. By
number of rowsm corresponds to the number of pressure basis

functions and the number of columngorresponds to the number@PPlying the same technique to compute the null-spade‘df,
of velocity basis functions. SincBT is large and sparse with ON€ gets a recursive strategy foq constructing the nuII-spaBé_.of _
nonzeros proportional ton, both QR factorization and SVD are The preceding approach is viable cTJnIy if the transformation is
unsuitable due to the prohibitive requirements of computation aimexpensive and the reduced matBi?  is easy to compute and
storage. process subsequently. These criteria are met simultaneously by
The nonzero structure d8" can be exploited to construct aexploiting the relation of the nonzero structure Bf with the
null-space basis efficiently. The following outline of the algorithndliscretization mesh. The pressure nodes in the mesh are clustered
to construct a hierarchical divergence-free basis follows the deto groups of a few nodes each, and the velocity basis functions
scription in[7]. Suppose one can reorder the column®bfsuch  with support within a cluster are placed By, whereas those with
that support across clusters are place@jp,. The resulting matriB,
T T T is block diagonal with small block sizes. Each diagonal block
B =[Bin Boul: (5)  represents the divergence operator for the corresponding cluster of

T . A » nodes. Due to the small size of the diagonal blocks, the SVD can
whereB;, is a block diagonal matrix with “small” nonzero blocks be computed very efficiently.

?igntr:ﬁ E(;i.la.gonal. Given the following singular value decomposi- To illustrate the technique, we reproduce an example of a 4
in- X 4 mesh fron8] (see Fig. 1L Pressure unknowns are defined at
S, the nodes. Th&-component of velocity is defined on the horizon-
Bi,=USV'=[U, Uz][ }[V1 V,1T, (6) tal edges ang-component of velocity is defined on the vertical
0 edges. The nodes are clustered into four gro@s={1,2,5,4,
whereS, is a nonzero diagonal matri8T can be represented asG2=13:4.7.8, G3={9,10,13,14, and G,={11,12,15,15. The

follows: solid edges indicate velocity unknowns fBf, and the dashed
LUt s, O[T sggzs;elndlcate velocity unknowns fB,;. The associated matri-
BT:VVT[BL Blur] | =[V; Vz][ 0 OViB;T)EI B,
ut B,
X I}' (7) Bin= B, ,
Since By
S, 0|vIBl, 0 ~SIViBa] 1y G G
[ o oVviBLJ|L 2 :{0 VZBZUJ’ © Bou N (10)
I —C3 Cy
the null-space basis @& is given by -Cs Ca
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in which proportional to the size oB'. This is a significant improvement
over the QR and SVD algorithms. However, it should be noted

-1 1 0 0 that this reduction in computational complexity is gained at the
0 0o -1 1 ) expense of generating a basis that is not orthonormal. The reader
Bi=| 1 0 ol i=1,....4, (11) s referred td 7] for more details of this method.
Once the divergence-free basihas been constructed, the lin-
0o -1 0 1 ear system inf4) is transformed to the following reduced system:
and PTAPx=PTf, u=PXx, (15)
0 1 0 O 1 0 0 O which is solved by GMRES to obtai WhenA is symmetric and
Ci= Co= , positive definite, one can use CG instead of GMRES. Pressure can
0 0 0 1 0 0 1 0O X
be computed correctly by solving the least-squares problem
B 0 0 1 O 1 0 0 Bp~f—Au, (16)
o 0 0 %o 1 0 0 (12)
which is consistent sinc®T(f—Au)=0. At each iteration, one
The SVD of each block iB;, is given as needs to compute matrix-vector products of the fgrmPx and
_ _ z=PTw. The computation follows a recursive structure in which
12 12 V2 12712 matrix-vector products are computed at each level of the mesh
. 12 12 —-12 -1/2 V2 hierarchy. The computation proceeds from the coarsest mesh to
Bi=UiSVi=| _ _ the finest mesh for the produgt Px and in the reverse direction
12 12 12 1/2 V2 T X ) .
for the productz=P'w. Since the computational complexity of
12 12 12 12 0]  each product is proportional to the size ®f, the cost of com-
_ T puting the matrix-vector product for the reduced syster(ib) is
1/2 v2 0 1/ . .
proportional to the number of velocity unknowns. Furthermore,
-2 0 —v2 112 the concurrency in the hierarchical structure of this algorithm can
x| ) (13) pe exploited to develop high-performance software for incom-
1/2 0 v2 12 X . - .
pressible flows. Details of an efficient parallel formulation are
172 V2 0 1/2 presented if9].
that yields
B =VvIBT 3 Particulate Flows
. . Divergence-free velocity basis can be used to solve linear sys-
1 1 0 0 1 1 0 0 AV . S X e ;
tems arising in solid-fluid mixtures that consist of rigid particles
1| 1 1 0 0 0 0o -1 -1 suspended in incompressible fluids. The solution of these linear
=5 _ _ . systems is extremely computationally intensive and accounts for
2|1 0 0 1 1 1 1 0 0 g . o . - :
majority of the simulation time. The motion of particles is gov-
0 0 1 1 0 0 1 1 erned by Newton’s equations whereas the fluid obeys Navier-

(14) Stokes_ equati(_)ns. Assumir_lg no-slip on t_he surface o_f the part_icle,
the fluid velocity at any point on the particle surface is a function
Note that the rows oB(’ correspond to the nodes 6, 8, 14, an®f the particle velocity. For the sake of simplicity, this discussion
16 of the original mesh, and the columns correspond to the crogssumes spherical particles. For fltle particle, the positiorX;
cluster edges. It is easy to see tB&) " is a divergence matrix for @nd VelocityU; is obtained by solving the following equations:

the coarse mesh shown in Fig. 1. Since columpsl2zand 3 are du,

identical forj=1, . .. 4, thecolumns ofB™®" can be reduced to g i a7
four nonzero columns by multiplying with an orthogonal matrix

from the right. The resulting matrix is the divergence matrix of a dX;

2% 2 mesh which has been scaled by2l/ a9t Y (18)

)T .
Strlgc?uergeg?l;ré(e);rggz;rgsitrggigirﬁe%f F:]oemmgar%ﬁpinrgtim:tg;g i he_reUi includes both translation and angular components of the
) T ; ' grtlcle,Mi represents the generalized mass matrix, Bncepre-
single nodes. FurthermorB("" may be considered equivalent tosents the force and torque acting on the particles by the fluid as
a divergence operator matrix for the coarse mesh. Thus, the reGyed| as gravity. Fluid velocity at the surface of the particle is
sive strategy can be applied in a straightforward manner. Sing&ated to the particle velocity as follows:
B can also be computed efficiently from the SVDByf, each _
step of the recursive algorithm is very efficient. Uj=Uyi+ XU, (19)
The recursive algorithm to construct the divergence-free basidereU,; andU, ; are the translation and angular velocity com-
gives rise to a hierarchical basis that consists of basis functiopsnents, respectively, amgl is the position vector of thgth point
defined on each level of the mesh hierarchy. In the actual implelative to the center of the particle.
mentation of the algorithm, the null-space matrix is never com- A simple way to represent the linear system arising in particu-
puted explicitly. It is available only in the form of product oflate flows is as follows. The systems for fluid and particles are
matrices constructed from the SVD matrices and the equivalemtitten independently along with the constraint(it®) that forces
archy. velocity. Thus,

The size of meshes in the hierarchy decreases geometrically o g ¢

) . . u b
from the finest mesh to the coarsest mesh. Since the sBé*be T Ug I Ug
! ! . |B" 0 Of|p|=|0]|, whereu= = ,
is proportional to the mesh size at each level, the cost of comput Up wll U
ing and storing SVDs is also proportional to the mesh size atthel 0 0 C U g
corresponding level. Thus, the overall computation and storage is (20)
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. mesh with particles. The fluid nodes on the particle surface are
gravity absent from the mesh in this system. The presence of particles

A ——mmmm e —————— introduces a single node that is connected to all the fluid nodes

! that are adjacent to the particle surface. The algebraic scheme for
computing the divergence-free basis ensures that the algorithm
p applies without any change to particulate flows as well.
g = 4 Experiments
& The hierarchical divergence-free basis method has been used to
o solve the linear systems arising in particulate flow simulations.
3 The simulations involved incompressible fluid in a two-
?g dimensional channel with a number of rigid particles moving
freely under the action of gravitational force as well as force from
the surrounding fluidsee Fig. 2.
w The physical system is evolved from an initial state by the
implicit backward Euler method. The first-order accuracy of this
Yl _____ . scheme was adequate because the time step was severely con-
strained by particle dynamics. At each time-step, a nonlinear sys-
ﬁ pressure gradient tem of equations was solved by an inexact Newton’s metfidi,

At each iteration, a linear system of the fo(@®) was solved for

the Jacobian of the nonlinear equations. In general, this Jacobian
matrix is a saddle-point system with a nonsymmetric ma#ix
which tends to be real positive for a sufficiently small Reynolds
number. The hierarchical divergence-free basis approach is used
in which u is the fluid velocity in the interior of the fluid and/  to transform the system i22) to the reduced form shown {i15).

is the linear transformation from particle velocity to fluid ve- The reduced system is solved by the GMRES method. The adap-
locity u, on particle surface given bjl9). Using subscripté and tive tolerance proposed [i1] was used as a stopping criteria.

p to denote fluid interior and particle surface, respectively, the The differential equations are approximated by the mixed finite
preceding system can be transformed to the following system: elements method in which fluid velocity and pressure are repre-

Fig. 2 Particles moving in a periodic channel

A A B. 01F1 0 0 sented by the P2/P1 pair of elements. The choice of quadratic
| o o ol ™ et i velocity elements is necessary to capture the behavior of closely
T A Agp Bip 0|0 W O ur spaced particles. A nonuniform mesh is used to discretize the fluid
0w BT BT o ollo o 1 U domain resulting in a linear system that is large and sparse. The
0 0 I o f "ip p scheme proposed if12] is used in an arbitrary Lagrange-Euler
0 0 0o CjlO I ©O (ALE) framework to accommodate moving particles.
The parallel simulation code was developed using Péis],
b Communication between processes was done by MBI, The
=|g+W'b |, (21) mesh is generated using Triangl&5] and partitioned using Par-
0 allel METIS, [16]. Further implementation details are available in
. N . . 171,
which can be simplified further to obtain the following system: Simulations were conducted for rigid particles falling in a 3.2
At AptW By Uy by in.l_vé/i(_je and SObiIn. lLong ton-gimens_iolnaI vertical chanréel Wtiyth a
T T T T solid impenetrable bottom. The particles were assumed to be cir-
WA WiARpWHC - WiBrp || U =| g+ Wby . cular disks of diameter 0.25 in. and specific gravity 1.14. The
Bf Bf,W 0 p 0 initial position of particles was specified.

(22) 4.1 Single Particle Sedimentation. This benchmark simu-
Note that this system has a form similar to the linear syste@)in |ates the sedimentation of a single particle from rest whose center
A hierarchical divergence-free basis can be computedZ®r s at a distance of 0.8 in. from the left wall and 30 in. from the
without any difficulty. In this case, the null-space is computed fasottom of the channel. At the first time-step, the computational
the constraint matriy B BprW]. The basic algorithm remains mesh had 2461 elements and 1347 nodes. The number of un-
unchanged although care has to be taken when coarsening khewns in the unconstrained problem was 9418. Figure 3 shows

Fig. 3 Sedimentation of a single particle: (a) mesh with 2461 elements and 1347 nodes, (b) parti-
tioning into eight domains. The gravitational force pulls the particles towards the right.
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Table 1 Single particle sedimentation on the SGI origin 2000. Table 2 Multiple particle sedimentation on the SGI origin 2000

Processors Time Speedup Efficiency Processors Time Speedup Efficiency
1 1819 s 1.0 1.00 1 3066 s 1.0 1.00
2 822's 2.2 1.11 2 1767 s 1.7 0.85
4 502 s 3.6 0.91 4 990 s 3.0 0.75
8 334 s 5.3 0.66 8 570 s 5.3 0.66

the initial mesh and the associated partitioning into eight subdgme to solve the linear system is dominated by matrix-vector
mains. multiplication with the Jacobian, application of the hierarchical
To illustrate the numerical and parallel performance of the abasis, and orthogonalization of the Krylov subspace vectors in
gorithm, the experiment was restricted to the first five time-stegSMRES. The nonlinear solver takes most of the time, and its
starting with the particle and fluid at rest. Each time-step was 0.@}rallelization is critical to the overall performance.
sec. Table 1 presents the performance of the algorithm on eight . ) )
processors of the SGI Origin 2000 multiprocessor. The parallel4-3 Additional Remarks. The parallel implementation of
efficiency is expected to be much higher for a larger problem. fRe algorithm demonstrates good parallel efficiency even for
this experiment, superlinear speedup is observed due to effectifdall-sized problems. The overall speedup of 5.3 on eight proces-

cache utilization when data on individual processors is sm&Prs shown in Table 2 includes nonparallelizable components of
enough to fit within the cache. the code as well as preconditioning effects that slowed the con-

vergence of iterative solver on larger number of processors. The

4.2 Multiple Particle Sedimentation. The next benchmark detailed view in Table 3 shows that the speedup in critical steps is
simulates the sedimentation of 240 particles arranged in a stati®® on eight processors. The computation of divergence-free ve-
ary crystal The crystal consists of an array of 240 particles in 2fycity in the hierarchical basis is very efficient even on the small
rows and 12 columns. The centers of the particles coincide wighioblem considered here. The relatively modest speedup in
the nodes of a uniform mesh with 20 rows and 12 columns. Thgatrix-vector products is due to the structure of computation in-
centers of the particles are approximately 0.06154 in. apart in eag@lving multiplication with the matrices of the hierarchical basis.
direction. The distance between the walls and the nearest partighgs discussed in Section 2, this requires matrix-vector products
is also 0.06154 in. The top of the crystal is 30 in. above thgith matrices defined on meshes whose size decreases geometri-
channel bottom. Figure 4 shows the initial mesh and the assogilly from the finest to the coarsest level. In addition, it may be
ated partitioning into eight subdomains. noted that parallel efficiency can be increased by replacing the

At the first time-step, the computational mesh had 8689 elgrthogonalization step in GMRES with a variant that has a smaller
ments and 6849 nodes, giving rise to 43,408 unknowns in tlerial component.
unconstrained problem. The simulation was run for five time-stepsThe preceding benchmark experiments defipeedupas the
starting with the particles and fluid at rest. Each time step wasprovement in speed over theestimplementation of the algo-
0.01 sec. Table 2 presents the performance of the algorithm @fm on a uniprocessor. This implies that although the parallel
eight processors of the SGI Origin 2000. algorithm demonstrates gosgpeed improvemenin multiple pro-

It is instructive to see the breakdown of the computational timgssors, the speedup may be modest. The code attempts to achieve
into important steps. Table 3 presents the computational costiijh parallel performance by adopting an aggressive partitioning
critical steps. The nonlinear system solution time consists of thgategy which is aimed at good load balance in the overall com-
following main steps: calculation of the Jacobian matrix, applicgutation. This particular implementation of the hierachical
tion of the nonlinear operator, formation of the hierarchicadivergence-free basis algorithm computes a basis that changes
divergence-free basis, and the solution of the linear system. TRgh the number of processors. This has resulted in weaker pre-
conditioning which has caused a growth in the number of itera-
tions when the number of processors is increased. The deteriora-
tion in numerical efficiency of the algorithm can be eliminated by
using thesamebasis on multiple processors. In this case, however,
there is a marginal decrease in parallel efficiency which is offset
by superior numerical convergence. The reader is referr¢@]to
for a scalable parallel implementation of this approach.

5 Conclusions

This paper describes an algorithm to compute discrete
divergence-free velocity functions for incompressible fluid flow
>4 problems. The proposed scheme computes a basis for the null-
space of the constraint matrix used to enforce incompressibility in
the linearized Navier-Stokes equations. A multilevel recursive al-
gebraic transformation of this constraint matrix yields a hierarchi-
cal basis for the required divergence-free functions. The algebraic
nature of the scheme allows easy extension to particulate flow
problems in which rigid particles are coupled with the surround-
ing fluid by no-slip condition on the particle surface. The paper
outlines the extension of the hierarchical basis method for particu-

(a) (b) late flow problems. The effectiveness of the proposed scheme is

demonstrated by a set of benchmark experiments with single and

Fig. 4 Sedimentation of multiple particles: ~ (a) mesh with 8689 ~ Multiple sedimenting particles. The algorithm is designed to be
elements and 6849 nodes, and (b) partitioning into eight do- parallelizable. The resulting implementation on the SGI Origin

mains. Only the region of interest is shown. 2000 parallel computer demonstrates good parallel performance
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Table 3 Parallel performance of important steps in the nonlinear solver for multiple particle sedimentation

P=1 P=8

Simulation Step Time Percent Time Percent Speedup
Matrix assembly 224 11 33 10 6.8
Hierarchical Basis 1010 49 143 41 7.1
Matrix-vector multiplication 452 22 86 25 5.3
GMRES orthogonalization 360 18 83 24 4.3
Total 2046 100 345 100 5.9
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1 Introduction

The performance of a parachute might be influenced by t
aerodynamic and fluid-structure interactions of its canopy wi
other parachute canopies. In this paper, we describe our comp
tional model for such interactions, and present numerical resu
from simulations for two different types of interactions. In the firs
case, our investigation focuses on the aerodynamic and flu
structure interactions between the canopies of two separate pé%}l:
chutes coming close to each other. We study how the aerodynamic
interactions depend on the horizontal distance between the para-
chutes. We also study how such interactions are influenced when
our computational model includes the fluid-structure interactior&s
(FSI) between the parachute canopy and the surrounding flg
field. For this, we start with given initial relative positions. In th
second case, we investigate the aerodynamic interactions betw:
the canopies of a cluster of parachutes. We simulate the inter
tions for clusters with three, four, five, and six canopies, and in;
vestigate how such interactions depend on the number of canop
as well as the spatial arrangement of these canopies.

These simulations, in addition to providing some initial result
for the aerodynamic and fluid-structure interactions between par
chute canopies, show how the computational methods descriB‘fjé1
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Aerodynamic Interactions
Between Parachute Ganopies

Aerodynamic interactions between parachute canopies can occur when two separate
parachutes come close to each other or in a cluster of parachutes. For the case of two
separate parachutes, our computational study focuses on the effect of the separation
distance on the aerodynamic interactions, and also focuses on the fluid-structure interac-
tions with given initial relative positions. For the aerodynamic interactions between the
canopies of a cluster of parachutes, we focus on the effect of varying the number and
arrangement of the canopiefDOI: 10.1115/1.1530634

can be used for parachute applications. The interaction between
IIlhe parachute canopy and the surrounding flow field is an essential
mponent of a realistic parachute simulation, and thus the ability
% predict parachute FSI is recognized as an important challenge
fthin the parachute research communiifis-5]. In our follow-on
udies, we plan to take more extensively into account the com-
dgx FSI involved at various stages of parachute systems, from
itial deployment to landing.
or the cases simulated in this paper, the parachutes are oper-
Ihg at sufficiently low speeds, and, therefore, the aerodynamics
iIS_governed by the Navier-Stokes equations of incompressible
ows. For the problems where we limit our attention to the aero-
\Mnamic interaction between the parachute canopies, the canopies
are not experiencing any shape changes or relative motions.
herefore, in those simulations, the fluid dynamics computations
Feﬁbased on a stabilized semi-discrete finite element formulation,
[. For the cases that involve fluid-structure interactions, on the
her hand, the canopies undergo shape changes. In such cases,
Rause the spatial domain occupied by the fluid is vartiieg,
eforming with respect to time, we use the Deforming-Spatial-
omain/Stabilized Space-TiméDSD/SST formulation, [6—8],
%%ch was developed for flow problems with moving boundaries
interfaces. Both the semi-discrete and space-time methods
have been implemented for parallel computing, and the results
presented here are from simulations carried out on a CRAY T3E-

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 231200 supercomputer.
2001; final revision, Mar. 18, 2002. Associate Editor: W. T. Wheeler. Discussion

on the paper should be addressed to the Editor, Prof. Robert M. McMeekirE,
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Computational Model

2.1 Fluid Dynamics. Let Q,CR"sd be the spatial fluid me-
chanics domain with boundary, at timete(0,T), where the

Copyright © 2003 by ASME Transactions of the ASME



subscriptt indicates the time-dependence of the spatial domain2.3 Semi-Discrete Formulation of Fluid Dynamics. Let us
and its boundary. The Navier-Stokes equations of incompressilolensider a fixed spatial domaiQ and its boundaryi’, where

flows can be written o), andVte (0,T) as subscriptt is dropped from botH), andI';. The domain(} is
au discretized into subdomair@®, e=1,2,---,n,;, whereny, is the
pl —+u- Vu_f) —V.o=0, (1) number of elements. For this discretization, the finite element trial
at function spaces ) for velocity andS}, for pressure, and the cor-
V.-u=0, (2) responding test function space§ andvg are defined as follows:
wherep, u, andf are the density, velocity, and the external force, Sa={uM|u"e[H™(Q)]"s,u"=g" on I'g}, (11)
respectively. The stress tensaris defined as
peciively. Vh=(wWiwh e [HI(Q)Pswi=0 on I'y},  (12)
o(p,u)=—pl+2ue(u). 3
- . Sp=Vp=1{ala"e H"(Q)}. (13)
Herep, I, andu are the pressure, identity tensor, and the viscos-
ity, respectively. The strain rate tensor is defined as HereH!"(Q) is the finite-dimensional function space o¥&rThe
1 stabilized formulation is written as follows: Find'e S and p"
g(u)zi((VuH(Vu)T)_ (@) e8)such thatvw"e V] andg"e Vh:
h
Both Dirichlet and Neumann-type boundary conditions are ac- f Wh.p(aiJruh.th_fh)dQ
counted for: a at
u=g on (I'y)y,, n-o=h on (I'y)}. 5
g on (T (Fon ®) +f s(wh):o(ph,uh)dﬂ—j wh. h"dl
Here ('y)4 and ('), are complementary subsets of the boundary Q Ty
I'y, nis the unit normal vector at the boundary, ajpdndh are
given functions. A divergence-free velocity field is specified as the + | q"v.uhdQ
initial condition. Q
2.2 Structural Dynamics. Let QfCR"™d be the spatial do- Ne| 1
main bounded by'$, wheren, =2 for membranes and, =1 +> e—[rsupgouh~th+ TpspV "]
for cables. The boundary; is composed of I(})4 and ('})y. e=1 JoeP
Here, the superscripts” corresponds to the structure. The equa- X [£(p",uM) — pf "dQ
tions of motion for the structural system are
Ne|
2
A Y e v.emo 6) +2 | eV wipV-ude=o, (14)
dt dt € Q
wherey is the displacemenp? is the material density® are the Where
external body forcesg® is the Cauchy stress tensor, ands the - owh . . -
mass-proportional damping coefficient. The damping provides ad- L(@\W)=p| ——+u"- VW =V o(q",W). (15)
ditional stability and is used for problems where time accuracy is
not important. In this formulation, 7sypg, Tpspa, @nd 7 gc are the stabilization

We use a total Lagrangian formulation of the problem. Thuparameters|,6,9].
stresses are expressed in terms of the second Piola-Kirchoff stre . . . . .
tensorS, which Fi)s related to the Cauchy stress tensor through asf.'4 DSOSST Formulatlon O.f Fluid Dynamlcs. In gﬂscret;-
kinematic transformation. Under the assumption of large displacgation of the space-time domain, the time intervalf(Qis parti-
ments and rotations, small strains, and no material damping, ed into sublntgrvalsnf(tn tn+1), wheret, andt,,, belong
membranes and cables are treated as Hookean materials with fih@" ordered series of time levels-Gy<t,---<ty=T. Let (),
ear elastic properties. For membranes, under the assumption of t andl"n:l“tn to simplify the notation. The space-time slab

plane stressS becomes Q, is defined as the domain enclosed by the surfétesQ, . 1,
I o o andP,, whereP, is the lateral surface o, described by the
SI=(AnGIGN+ u[G'GI*+ GKGI')E,, (7) boundaryl', ast traversed .

The Dirichlet and Neumann-type boundary conditions are
specified over R,)4 and (P,)y,. For this discretization, the finite
— 2\ element trial function spacesS(), for velocity and S}), for
M= 200 (®) pressure, and the corresponding test function spardy, (and

(' 24im) h defined as foll
Here,E,, are the components of the Cauchy-Green strain tensQr), p)n are defined as follows:

G‘_j are the components of the contravariant metric tensor in the (SN p={u"u" e [H"(Q,)]"s4,u"=g" on (Pr)gt,  (16)
original configuration, and, and u,, are Lameconstants. For h b 1 o
cables, under the assumption of uniaxial tens®becomes (V)n={W"w"e[H™(Q,)]"4w"=0 on (P,)g}, (17)

SH=E GUGUE,,, 9) (SPa=(Vpa={a"lg"e H"(Qp)}. (18)

whereE, is the cable Young's modulus. To account for stiffnessHere H'"(Q,) is the finite-dimensional function space over the
proportional material damping, the Hookean stress-strain relaticdpace-time slatQ,. Over the element domain, this space is
ships defined by Eqs7) and(9) are modified, and, is replaced formed by using first-order polynomials in both space and time.
by Ey,, where The interpolation functions are continuous in space but discon-
. . tinuous in time.
Ex=Ewu+ (Eu. (10) The DSD/SST formulation is written as follows: Given"f, ,
Here, ¢ is the stiffness proportional damping coefficient diglis  find u"e (Sy), and p"e (Sp), such thatyw"e (V}), and g"
the time derivative ofy, . eV

where for the case of isotropic plane stress
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guh ponents: moving the mesh for as long as it is possible, and full or
f wh-p(WJruh-Vuhffh)dQ partial remeshing(i.e., generating a new set of elements, and
sometimes also a new set of nogesen the element distortion
becomes too high.
+ f e(W": o (p",uMdQ— w. hhdpP In mesh moving strategies, the only rule the mesh motion needs
n (Pn)n to follow is that at the moving boundary or interface the normal
velocity of the mesh has to match the normal velocity of the fluid.
+ j q"V-u"dQ Beyond that, the mesh can be moved in any way desired, with the
main objective being to reduce the frequency of remeshing. In
three-dimensional simulations, if the remeshing requires calling
+j W F - p((UMF = (u")7)dQ an automatic mesh generator, the cost of automatic mesh genera-
Qn

n

n

tion becomes a major reason for trying to reduce the frequency of
remeshing. Furthermore, when we remesh, we need to project the

(e TLSME solution from the old mesh to the new one. This introduces pro-
+ E J ——t(q"w")- jection errors. Also, in three-dimensional, the computing time

e=1 Joi P consumed by this projection step is not a trivial one. All these

[L(p"uM)—pf"]dQ factors_consti_tute a strong motivation for designing_ mesh update

' strategies which minimize the frequency of remeshing.

Ne| In some cases where the changes in the shape of the computa-
+2 gV -WpV-u"dQ=0. (19) tional domain allow it, a special-purpose mesh moving method

e=1Jqp can be used in conjunction with a special-purpose mesh generator.

This formulation is sequentially applied to all space-time sladagu;ﬁgtiia‘:‘ﬁs‘sﬁ 'mgrlf:'rg?osr C;T db\?vifr? SL',? ds;l\ﬁnw'tggm ;g(lj“iggn?i?
Q0,Q1,Q5, ... ,Qn-1. The computation starts with 9 g any

equations to determine the motion of the mesh. One of the earliest
(uh)5=u0, V-u,=0 on Q. (20) examples of that, two-dimensional computation of sloshing in a
) o laterally vibrating container, can be found[i]. Extension of that
Here 7 sy is the stabilization parametésee[9,10]). For an ear- ¢oncept to three-dimensional parallel computation of sloshing in a
lier, detailed reference on this formulation & vertically vibrating container can be found fib2].

2.5 Structural Dynamics Formulation. The semi-discrete /N general, however, we use an automatic mesh moving

finite element formulation for the structural dynamics is based g§heme[13], to move the nodal points, as governed by the equa-
the principle of virtual work: tions of linear elasticity, and where the smaller elements enjoy

more protection from mesh deformation. The motion of the inter-
Sd2yh hs sdyh hirs o h < hal nodes is determined by solving these additional equations,
R T dQ°+ I T das+ o8 OB(WNAQ®  with the boundary conditions for these mesh motion equations
0 0 0 specified in such a way that they match the normal velocity of the
fluid at the interface. In computation of fluid-structure interactions
:f S(t+p3f ). whdQs. (21) of parachute systems reported here we use this automatic mesh
@ moving technique.

Here the weighting functiom" is also the virtual displacement. .

The air pressure force on the canopy surface is representedy Numerical Examples

vectort. The pressure term is a “follower force(Since it “fol- For fluid dynamics equations we use tetrahedral meshes. The

lows” the deforming structural geomedryand thus increases the parachute canopy surface is representative of a C-9 parachute for

overall nonlinearity of the formulation. The left-hand-side termgases with only aerodynamic interactions, and a T-10 parachute

of Eq. (21) are referred to in the original configuration and théor cases with fluid-structure interactions. In simulation of the

right-hand-side terms for the deformed configuration at time  aerodynamic interactions between two parachutes, the parachute
Upon discretization using appropriate function spaces, a nonlimodel consists of the canopy and a paratrooper. For the fluid-

ear system of equations is obtained at each time-step. In solvigtgucture interactions of two parachutes and for the aerodynamic

that nonlinear system with an iterative method, we use the followateractions in clusters of parachutes, we only consider the cano-

ing incremental form: pies. Figure 1 shows the parachute canopy surface mesh and and
M (1—a)yC the paratrooper. The simulations are carried out at a Reynolds
Y L 1-w)K|Ad =R, (22) Nhumber (based on the canopy diametesf approximately 5
BAt BAL million.
where
C=7M+ (K. (23)

Here M is the mass matrixK is the consistent tangent matrix
associated with the internal elastic forc€sis a damping matrix,

R' is the residual vector at thigh iteration, andAd' is theith
increment in the nodal displacements vealoin Eq.(22), all of

the terms known from the previous iteration are lumped into the
residual vectoR'. The parameterg,3,y are part of the Hilber-
Hughes-Taylor,[11], scheme, which is used here for time-
integration.

2.6 Mesh Update Method. How the mesh should be up-
dated depends on several factors, such as the complexity of the
moving boundary or interface and overall geometry, how unsteady
the moving boundary or interface is, and how the starting mesiy. 1 Aerodynamic interactions of two parachutes. Parachute
was generated. In general, the mesh update could have two ceamopy (left), paratrooper (right ).
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Fig. 2 Aerodynamic interactions of two parachutes. Velocity (left), vorticity
(right ).

3.1 Aerodynamic Interactions of Two Parachutes. A se- 11,714 triangular faces representing the paratrooper. The size of
ries of simulations are carried out for the aerodynamic interactiottee volume meshes varies from case to case. For the case with
between two separate parachutes, where each parachute cons@igontal spacing of 0.5 radii, we have approximately 1.8 million
of a round canopy and a paratrooper. The horizontal spacinggements and 300,000 nodes, resulting in approximately 1.2 mil-
defined to be along the-axis, range from zero to fivénflated lion coupled equations. In each of the meshes, the mesh refine-
parachute radii. Vertical spacings are held constant at appromient is controlled around the paratroopers and canopies and in the
mately 3.3 feet between the apex of the lower canopy and the feetke and interaction regions, so that we have a larger concentra-
of the paratrooper. The parachute model is representative ofi@n of elements in these regions. Descent velocities of 22 ft/s are
28-foot diameter and 28-gore C-9 personnel parachute. Represepresented by imposing a uniform upstream boundary condition
tation of the canopy geometry comes from a separate structuaflthe lower boundary. Other boundary conditions are, no-slip
dynamics simulation with a prescribed pressure distribution. Suwrenditions on the paratrooper and canopy surfaces, zero normal
face representations for the paratrooper and other boundarievéfocity and zero shear stress conditions at the side boundaries,
the fluid dynamics model are obtained using a variety of in-hous@d traction-free conditions at the outflow boundary.
modeling tools. Separate unstructured volume meshes are genefFhe simulations show a strong, adverse interaction between the
ated for each case studied. For each of the examples, the twaper and lower parachutes for spacings of 1.0 radius and less. In
paratrooper and canopy systems are identical, with 8288 triangbese cases, the upper canopy “loses its wind,” and experiences
lar faces describing both the upper and lower canopy surfaces, agjative drag for spacings of 0.5 radii and less. This indicates a
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Fig. 3 Aerodynamic interactions of two parachutes. Influence of horizontal
spacing on drag, D.

potential for parachute collapse. The flow fields for horizontalamic forces acting on the individual canopies. Time-averaged
spacings of 0.5, 2.0, and 5.0 radii are shown in Fig. 2, with tHferce values were obtained for each horizontal spacing over
velocity vectors on the left and the vorticity on the right. Foequivalent time periods, and after the flow fields were fully estab-
horizontal spacing of 0.5 radii, we clearly see that the uppéshed. Figure 3 shows, for the lower and upper canopies and for
canopy is caught in the wake of the lower one. For horizontapacings ranging from 0.0 to 5.0 radii, the time-averaged drag
spacing of 5.0 radii, on the other hand, very little interaction i€D). The forces shown in these figures are scaled from the com-
seen between the two parachute flow fields. The 2.0 radii sepapated values based on the C-9 physical dimensions, the prescribed
tion case shows a clear interaction between the two parachumsscent velocity, and the air densftiiese scalings differ from the

but without the upper canopy being trapped in the wake of tteealing that was initially presentefl4]). For both canopies, the
lower one. drag values are fitted to a curve using cubic splines and assuming

The interaction between the two parachutes for different hothat the curvea) is symmetric at zero horizontal spacing aftl

zontal spacings is further understood when we look at the aerodpproaches a constant value as the horizontal spacing becomes

Horizontal Force (pounds)

@—® Upper Parachute

15 O O Lower Parachute

(; O.L.'r ; 1.L5 ; 2?5 3 35 4 45 5
Horizontal Spacing (inflated parachute radii)

-

Fig. 4 Aerodynamic interactions of two parachutes. Influence of horizontal
spacing on F,.
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Fig. 5 Fluid-structure interactions of two parachutes. T-10 \-«

parachute structural model.
I .p 1. F
G )
J

\C i 127 s s / 1.91s

large. At large horizontal spacings, the drag for the lower canopy
is expected to approach the same value as the drag for the upper ) ) i .
canopy. We see that the drag on the upper parachute can bec b Fluid-structure interactions of two parachutes. Vorticity
negative for severe interactions between the parachutes, suchiggur instants.
for spacing of 0.5 radii and less. For the 2.0 radii separation case,
the drag on the upper canopy remains positive. However, in this )
case there is a clear interaction between the two parachutes, wieRer canopy is allowed to deform due to the response of the
could possibly lead to severe structural responses in the fluRgrachute structure to the fluid dynamics forces. The structural
structure interactions of the upper parachute. For the 5.0 ragljnamics model is divided into six distinct material groups; a
separation, minimal interaction is seen in the drag history plot§émbrane group, three cable groups, a truss group, and a concen-
with minor difference in drag for the two parachutes. The prosiated mass group. The parachute canopy is composed of 780
imity of the parachutes to the side and outflow boundaries hB§luadratic membrane elements. We have distinct cable groups for
some role in the presence of these differences. Extending ﬂlﬁ)@ suspension lines, the canopy radial relnforcements, and the
boundaries further out and carrying out the computations furth@$ers. The truss and concentrated mass groups define the payload,
in time would make the differences in the time-averaged values hich has a total weight of 250 pounds. The structure is allowed
D for the two parachutes even smaller. to fall completely unconstrained. o _
Figure 4 shows the time-averaged values of the horizontal forceThe parachute canopies are represented as interior surfaces in
componentF, . Again, the force histories are fitted to a curvéhe fluid meshwith 17,490 triangular faces on both the upper and
using cubic splines to only show the qualitative trends for the
horizontal forces acting on the two parachutes as function of their
horizontal separation. For cases with no interaction between the
two canopies, the average valueRfis expected to be zero. The
horizontal forces acting on the two canopies are mostly attractive,
and are more substantially so for spacings of 2.0 radii and less.
For the spacings of 3.0 radii and more, the interaction becomes
less evident and the difference betwégsfor the upper and lower
canopies begins to decrease. The flow field in the wake of each
parachute is very unsteady and shows no discernible time-periodic
behavior. For these larger spacings, extending the boundaries fur-
ther out and carrying out the computations further in time would
bring the time-averaged values Bf closer to zero.

4488844488 ERBATAREABHRALUNN
"Hl.lll!lE:gkﬁlﬂﬂlllui\“‘
I8UIRER SR RE agRAHER!

RauEIEaEd
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3.2 Fluid-Structure Interactions of Two Parachutes. In
this simulation, initially the two parachutes have a horizontal
spacing of 42 ft, which is approximately &flated radii, and a
vertical spacing of 56 ft. Here, the parachute model is representa-
tive of a standard U.S. Army T-10 personnel parachute. The T-10
is a “flat extended skirt canopy” composed of a 35-foot diameter
canopy and 30 suspension lines each 29.4 ft long. The canopy is
called a “flat extended skirt canopy” because in its constru¢eed
unstressedconfiguration it is composed of a main circular section
with a circular vent at the apex and an inverted flat ring section,
which lies under the main section and is connected to the main
section at the outer radius. The lines connect to four risers which
attach the payloatbr paratrooper The suspension lines continue
as 30 gore-to-gore reinforcements through the parachute canopy
and meet at the apex. For the T-10, the vent diameter and the skjif 7 Fluid-structure interactions of two parachutes. Struc-
width are both 3.5 ft. tural motion and differential pressure distribution at t=0.00,

Here the lower canopy is treated as a rigid body, while th&64, 1.27, and 1.91 seconds.
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z = 0 plane cluster configuration y = 0 plane

Fig. 8 Aerodynamic interactions in parachute clusters. Vorticity.

lower canopy surfacgésThe typical size of the volume mesh isary conditions for the lower canopy and at the outer boundaries
approximately 3.5 million elements and 580 thousand nodes, @re identical to the conditions used in the previous example.
sulting in approximately 4.6 million coupled equations with the The coupling is achieved iteratively, by transferring the infor-
DSD/SST formulation. The automatic mesh update method deation between the fluid and structure with a least-squares pro-
scribed earlier is employed to handle the canopy shape chandestion. Figure 5 shows the parachute structural model used at the
with occasional remeshing of the fluid domain. The surface for thstart of the simulation.

upper canopy is assigned a no-slip boundary condition, with ve-Figure 6 shows, at four instants during the simulation, the vor-
locities coming from the structural dynamics solution. The boundicity field surrounding the two parachutes. The deformation and
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motion of the upper canopy is evident. Figure 7 shows, at tlvhen the horizontal spacing between the parachutes is two canopy
same four instants, the structural dynamics of the upper parachugalii or less. We also studied how the interactions between the two
parachutes are influenced when we include in our computational
model the fluid-structure interaction§FSl). The significant
mount of structural response we observe in this study for the
er parachute makes it clear that the FSI play a key role in
king this class of simulations more realistic. In the second case,
focused on the aerodynamic interactions between the canopies
a cluster of parachutes, and investigated the nature of these
feractions for three, four, five, and six canopies. In this study, we
ere able to see the dependence of these interactions not only on
#¥%e number of canopies but also on the spatial arrangement of
ése canopies.
This class of simulations can provide a better understanding of

X . tf interactions between parachute canopies and help identify the
case. For the 5-canopy cluster with a parachute in the center, p P P fy

h imatelv 2.5 mill | : d 450.000 nod narios under which the interactions are most severe. In the
ave approximately 2.5 million elements an WUV NOUES, 165505 of severe interactions, more sophisticated fluid-structure in-

sulting in approximately 1.9 million coupled equations. Mesh 1&g o tion models would be required to accurately represent the
finement is controlled around the canopies and in the wake aﬂgponse of the parachute structure

interaction regions. As with the previous example, descent veloci-
ties of 22.0 ft/s are represented by imposing a uniform upstream
boundary condition at the lower boundary, and no-slip conditioscknowledgment

are imposed on the canopy surfaces. . . .
The computed flow fields at the end of the simulations fro The work reported in this paper was partially sponsored by

these preliminary simulations are shown in Fig. 8, with the clust rASA JSC, AFOSR, and by the Natick Soldier Center.
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tions,” New Methods in Transient Analysi. Smolinski, W. K. Liu, G. Hul-
4 Concluding Remarks bert, and K. Tamma, eds. AMD-Vol.143, ASME, New York, pp. 7-24.

[14] Stein, K., Benney, R., Tezduyar, T., Kumar, V., Thornburg, E., Kyle, C., and
We have described our Computationaj methods for simulation Nonoshita, T., 2001, “Aerodynamic Interaction Between Multiple Parachute
; i I : Canopies,”Proceedings of the First MIT Conference on Computational Fluid
of aerc_;dynamlc and_ fluid structure interactions between parachute and Solid Mechanics |.T. Press, Cambridge, MA.
canopies. We considered two different WPes of pr(_)blems. In thﬁs] Macha, J. M., and Buffington, R. J., 1989, “Wall-Interference Corrections for
first case, we focused on the aerodynamic and fluid-structure in- Parachutes in a Closed Wind Tunnel,” AIAA Paper No. 89-0900.
teractions between the canopies of two separate parachutes[lﬁ] Sahu, J., and Benney, R., 1997, “Prediction of Terminal Descent Characteris-
F. ; tics of Parachute Clusters Using CFD,” AIAA Paper No. 97-1453.
close proxw_nlt_y to 0”‘? another. We S.tUdled the dependence. of t fﬂ Lee, C. K., Lanza, J., and Buckley, J., 1996, “Apparatus and Method for
aerodynamic interactions on the horizontal distance separating the Measuring Angular Positions of Parachute Canopies,” J. Aigg. pp. 1197—

two parachutes. In this study we observed significant interactions 1199.
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Mesh Moving Techniques
for Fluid-Structure Interactions
With Large Displacements

In computation of fluid-structure interactions, we use mesh update methods consisting of
mesh-moving and remeshing-as-needed. When the geometries are complex and the struc-
tural displacements are large, it becomes even more important that the mesh moving
techniques are designed with the objective to reduce the frequency of remeshing. To that
end, we present here mesh moving techniques where the motion of the nodes is governed
by the equations of elasticity, with selective treatment of mesh deformation based on
element sizes as well as deformation modes in terms of shape and volume changes. We
also present results from application of these techniques to a set of two-dimensional test

cases.[DOI: 10.1115/1.1530635

1 Introduction

Computation of flows with fluid-structure interactions was one
of the objectives in development of the Deforming-Spatial-
Domain/Stabilized Space-TiméOSD/SST formulation, [1-3],
for flows with moving boundaries and interfaces. This is an
interface-tracking technique, and as such requires that the mesh be
updated to track the moving interfaces as the spatial domain oc-
cupied by the fluid is varyindi.e., deforming with respect to
time. In computations with the arbitrary Lagrangian-Eulerian
method, which is another interface-tracking method, one faces the
same requirement. In general, mesh update consists of moving the
mesh for as long as it is possible, and full or partial remeshing
(i.e., generating a new set of elements, and sometimes also a new
set of nodeswhen the element distortion becomes too high.

As the mesh moves, the normal velocity of the mesh at the
interface has to match the normal velocity of the fluid. With this
condition met, our main objective in designing a mesh update
technique becomes reducing the remeshing frequency. This is very
important in three-dimensional computations with complex geom-
etries, because remeshing in such cases typically requires calling
an automatic mesh generator and projecting the solution from the
old mesh to the new one. Both of these steps involve large com-
putational costs.

In selecting a category of mesh moving techniques, geometric
complexity is one of the major determining factors. Sometimes
the overall problem geometry, including the interface geometry, is
simple enough so that the mesh can be generated by a special-
purpose mesh generation technique. In such cases, the mesh car
be updated by using a special-mesh moving technique, without
calling an automatic mesh generator and without solving any ad-
ditional equations to determine the motion of the mesh. This ap-
proach involves virtually no mesh update cost, and one of its
earliest examples, two-dimensional computation of sloshing in a
laterally vibrating container, can be found |if].

In most practical problems, such as the parachute fluid-structure
interactions, the overall problem geometry would be too complex
to use a special-purpose mesh generation technique. The mesh
produced with an automatic mesh generator would require an au-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 4,
2001; final revision, Mar. 4, 2002. Associate Editor: L. T. Wheeler. Discussion on the
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Department of
Mechanical and Environmental Engineering University of California—Santa Barbara,
Santa Barbara, CA 93106-5070, and will be accepted until four months after final
publication of the paper itself in the ASMEOURNAL OF APPLIED MECHANICS.
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tomatic mesh moving technique. We use the technique introduce X
in [4], where the motion of the nodes is governed by the equation

of elasticity, and the mesh deformation is dealt with selectively
based on the sizes of the elements and also the deformation mod..
in terms of shape and volume changes. The motion of the internal ) ) i L
nodes is determined by solving these additional equations. Kg- 3 Translation tests. Mesh quality as function of stiffening
boundary condition, the motion of the nodes at the interfaces 18 Ve"

specified to match the normal velocity of the fluid at the interface.

Mesh moving techniques with comparable features were intro- . .
duced in[5]. test these techniques on fluid meshes where the structure under-

In the technique introduced if4], selective treatment of the 99€S three different types of prescribed motion or deformation.

mesh deformation based on shape and volume changes is im%Ie- .
mented by adjusting the relative values of the Larnastants of Mesh Moving Model

the elasticity equations. The objective would be to stiffen the 21 Equations of Linear Elasticity. Let QCR™¢ be the

mesh against shape changes more than we stiffen it against Vscﬁ?éial domain bounded b, wheren,, is the number of space

ume changes. Selective treatment based on element sizes, on ltmensions Corresponding to the Dirichlet and Neumann-type
other hand, is implemented by simply altering the way we accou undary conditions, the boundaFyis composed of'y andT, .

for the Jacobian of the transformation from the element domain : - ; )

the physical domain. In this case, we would like the smaller ele- e equations governing the displacement of the internal nodes

ments to be stiffened more than the larger ones. can then be written as
In this paper, we augment the method describdd jro a more V-o+f=0 on Q, (1)

extensive kind, where we introduce a stiffening power that deter- . .
gp rgaerea is the Cauchy stress tensor dnd the external force. For

Shape Change

mines the degree by which the smaller elements are rendet lastici i defined
stiffer than the larger ones. When the stiffening power is set t§€ar elasticity,o is defined as
zero, the method reduces back to an elasticity model with no o=\tr(e(y) +2us(y), 2)

Jacobian-based stiffening. When it is set to one, the method is ) . )
identical to the one introduced i#]. Our studies here include Wherey is the displacement, t is the trace operatoX, andu are

seeking optimum values of this stiffening power with the objedhe Lameconstants| is the identity tensor, anely) is the strain
tive of reducing the deformation of the smaller elements, typicallNSOr: 1

placed near solid surfaces. In this context, by varying the stiffen- _- + T

ing power, we generate a family of mesh moving techniques, and &(y) 2(Vy (VY. @)
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The Dirichlet and Neumann-type boundary conditions are repre
sented as
y=g on Iy, Shape Change
n-o=h on I'y. (4) Fig. 5 Rotation tests. Mesh quality as function of stiffening
power.
2.2 Finite Element Formulation. In writing the finite ele-
ment formulation for Eq(1), we first define the finite element trial
and test function space®” and V"
Sh={y"y"e[H™"(Q)]"sey"=g" on Iy}, 5 , 1
{y |y [ ( )] y g g} ( ) £ (yh):b‘(yh)* n—tr(E(yh))l (9)
V= twhwh e [HI(Q)]"sow"'=0 on Ty} (6) sd

Here, H'"(Q) is the finite-dimensional function space oM@  The two terms on the right-hand side of E8) can be recognized
The finite element formulation for Ed1) is then written as fol- as those corresponding, respectively, to the volume and shape
lows: findy"e 8" such thatvw"e V" change components of the stiffness matrix. In this context, the
relative values of X + 2/ngqu) and 2« can be adjusted to pro-
j e(W"):a(y")dQ — J whfdQ = f whehdr. (7) duce to a certain extent the desired effect in terms of stiffening the
Q Q T, mesh against volume or shape changes.
By assigning appropriate values to the rati, we can pro- Although a selective treatment of the mesh deformation can be
y gning approp ’ P incorporated also into the force vectoby providing an appropri-

duce to a certain extent the desired effect in terms of VOll.Jme abfh definition for the forcing function, in our case we set it equal
shape changes for the elements during the mesh motion. THIS

. - Zero.
approach becomes more clear if we rewrite the term that generates
the stiffness matrix as 2.3 Jacobian Options. A selective treatment of the mesh

deformation based on the element sizes can be implemented by
simply altering the way we account for the Jacobian of the trans-
2 formation from the element domain to the physical domain. This
= ( N+ n—,u)tr( e(WM)tr(e(y")+2ue’ (W"):e'(y"), (8) method was first introduced {], where the Jacobian is dropped
sd from the finite element formulation, resulting in the smaller ele-
where ments being stiffened more than the larger ones. Here we augment

e(w"):a(y")
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that method to a more extensive kind. To describe this approact
we first write the global integrals generated by the terms in(&q.
as

Shape Change

—_ Fig. 7 Bending tests. Mesh quality as function of stiffening
fﬂ[ - 1do=2) L[ . J°3dE, (10)  power.

where[ . . .] symbolically represents what is being integrat&d,
is the finite elementparenj domain, and the Jacobian for elemenB8 Test Cases

e is defined as The test cases are all based on a two-dimensional unstructured

. ax\ e mesh consisting of triangular elements and an embedded structure
Jo=det =] . (11)  with zero thickness. The mesh spans a regionxp&1.0 and

JO
2¢

9 |y|=<1.0. The structure sparys=0.0 and|x|<0.5. A thin layer of
Here x represents the physical coordinates, @nbpresents the €lementswith £,=0.01) are placed along both sides of the struc-
element(local) coordinates. ture, with 50 element edges along the structlire., £,=0.02).
We alter the way we account for the Jacobian as follows: ~ Figure 1 shows the mesh and its close up view near the structure.
The test cases involve three different types of prescribed motion
X or deformation for the structure: rigid-body translation in the
f [...]80%E »—>J’ [...]80¢ d=, (12) y-direction, rigid-body rotation about the origin, and prescribed
E = bending. In the case of prescribed bending, the structure deforms
) ) o from a line to a circular arc, with no stretch in the structure and no
wherey, a non-negative number, is the stiffening power, aAd net vertical or horizontal displacement. The tests are carried out
an arbitrary scaling parameter, is inserted into the formulation {gith the Jacobian-based stiffening technique defined by(E),
make the alteration dlmenS|onaIIy. consistent. \/Wh 0.0, the ~where y ranges from 0.@no stiffening to 2.0.
method reduces back to an elasticity model with no Jacobian-
based stiffening. Withy=1.0, the method is identical to the one 3.1 General Test Conditions and Mesh Quality Measures
first introduced in4]. In the general case of# 1.0, the method In all test cases the maximum displacement or deformation is
stiffens each element by a factor afff ~X, and y determines the reached over 50 increments. The mesh over which the elasticity
degree by which the smaller elements are rendered stiffer than #rpiations are solved is updated at each increment. This update is
larger ones. based on the displacements calculated over the current mesh that
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has been selectively stiffened. That way, the element Jacobidiere subscript 6” refers to the undeformed meshe., the mesh

used in stiffening are updated every time the mesh deforms. Aslatained after the last remeshnd AR® is the element aspect

result, the most current size of an element is used in determinirgio, defined as

how much it is stiffened. Also as a result, as an element ap-

proaches a tangled state, its Jacobian approaches zero, and its (180

stiffening becomes very large. AR=—"%—, (15)
To evaluate the effectiveness of different mesh moving tech-

niques, two measures of mesh quality are defined based on thgfre (e is the maximum edge length for elemeat For a

used in[6]. They areelement area changg ) andelement shape given mesh, global area and shape chandgsafid f,g) are de-

change(f&g): fined to be the maximum values of the element area and shape

changes, respectively.

[ e
fe—|log A—e)llog(Z.O) 7 (13) 3.2 Test _Results._ In _the tr_anslatio_n tests, the prespribed
A, translation is in theg/-direction, with the displacement magnitudes
ranging fromAy=0.05 to 0.5. Figure 2 shows the deformed mesh
AR® for the maximum translation oAy=0.5. It is evident that the
far= lOg(ARS)”oQ(Z'O) . (14) small elements near the structure respond poorlyyfet0.0, re-
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sulting in severe stretching of the row of elements adjacent to th&ues, the motion of the nodes is governed by the equations of
structure, and tangling of elements near the structure tipsyForelasticity, and deformation of the elements are treated selectively
=1.0 andy=2.0, the small elements near the structure expeitased on element sizes as well as deformation modes in terms of
ence no tangling and significantly less deformation. fer2.0, shape and volume changes. Smaller elements, typically placed
the small elements near the structure undergo almost rigid-bodlyar solid surfaces, are stiffened more than the larger ones. This is
motion. However, the behavior of the larger elements deterioratiesplemented by altering the way we account for the Jacobian of
as the smaller elements are stiffened. This is most apparent floe transformation from the element domain to the physical do-
x=2.0 where the larger element tangle near the upper boundangin. The degree by which the smaller elements are stiffened
of the mesh. Figure 3 shows the valued gfandf 5 as functions more than the larger ones is determined by a stiffening power
of x and for different magnitudes of translation. The bold curvatroduced into the formulation. When the stiffening power is set
crossing the contours denotes the valueedhat results in mini- to zero, the method reduces back to a model with no Jacobian-
mum global mesh deformation. For example, for a displacemdraised stiffening. The two-dimensional test cases we presented
of 0.05 the optimal value of , is obtained wheny is approxi- here for three different structural deformation modes show that the
mately 0.5. For larger displacements, the optimal valuge@$ stiffening power approach substantially improves the deformed
slightly greater. The optimal value 6f is obtained ajy~0.8 for mesh quality near the solid surfaces, even when the displacements
a displacement of 0.05 and gt=0.7 for a displacement of 0.5. are large. The test cases also show that the optimal stiffening

In the rotation tests, the rotation magnitudes range ftbéh power is somewhat problem-dependent. It is higher for the bend-
=0.0257 to 0.257. For y=0.0 the mesh experiences significaning tests f~1.1) than it is for the rotation)~0.8) and transla-
stretching and tangling near the structure tips. No tangling is seon (y~0.7) tests.
for the cases with element stiffening, but fge=2.0 the large
elements near the outer boundaries experience significant distor-
tion. Figure 4 shows the deformed mesh for the maximum rotatiaxcknomedgment
of 7/4. Figure 5 shows the values bf andf g as functions ofy
and for different magnitudes of rotation. The minimum deformeN
tion of the mesh is seen for values gfaround 0.8. The mesh
quality deteriorates more rapidly ag decreases from 1.0 than
when y increases from 1.0.

In the bending tests, the bending magnitudes range 1‘&90mRe}¢erenceS
=0.17 to m, where # denotes the arc Iengtﬂin radiang for the [1] Tequyar, T. E., 1991, “_Stabi’I’ized Finite Element Formulations for Incom-
deformed structure. Figure 6 shows the deformed mesh when the, .‘Fg%ﬂgﬁio"‘écggﬁftﬁonjn dASi‘(’)' prf!' %2‘;?%”&3;;‘:& eqy for Finite
structure bends to a half-circlée., 6= ). For x=0.0, we see Element Computations Involving Moving Boundaries and Interfaces—The
tangling near the structure tips. As the element stiffening in-  Deforming-Spatial-Domain/Space-Time Procedure: I. The Concept and the
creases, tangling at the tips disappears, but severe element distor- Preliminary Tests,” Comput. Methods Appl. Mech. Eng4, pp. 339-351.
tion arses in the interiors. Figure 7 shows the values,ohnd (% Texeyer ©.C: So 1 b, = snd w0, 057, B e ey o
far as functions ofy and for different magnitudes of prescribed The Deforming-Spatial-Domain/Space-Time Procedure: 1. Computation of
bending. The minimum deformation of the mesh is seen for values Free-Surface Flows, Two-Liquid Flows, and Flows With Drifting Cylinders,”
of y around 1.1. Comput. Methods Appl. Mech. Eng4, pp. 353-371.

: : ; 4] Tezduyar, T. E., Behr, M., Mittal, S., and Johnson, A. A., 1992, “Computation
Flegure 8_ShOWS’ for different deformation modes, the contours[ of Unsteady Incompressible Flows With the Finite Element Methods—Space-
of f, for stiffening power ofy=0.0, 1.0, and 2.0. The contours Time Formulations, lterative Strategies and Massively Parallel Implementa-
Corresponding tdi=0.5, 1.0, and 2.0 are denoted with dotted, tions,” New Methods in Transient Analysi. Smolinski, W. K. Liu, G. Hul-
dashed d bold li tivel bert, and K. Tamma, eds., ASME, New York, AMD-Vol. 143, pp. 7-24.

ashed, an 0 Ines, respectvely. [5] Masud, A., and Hughes, T. J. R., 1997, “A Space-Time Galerkin/Least-Squares
i Finite Element Formulation of the Navier-Stokes Equations for Moving Do-
4 Concludmg Remarks main Problems,” Comput. Methods Appl. Mech. Eng46, pp. 91-126.

. . . LG] Johnson, A. A., and Tezduyar, T. E., 1996, “Simulation of Multiple Spheres
We have presented automatic mesh moving techniques for rajiing in a Liquid-Filled Tube,” Comput. Methods Appl. Mech. Entj34 pp.

fluid-structure interactions with large displacements. In these tech- 351-373.
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A Method for Particle Simulation

Z. Zhang . . o . .
This paper extends a recent approach to the direct numerical simulation of particle flows
A. Prosperetli1 to the case in which the particles are not fixed. The basic idea is to use a local analytic
Fellow ASME representation valid near the particle to “transfer” the no-slip condition from the particle

surface to the adjacent grid nodes. In this way the geometric complexity arising from the
Department of Mechanical Engineering, irregular relation between the particle boundary and the underlying mesh is gvoided and
The Johns Hopkins University, fast solvgrs can be used. The_results suggest that the g:ompu_tatlonal effort increases only
Baltimore. MD 21218 slowly with the number of particles so that the method is efficient for large-scale simula-
’ tions. The focus here is on the two-dimensional case (cylindrical particles), but the same
procedure, to be developed in forthcoming papers, applies to three dimensions (spherical
particles). [DOI: 10.1115/1.1530636

1 Introduction Another useful feature of the method is that, for a given com-
utational domain, the computation time is only weakly depen-
nt on the total number of particles, which permits relatively

The computational task is considerable and the earlier mod [ge computations to be carried out with modest computational
P Fedources. A preliminary analysis of the convergence properties of

treated the particles as F’°"‘.¢-°'ee' e.g., Refd1-3). This ap- this approach is presented in REZ1].
proximation is justified for dilute systems such as dusty gases, past work we have demonstrated PHYSALIS for potential

particle-laden gas jets, and other situations in which the major p o~ : .
of the particle interaction with the fluid takes place through dra%f)tW past sphere4.19], and Navier-Stokes flow past fixed cylin

The importance of direct numerical simulation in the study oz
fluid flows with suspended particles has long been recogniz

d bly lift. f | irated " liaui lers,[20], with some preliminary examples of Navier-Stokes flow
and possibly fift, forces. in concentrated Systems, or lquiGs, sphere$22]. In all these examples the particles were station-
particle flows, however, the fact that the particles have a finite si

. : . . It is the purpose of the present paper to illustrate the perfor-
plays a determinant role in the physics of the problem and canng nce of thep mzthod in theppresenfe %f moving cyIindriceF\)I par-

be neglected: For th_|s reason, the last few years have S€eHcfbs. The three-dimensional case of spheres can be treated
greater effort in this direction. Examples are the early calcuIatlorgﬁh,jlogougy

of Joseph and collaboratotsee, e.g., Ref§4—6]) the more re-
cent work of this group(see, e.g., Refd7—9]), the “immersed
boundary” approach of Ref$10], [11], the finite element calcu-
lations of Refs[12], [13], the CHIMERA methodsee, e.g., Refs. 2 Reduction to the Rest Frame
[14], [15]), and othe_rs. Other recent methods are based on I"m'ce"l'he method requires the consideration of the flow in the neigh-
BO.:.tﬁ?gpensg?:trgﬂgg?giﬁtle(z;% recent method. PHYSALIS ba%ogrhmd of each particle separately. Lébe the flow velocity in
. ’ J inertial frame, andv, € the translational and angular velocity

on an approach rather different from the ones used beffb®2q. f a particle. The first step is to express the Navier-Stokes equa-

Very briefly, the basic idea can be explained in the followin inth icl f h he fl loditis related
terms. Because of the boundary conditions on its surface, a p, ?{]Jst')nt e particle rest frame, where the flow veloitys relate
ticle induces a specific structure in the neighboring flow whic y

manifests itself in certain nonlocal relations among the flow fields U=u+w+QXXx, 1)
(velocity, pressure, vorticify Rather than solving the problem.
with the particle in place, one can therefore impose this relatio
ship directly on the nodes of a fixed regular grid and effectivellf
remove the particle. Thus, the actual boundary of the particle, with
its usually complex relation to the underlying regular grid, can in p E+(U-V)u+29xu =—Vp+uVeu+pg

principle be replaced by a simpler boundary consisting of grid

nodes although, in practice, it is possible to eliminate entirely this — p[WAH QXX+ QX (QXX)],
internal boundary by exploiting the iterative nature of the algo-

rithm. With this step, all internal boundaries are eliminated and, if 2

the external boundary of the computational domain is regular, fagtpe solved subject to the incompressibility constraint and to the
solvers can be used. It should be stressed that the procedure IlhB@ndary conditiom=0 on the particle surface. i) p andu are
way implies approximating the particle shape, as in some othgg fluid density and viscosity is the pressure, ang the body

approachegsee, e.g., Re{.18]). In particular, unlike other meth- force; dots denote Lagrangian time derivatives following the par-
ods, the no-slip condition at the particle surface is enforced eggle.

actly and, as the number of degrees-of-freedom per particle isThe change of variables
increased, the error decreases faster than algebraically.

1 which x is the position relative to the particle center. In this
ame the momentum equation is

Ju

4 4
r-—a” - 1
— :~ :~ —_ 2_ N— .
1Also, Faculty of Applied Physics and Twente Institute of Mechanics, University u=u-t 81/1’2 Qxx, p=p+ 2 p(QXX) p(W g) X,
of Twente, AE 7500 Enschede, The Netherlands, and Burgerscentrum, The Nether- (3)
lands.
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MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, Dec. 4, 2001; Ju
final revision, Mar. 26, 2002. Associate Editor: T. E. Tezduyar. Discussion on the pl— +(u- V)u+2ﬂ>< ul= —VEH—MVZﬁ, (4)
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Depart- ot
ment of Mechanics and Environmental Engineering, University of California—Santa. , ~ . . .
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months améllth u=0 on the particle surface. Sinee=0 on the particle sur-
final publication in the paper itself in the ASMBURNAL OF APPLIEDMECHANICS.  face, by continuity, it will be small near the particle and, therefore,
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Fig. 1 Example of cage around a particle: crosses: pressure
nodes; diamonds: vorticity nodes; arrows: velocity nodes

Table 1 Comparison among three different calculation of the
force on a line of cylinders held between two moving walls

Nodes per fe

L/D al/Ax Cylinder Present Ref.[18] Ref. [25]
11.8 10.8 10 1.034 1.053 0.966
6.1 20.8 10 1.224 1.251 1.158
2.09 60.8 20 2.079 2.093 2.067
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Fig. 2 Two particles falling

(left to right ) between two parallel

plates separated by four particle diameters with final Reynolds
numbers of 1.03 (dotted line and squares ) and 8.33 (continuous
line and crosses ). The lines are the present results and the

symbols the results of Ref.  [6].

Journal of Applied Mechanics

there is a region adjacent to the particle where the left-hand side
of (4) is small. Thus, locally, {,p) approximately satisfy

—Vp+uVAi=0, V.U=0, (5)

i.e., the Stokes equations. Naturally, the extent of the spatial re-
gion where(5) are a good approximation @) becomes smaller
and smaller as the Reynolds number increases but, for any finite
Reynolds number, there is a nonvanishing region wtiByeare
applicable with but a small error.

The general solution of the Stokes E@S) subject to the con-
dition of vanishing velocity on the particle surface is readily found
in terms of a dimensionless stream functign defined so that
U=VX(vyrk) (with k the unit vector normal to the flow plane and
v is the kinematical viscosily and is

©

P=v(s2—2logs—1)Ag+ v Y, [ (A, cOSNO+A, SiNNG)
n=1

+~z,//n(Bn cosn0+~Bn sinn#)], (6)
where

1 -~ s 1
= 3— _— = —_—— —_—
P1=5"—2s+ S Y1=slogs 5 + s )

Ya=ns "2—(n—1)s "—g",
®)
with s=r/a. An important point to stress is that, thanks to the as

yet undetermined coefficients,, B,,, A,, B, (different for each
particle), the stream functioii6) is able to accommodate arfp-
cally Stokes flow in the neighborhood of the particle. Thus, no
assumptions or restrictions about this flGw particular, about its
behavior far from the particjehave been introduced. These coef-
ficients will be determined iteratively by matching the velocity
field given by (6) to the numerically computed flow away from
the particle.

The pressure and vorticity fields correspondind@pare

Yp=ns""2—(n+1)s"+s ",

~ v . ~ 2 . ~
p=pot+ 'L;—Z 8s(—A; sinf+ A, cosh) + g(B1 sin6— B, cos#)

+ E [4n(n+1)s"(—A, sinn0+2\n cosné)
n=2

+4n(n—1)s’”(f5n cosnd—B,sinnd)], 9)

wherepy is a constant, different for each particle, and

, - 2
®=—3| —4Ao—8s(A; CosO+A; sin6) - ~(B; cosd

©

+Bysing)— >, [4n(n+1)s"(A,cosné+ A, sinnd)
n=2

+4n(—n+1)s "(B,cosng+B,sinng)]|. (10)

In the original inertial frame, the hydrodynamic for€eand
coupleL (per unit length acting on the particle are

. V ~ .
F:pv(W—g)+4Tr%(Bl,—Bl), L= —8murAgk+ ppa’Q.
(11)

3 Implementation

The general idea described in the Introduction can now be made
more precise.
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Fig. 3 Vertical velocity versus time for two particles aligned vertically and released: while the distance is large enough the
fall velocity is nearly equal. As the upper particle gets caught in the wake of the lower one it accelerates (drafting ); the two
(kissing ), until they tumble and separate. The calculation shown on the left was done with 19.2 nodes per
(courtesy of Prof. T. W. Pan, University of Houston ).
1 Vit~ Uij Uijr1— Ui
u-dl=———1_ — . (12
3g Ax Ay (12)

:AxAy

particles interact
particle diameter, that on the right with 28.8
a)ij

covered by a regular finite difference grid. Each cylinder is sur-
provisional estimate of velocity and pressure fields is available

The entire domain, irrespective of the presence of the bodies, is

rounded by a cage of cells straddling the body surface; an ex-

ample is shown in Fig. 1 and the algorithm used to construct téhereAx andAy are the mesh spacings, and, therefore, it resides
The procedure can be summarized as follows. Suppose that a

cage is described later. We use a standard staggered grid arraongethe grid nodegdiamonds.
ment, with pressure at cell centdiosseps and velocities at the

midpoints of cell sidegarrows. Vorticity is calculated from
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Fig. 4 Position versus time for the two particles of the previous figure as calculated with the finer discretization
)

Prof. T. W. Pan, University of Houston
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(c) (@

Fig. 5 Snapshots of the two falling cylinders of Figs. 6 and 7 at times t=1.312, 2.272, 2.521, and 2.971 s

as given by the present method

(this could be, for example, the velocity field at the previous time- 3 Solve the full Navier-Stokes equations on the finite differ-
step. Then, after truncating the summationg@), (9), and(10) to ence grid imposing this velocity field as boundary condition on

a finite number of term$\. and calculating the vorticity from the velocity nodes of the cage of each particle.
(12): 4 Calculate the corresponding vorticity, return to Step 1, and

1 For each particle, let 1, 2. .,N, be the pressure nodes and’eDeat until convergence.
1, 2,...,N, the vorticity nodes of the cage; match the provi- As will be explained in the next section, in executing Step 3, it
sionalp and@ to the analytic expressiori8) and(10) to generate s efficient to solve for the flow field over the entire grid, disre-
a linear system for the coefficients,, B,,, A, , B, of the particle. garding the presence of the particles. The velocity field outside the
In principle, the maximum number of coefficients that can beages is the one that is desired. The field inside the cages is the
determined in this way equals the number of cage nodes, althougghirect solution of another flow problem, in which the flow is
in practice we use fewer and solve this system in a least squadréven by the imposed velocity on the cage nodes: This solution is
senseg(see below. not unphysical—it is simply irrelevant for the purposes of the
2 Using the values of the coefficients determined at the prewalculation and can be disregarded. The final flow field is given by
ous step, compute from the analytic formulas the velocity at thiee finite difference solution outside the cages, and by the analytic
velocity points 1, 2. .., N, of the cage surrounding the particle.representation in the thin region between each particle and the
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Fig. 6 Vertical (left) and horizontal (right) velocity versus time for the two particles of Fig. 3 as computed by the present
method with At=1ms

surrounding cage. It should be stressed that the solution proceduré possible criticism of the method is its reliance on an approxi-
is devised in such a way that, other than for satisfying a commamate solution in the fluid regions between the particle and the
velocity boundary conditions at the cage nodes, the solutions surrounding cage. The associated error can be reduced by refining
side and outside the cages are completely unrelated, so that #eygrid, which has the effect of putting the cage nodes closer and
“contamination” of the latter by the former is avoided. In particu-closer to the particle surface. Another possibiliiyhich we have

lar, there is no continuity or other relation satisfied by the stressest yet exploregfiwould be to improve on the Stokes flow solution

across the cage surface. by approximating the solution of the full nonlinear Eg) by a
1.6 7.5
7
L A e A
6.5
14 O AP SN F PO S PN -
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1.3 55
E 3
s s
x >
12 5 s N N SOy
4.5
1.1
4
1
e s S i s
0.9 3
0 0.5 1 1.5 2 25 3 0 0.5 1 15 2 25 3
(a) t(s) {b) t(s)

Fig. 7 Vertical (left) and horizontal (right) position versus time for the two particles of Fig. 4 as computed by the present
method with At=1 ms
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® 06 0

Fig. 8 Fall of a cluster of ten particles as computed with the present method at
vt/a=0, 3.0, and 4.0

regular perturbation expansion. It may be noted, however, thatvrhere Re is the Reynolds number expressed in terms of a charac-
practice some control of the error is built into the procedure asristic velocity and the cylinder diameter, we thus have dhat
convergence requires that all the flow fields be described by the2a/A should be sufficiently larger thagiRe. This limit is not
sameset of coefficients 4 ,B,). In the presence of strong non-different from that applicable to a standard finite difference calcu-
linear effects, which are not accounted for in the analytic solutiqgation.

(6), this condition would not be satisfied and the iterative proce- we now turn to some details of the implementation; additional
dure would not converge as we have indeed found by purposglformation can be found ifi20].

putting the cage nodes too far from the particle surface.

A rough idea of the grid sizA necessary for a good numerical 3.1 Flow Solver. As is clear from the previous description,
accuracy may be found by noting that the grid points should lg@&ch computational cycle consists of two steps: an inner one that
inside the boundary layer for the Stokes approximation to hgdates the coefficients, and an outer one that calculates the flow
valid. If the boundary layer thickness is estimated a&lg§Re, field for a given set of coefficients.
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Fig. 9 Continuation of the previous figure showing the ten falling particles at

vt/a=5.0, 6.0, and 6.62. The terminal velocity of the leading particle

(No. 10) corre-

sponds to Re =14, while the maximum Re reached in the simulation is about 17.

The outer step is executed by a suitably modified first-ord

accurate projection method which rests on writing the tim‘“c‘ylinder diameter and number of modes

discretized Navier-Stokes equation as

e‘ngIe 2 Dimensionless force components for flow past a cyl-

inder at Re =30 in dependence of the number N, of points per

untlogn 1 Ny Nc aF/4mpv aF/dmuv
—ar MU= Vet (13) 20 4 41.019 ~0.0131
30 4 41.089 0.00302
where\ stands for all the terms that need not be shown explicitl)gg i ﬂ-gg‘ll 8-88;21
the superscripts, n+1 denote time levels and we assume thay 6 41,094 0.000493
everything is known at time level. The modification to the usual 40 8 41.093 0.000127

procedure is rendered necessary by the fact that the velocity
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Fig. 10 Dimensionless force component  aF,/4w@pv in the di- Fig. 12 Vertical velocity of the leading particle for the simula-

rection of the flow versus time at Re =30 in dependence of the tion of Fig. 5 as computed with At=0.5, 1, and 2 ms
number N, of modes retained in the summations in (6), (9), and
(10); the number of points per cylinder diameter is N,=40

boundary condition on the cages depends on the coefficients of trel, since approximate valudg ! of the coefficients are avail-

expansions which are only determined as part of the iteration prghle, we use these values to géton the cage nodesee below
cedure. Denote by the index of this iteration, and write, for for a further note on this step

brevity, u®, p*, and A in place of utt e pttie s and Before taking the divergence ¢£3) as in the usual implemen-
(Af,BE AL BY). As in the usual method, we defing at interior  tation of the projection method, we multiply this equation by the

nodes by characteristic functiory of the domain external to the cages. Near
© n the generic particlex we may takey=H(S"), whereH is the
U, —u = A(u") (14) Heaviside distribution an®*(x) =0 is the cage surrounding par-
At ’ ticle , with S*>0 outside the cage. The result is
50 2cl)nodes HVZ K+1+VH V k+1__ P HV K+ n+1_ |k VH
30 nodes ------ P VP _E[ U+ (u Uy)-VH].
49 4(3 nodes i (15)
48 o d ......................... o Thanks to the faCtOVH, the last term of the equation 0n|y con-
tributes on the cage where, at convergendé,!=u, ; thus we
47 bbb ] drop this term and further approximaté5) by evaluating the
second term at iteration level rather than«+1:
T TS U OO SO OOOOOE SO i
z p
§ HV2p<fl=—HV.u - VH-Vp~. (16)
= 45 At
s
44 The solution of this equation gives a new estimafeé® of p"*2,
which enables us to calculatg™?! from
43
utl—yx 1
P - _ _ Kk+1
42 At p Vp s, (7)
41 ‘ &—"-W“_T"W"'""" from which new coefficient&“"* can be found by matching, and
0 0.5 1 1.5 2 so on.

If (16) were solved as it stands, it would be necessary to imple-
ment a procedure to skip the nodes inside the inner cage, which-
Fig. 11 Dimensionless force component  aF/4muw in the di- yvoulld‘ prevent the use of a fast §0Iver. This pptential source of
rection of the flow versus time at Re =30 in dependence of the inefficiency can, however, be avoided as explainef2m.
number of points per cylinder diameter; the number of modes After convergence, the position velocity w, and angular ve-
is N.=4 locity () of each particle are updated from

tv/a
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At At possibility of placing the cage mostly inside the particle permits
n+1 n n+1 n n+1 n n+1 n . : .
Wi t=wit 2m (F"2+FY), y" =y'+ 2 (Wi wh), two particles to come in very near contact as will be demonstrated
(18) below.

4 Some Examples

At
Q=0+ E(L"HJF L"), (19)  Our first example is reproduced frof20]. It consists of the
flow induced by a line of stationary cylinders held between two
wherem and | are th tticle m nd moment of inerti I@arallel walls both moving with velocity; the Reynolds number
h € I?j ba i (?t?l tteh'pa ced ass aﬁl Ato € Ot e tﬁ' is defined as Re2aU/v, wherea is the particle radius. This case
zoevufieldi :Z:d to ialchsla%ongel ;r:g I'_Snfl gre )bzgglcjjr?)r?tiz olz was simulated in Ref25] by a finite element method and in Ref.
. p " . - [18] by a lattice-Boltzmann method. The cylinders are spaced by a

(at timet") position and velocity of the particles. Use(@®) and  gistancel, D denotes the spacing between the walls, dpd
(19) enhances stability. =|F|/2mpU?a, with F the total fluid-dynamic force. Table 1 il-

3.2 Matching. According to Step 1 of the procedure delustrates the‘near-perfect agreement among the three computations
scribed before, once**! has been determined, it is necessary tg%r n?p‘ift‘:ﬁovxghm?g éﬁ'ig]’z;hde[zcg][ume” :ﬁﬁg'ﬂﬁégeﬁ;ﬁoﬁg‘tﬁe
%%dgt?igzgrcgfggﬁ nét‘ﬁ ’i?]k p?l;cl?pl)(l)e TohrE s(':tgﬁl(;n;/gtg/iisasso'r\ga conditions for the present computation. Note that in the last two

. ’ ’ 7 o ses our results have been obtained with 1/2 and 1/3 of the nodes
coefficients as there are pressure and vorticity points in the Car??éthe lattice-Boltzmann calculation, respectively. For these simu-

In practice, however, on a finite difference discretization wit tions we tookN,=4, and periodicity boundary conditions were

cells of sideA, the shortest feature that can be resolved has : ' ; ;
length scale~2A so that, retaining modes with a shorter wavel plied to the boundaries of the computational domain perpen-

length, would contaminate the calculation with aliasing errOdlcular to the moving planes, and no-slip conditions on the planes.

r X -
rather than increase accuracy. Truncating the summatié¢®) iat Other examples of this type are given [iB0]. We now tm to

N, is equivalent to allowing a shortest wavelength of the order Gpses with moving particles which were not considered in the
c ; ) h .
2a/N,. Thus we expect that a near-optimal choice would b arlier papers. We first compare our results with those obtained by

2a/N.~2A, or N.~1/2N, , whereN, =2a/A is the number of thers, and conclude with an example with many particles.

. ; . . Referencé6] reports results of a simulation in which a cylinder
moeiﬁths liingftTﬁepsrzjg:ag;gae;Az'23(':\]6 th:ngL;?ebihgfbgyigiﬂgf_gfgls under the action of gravity between two parallel vertical
PO . ; A -~ _walls spaced by.=8a. Our results for two of their cases are
ficients=4N_, in a typical calculation there are about three time hown in Fig. 2, in which gravity acts from left to right. For the

S(S)erfrf]iacingngrlﬁaziwé?e?grg%eggltea;tgﬁI-arrh (renzilris)ieg]ng?/‘f/eerg](;?\llggit i)l;%t case(dotted line and squarkshe particle to fluid density is

the Slingular Value Decor(;wpositiﬁn algllori_thm,I whiclh is equivale_ glg (LsTJI%dolci)r?eaar:r? dtréfozgggi%r:iisoguwﬁﬁ ralf.i(r)g;l fgre)t/?]((e)lgtsher
to a least-squares procedure when all singular values are retaiie ) : ; ;
(see, e.q., Ref§23,24). fm ber 8.33. The figure compares the trajectories of the center of

It is apparent that the accuracy of the method can be increa§
arbitrarily by increasing the number of nodésith the effect,

h(a cylinder when it is released from a distance 0288d 0.19
fom the lower wall as computed by the present metklotes)

: . . with the results of Ref[6] (symbolsg. The two calculations are in
among others, of reducing the extent of the region where apphcca}(-)se agreement. Heir[e]a(\syin RE% the computational domain

bility of the Stokes equations is assumeahd the number of co- - —
efficients in the exact solution. It may also be noted that, for réagl lgstot;I] dle%g/ﬁAhnglemwiftcr)]r g 4(;_ 684‘8’3 n\cl)vg esus?AtinrT eés);e
smooth velocity field, the analytic expansit) converges faster t./az—,O 002 andN.—4. For the smaller Re, nolds numbSr
than algebraically and therefore the present method makes an”é'}- f' dyth " c 'th q ired yh tfiner di tie
ficient use of the degrees-of-freedom retained for each particﬁ?‘.s_e We found that our me 02 required a somewnat finer discret
Another significant advantage is that the force and torque on eaéﬁ{'on’ Z/Ax=20, with vAt/a”=0.001. No-slip boundary con-
particle are found directly froni11) once the low-order coeffi- ditions were applied on all boundaries.

. i . e Figure 3 is the “drafting, kissing, and tumbling” example of
cientsAy, B4, B, are known. This avoids the difficulty encoun-_. ;
tered with some other methods which require high-order extra| Fi9. 3 of Ref.[8] as kindly recalculated for us by Prof. T. W. Pan.

lations to obtain the stress distribution on the particle Mere two pa_lrticles are allowed to fall _along the centerli_ne of a
' domain having a widthL=20a and height 88. The particles
3.3 Cage. The algorithm used to generate the particle cageave a radius of 1 mm and are released at distance=ii@ 6&
is as follows. For each particle, at each time-step, the grid nogkove the horizontal bottom of the domain. The liquid kinematic
closest to the particle centgris identified. A square centered atviscosity is 0.01 crffs, the liquid densityp, =1 g/cn?, and the
this node, with sides equal to the number of grid nodes per pgarticle densitypp=1.01 g/cni. The two figures differ in the dis-
ticle plus 1(so as to make sure that the particle is entirely coreretization: 19.2 nodes per particle diameter for the figure on the
tained in iy, is then constructed. All the cells contained in thideft, and 28.8 for that on the right; in both cases the time-step was
square are then examined in turn, and the fraction of their aréans. The higher particle falls faster and catches up with the lower
occupied by the particle is computed: if this fraction is betweeone (drafting), after which the two particles fall with nearly the
50% and 100%, the cell is assigned to the cage; note that, in te@me velocity(kissing, until they tumble and separate. It can be
way, the pressure point at the center of the cell is guaranteed todaen upon comparing the two figures that the duration of the
inside the particle. For each cage cell, the node farthest from théss” is longer with the finer discretization; also, the results
particle center is taken as vorticity point, while the velocity nodeshown here differ rather markedly from those in Fig. 3 of R&f-
are taken at the midpoints of the cell sides closest to the partidilbe problem is that, with mathematically smooth particles and
center. Additional vorticity nodes are then inserted to ensure thafinite-precision arithmetic, the two particles would remain
no gaps are left. This construction is repeated each time a partialgned indefinitely approaching without ever touching. In the nu-
is moved. merical calculation, due to the necessarily finite time-step, it is
Many of the points used in the algorithm thus fall inside theecessary to introduce an artificial repulsion force to prevent the
particle, but this does not create any difficulty—practical oparticles from overlapping and, depending on how this force is
conceptual—as, in principle, the functions defined®y (9), and specified and on the details of the numerics, the results may very
(10) are defined for both greater and smaller than the particleather widely as can be seen by comparing the two results in Fig.
radius (provided, of course, that>0). As a matter of fact, the 3 and with those in Fig. 3 of Ref8]. The horizontal and vertical
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positions of the particle centers with the finer discretization aret=2 ms, ands/a=0.4. In the last frame of Figs. 9, the leading
shown in Fig. 4. Another numerical effect is apparent here: thgarticle(No. 10 has a terminal velocity corresponding to=Ri4,
particles drift sidewaysx-direction, in spite of the fact that, at while the maximum Re reached in the simulation was about 17.
this relatively low Reynolds number, single-particle wakes are As long as there are no collisions, the particle arrangement
symmetric and steady. This effect is probably due to the use of@mains symmetric about the midplane of the channel, which im-
grid of similarly oriented trianglegsee[7]). plies an absence of bias in the numerics. Symmetry is lost after
In our simulation, we imposed no-slip conditions on all thehe particles start undergoing collisions, as a consequence of the
bounding surfaces and tookaPAx=2a/Ay=20. In order to pre- instability mentioned before.
vent particle collisions, we use the same procedure as suggested Mhe computational times for this multiparticle simulation and
Ref.[7]: It is assumed that a repulsive forEg exists between the the single-particle simulation of Fig. 2 were comparable. In the
particlesi andj given by latter case the domain was half the width as in the former, but the
0 d>2a+s com_puta.tion was stqpped ata valuetdftwice as large as for the
Fo=1 (20) mult_|part|cle simulation. _The time-step and number of nodes per
€, (Yi—yj(2a+ 6—d)? d<2a+s particle were the same in the two cases, and the Reynolds num-
i i ) , bers were similar. Thus, the very weak dependence of the compu-
whered=|y;—yj| is the distance between the particle centéiis,
the thickness of a “security zond&qual to two mesh sizes for the

tational time on the number of particles that we have reported in

calculations of Figs. 3 and) 4round the particles, ang, specifies [20]is confirmed by the present resuits.

the magnitude of the fqrce. OL_|r results hilve been obtalged Wgh Some Considerations on Convergence

20 nodes per particle diameters/a=0.2 and €,=8 _

% 107 % cmPs?/g; the time-step was initially set at 1 ms, decreased The numerical results depend on the number of nodes per par-

to 0.6 ms during the time the for¢@0) was active, and then againticle diameterN, , the number M+ 2 of coefficients retained in

increased to 1 ms after the particles separated. We also rath@ summationg6), (9), and(10), and the time-stept. It was

simulation with a 0.5 ms time-step finding very nearly the sanffgued earlier that the avoidance of aliasing errors in the summa-

results. tions puts an upper limit oN. of about 1/, and thatN, should
Qualitatively, one notes oscillations during the particle-particlee sufficiently larger thanRe to have adequate resolution in the

interaction, a feature which is also present in Fig. 1074f who boundary layer.

used(20), but not in Fig. 3 where a slightly different form was To illustrate the dependence of our results on these parameters
used: we show in Table 2 the calculated force components on a periodic

system of cylinders separated byal&Zlong a line perpendicular to
. 0 d>2a+46 1) an incoming uniform flow with Re 30 (x-axis). The cylinder cen-
=) 1y 2_ 42 ) ter is on the midplane of the computational domain at a distance
o imy)((2a+oy—d) d=2a+o of 10a from the upstream boundary; the length of the computa-
with e,=10"3. The sensitivity to the precise form of the force carional domain in the direction of the flow is 40By symmetryF,
be explained by noting that, while they interact, the particle béhould be zero and, thereforfe, /F, may be taken as a measure
havior is similar to a damped nonlinear oscillator and, if thef the error on the total force. The results are all very close to each
damping is not sufficiently strong with respect to the restoringther and appear to be more sensitiveNp than to the other
force, oscillations will be produced. Indeed, we have found th@arameters.
these oscillations are strongly affected by the magnitudéaid  The time evolution of the dimensionless fomE, /4w v in the
ep; for example, in preliminary calculations in which, followingflow direction for different parameter values is shown in Figs. 10
the lead of Ref[9], the interaction force is turned on only whenand 11. Att=0 the cylinder is placed in a steady uniform flow,
the particles touch, they disappear. The strong effect of the coNthich then adjusts in time to the presence of the bodies. Figure 10
sion force is also apparent from the very significant differencds for 40 nodes per cylinder diameter with,=2, 4, 6, 8 modes,
among the results di8] and those of Fig. 3 of Professor Pani.e. 10, 18, 26, and 34 coefficients. Only the curve corresponding
Unfortunately, this state of affairs appears to be inherent in thig the smallest number of modes can be distinguished. The effect
type of simulations: mathematically, the particle interaction is thef the number of nodes, witN =4, is shown in Fig. 11. The
result of an instability while, physically, it is the result of imper-curves are all very close to each other and only that corresponding
fections of the particle surface. Thus, even in principle, there 18 No=20 can be distinguished.
little hope of ever developing the “right” interaction force. On the Finally, to illustrate the effect of the time-step, we return to the
other hand, if interest lies in the simulation of many particles, firafting, kissing, and tumbling example of Fig. 6 and show in Fig.
may be expected that, on average, the behavior of the systééhthe vertical velocity of the leading particle as computed with
would be rather robust and insensitive to such details. On a maké=0.5, 1, and 2 ms during the initial stages of the process.
positive note, it may be noted that this type of calculations is stiffonvergence of the results is clear from this example.
in its infancy and much still remains to be learned.
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Shear Buckling of Sandwich,
Fiber Composite and Lattice
Columns, Bearings, and Helical
Springs: Paradox Resolved

Z.P. Baiant As shown three decades ago, in situations where the initial stresses before buckling are
not negligible compared to the elastic moduli, the geometrical dependence of the tangen-
tial moduli on the initial stresses must be taken into account in stability analysis, and the
stability or bifurcation criteria have different forms for tangential moduli associated with
different choices of the finite strain measure. So it has appeared paradoxical that, for
sandwich columns, different but equally plausible assumptions yield different formulas,
Engesser’s and Haringx’ formulas, even though the axial stress in the skins is negligible
compared to the axial elastic modulus of the skins and the axial stress in the core is
negligible compared to the shear modulus of the core. This apparent paradox is explained
by variational energy analysis. It is shown that the shear stiffness of a sandwich column,
provided by the core, generally depends on the axial force carried by the skins if that force
is not negligible compared to the shear stiffness of the column (if the column is short). The
Engesser-type, Haringx-type, and other possible formulas associated with different finite
strain measures are all, in principle, equivalent, although a different shear stiffness of the
core, depending linearly on the applied axial load, must be used for each. The Haringx-
type formula, however, is most convenient because it represents the only case in which the
shear modulus of the core can be considered to be independent of the axial force in the
skins and to be equal to the shear modulus measured in simple shear tests (e.g., torsional
test). Extensions of the analysis further show that Haringx's formula is preferable for a
highly orthotropic composite because a constant shear modulus of the soft matrix can be
used for calculating the shear stiffness of the column, and further confirm that Haringx’s
buckling formula with a constant shear stiffness is appropriate for helical springs and
built-up columns (laced or battened)DOI: 10.1115/1.1509486
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1 Introduction umng, large regular frameworks treated in a smeared manner as a
continuum, and elastomeric bearings used for bridges and for seis-

During the 1960s, there used to be lively polemics among trﬁ%c isolation of buildings.

proponents of different three-dimensional stability formulations For sandwich plates, which are very sensitive to buckling

Zssoﬂﬁéed r\(le?gggngalllaﬁovt\{ghbgf[g]?m dfilf?tlatree:ttr?gerzg\?susﬁs’s [5-11], the initial axial stress in the skins of a sandwich column is
9 pre . . : € -.negligible compared to the elastic modulus of the skins, and the

rates, and different incremental differential equations of equnlt?

. . nitial axial stress in the foam core is zero. Consequently, it may at
rium (proposed by Hadamard, Biot, Trefftz, Truesdell, PearsoHrst seem that the shear stiffness of the core should not depend on

Hill, Biezeno, Hencky, Neuber, Jaumann, Southwell, Cotter, Ri\fhe axial force in the skins, which would imply that there should

lin, Engesser, Har_lngx, etc.—s¢2| _(p. 732 and Chap. }1and . be no differences among the critical load formulas associated with
[3]). These polemics were settled in 1971 by the demonstratlo(ﬂfferent finite strain measures

[4], that all these formulations are equivalent because the tangen-SO’ it came as a surprise that the Engesser-fyie-14, buck-

tial elastic modull Qf the material _cannot be taker_1 the same bIHJig formula for sandwich columns, which is associated with the
must rather have different values in each formulation. It was al byle-Ericksen finite strain tensor of order=2, [2], gave, for

" ) . SSRort sandwich columns, much smaller critical loads than the
at the critical state of buckling are not negligible compared to ﬂﬁaringx-type [15,16, formula, which is associated with the
E|aFSct)err;ngs?ug;([sl](i'r?eC.rétigngi]' the differences between vario Doyle-Ericksen tensor of orden=—2. The discrepancy was ve-

- L buckiing probléms, ' - var lﬁ%mently debated at several recent symposia on compdsges
stability criteria are insignificant because the initial stresses 8cially at those sponsored by ONR at the ASME Congresses in
negllglble compared to the tangential moduli. One exception is t lando(2000 and in New York(2003). Using constant and the
buckling of rubber and other elastomers. Others are the buckllggme shear stifiness values for both formulas, Kardométe:
of composites with a highly orthotropic fiber reinforcement and 32] and Simitses and Shei23] showed that t,he Haringx-type
very soft matrix, or built-up columngbattened or lattice col- buckling formula gave results closer to the experiments on sand-
Contributed by the Applied Mechanics Division of/ AMERICAN SOCIETY OF wich columns and to three-dimensional finite element simulations.
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- Bu_t' in view of the Sma"ness of stresses in both the core and the
CHANICS. Manuscript received by the Applied Mechanics Division, Jan. 30, 2005Kins, the reason for the difference has been seen as a paradox. To
final revision, May 9, 2002. Associate Editor: A. Needleman. Discussion on the paggxplain it, is the purpose of this paper. The explanation will also

should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departmen : : : : _
Mechanics and Environmental Engineering, University of California—Santa Barbatr(ghnfy the shear stiffness to be used for bUCk“ng of hlghly ortho

Santa Barbara, CA 93106-5070, and will be accepted until four months after fithPPIC composites and eprajn why .Haringxls formula is the cor-
publication in the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. rect buckling formula for helical springs.

Journal of Applied Mechanics Copyright © 2003 by ASME JANUARY 2003, Vol. 70 / 75



N
zecspecee P *P
CF Pw.AN W
I ~gl'\ Py =" ﬁv
l AAYN L LA
%

Fig. 1 Sandwich columnin (a) initial state and (b) deflected state; (c,d) cross-section
rotation, shear angle and shear force due to axial load

In applications to built-ugbattened or lacedatticed) columns 3 Classical Paradox in Buckling of Columns Weak in
and to fiber composites, the difference between the Engesser ajkbar
Haringx shear buckling formulas has been discussed for about 60 . ) )
years: e.9.[2,4,24—34. Ziegler[27], for example, tended to favor _ENgesser in 188p12—-14 and Haringx in 194215] presented
Engesser’s formula and Reissng8,29, Haringx's formula. different formulas for the first critical load in buckling of columns
However, no consensus on the theory has yet emefg&6, exhibiting significant shear deformatiofisig. 1(a,b)). They read

although the experiments on helical spring&6], elastomeric Pe
bearings[35], and latticed columng32], clearly favor Haringx’s Po=7—=—== (Engesser 4
1+(Pg/GA)
formula.
Po=P A1+ 1) (Hari 5
2 Tangential Moduli Associated With Different Finite o2 TGA (Haringx ©)

Strain Measures (see also[24]); E,G=elastic Young's and shear modulPg
To discuss buckling with shear, we need to recall the deper-(7?/1?)EI=Euler’s critical load,|=effective buckling length,
dence of the tangential stiffness tensor of a material on the chomed EI,GA=bending stiffness and shear stiffness of the cross
of the finite strain measur@azant[4]). A broad class of equally section(note that, in generalA= kA, where Aq=actual cross-
admissible finite strain measures which comprises practically akction area and=Timoshenko’s shear correction factor, which
of those ever used is represented by the Doyle-Ericksen tensisrgreater than but close to 1; for a sandwiell). Each of these
e=(UM—1)/m (also called Hill's family of strains, see, e.g2], two formulas can be regarded as a different and equally plausible
Section 9.1); m can be any real numbet=unit tensor, and generalization of the Timoshenko beam the(86]), which does
U=right-stretch tensor. The second-order approximation of theset deal with finite strain effects and applies only to beams carry-
tensors is, in component form, ing negligible axial force.
The discrepancy between these two formulas used to be, until
1971, regarded as a paradox. Then it was shd@], that this
2 classical paradox is caused by a dependence of the tangential
shear modulu<C;,,,= G on the axial stres$,;;=—P/A, which
a=1— l m. 1) inevitqbly is diﬁgrent for different choices of the finite strain mea-
2 sure, i.e., for differentm. It turns out that Engesser’s formula

Hereg;; is the small(linearized strain tensor; the subscripts refer.C(JrreSpondS to Green’s Lagrangian strain tensor €), and Har-

. : C o : 's formula to the Lagrangian Almansi strain tensan (
to Cartesian coordinates, i=1, 2, 3 and repetition of tensorial Tg_xs =
subscripts implies summation. In all the formulations up to now, %2)) Propeir_lyz/)the shear_ moduli ) e_1nd_(5) should be labeled
—2<m=2. asG'? andG'™ %), respectively, and2) indicates that
It was shown inf4] and, didactically, ir{2], Sec. 11.4, that the G =G24 p/A. (6)
stability criteria expressed in terms of any of these strain measures

are mutually equivalent if the tangential moduli associated withduation(2) further indicates a difference in ttevalues, how-
different m-values are related as follows: ever, that difference can be neglected because the axial stress is

always negligible compared . ReplacingG in Engesser’s for-

mula withG+ P, /A and solvingP,, from the resulting equation,

one obtains Haringx’s formuld[2], p. 738, which makes the

equivalence blatant.

([4] and[2] p. 727. HereCy are the tangential moduli associ- qEqua‘tion(ﬁ) shows that if the shear modulus is consténde-

ated with Green's Lagrangian straim2), and S =current  yenqent of stress P/A) for one formula, it cannot be considered

stress(Cauchy stregs Obviously, the differences among t@8})  constant for the other formula. For a homogeneous material for

values for differentm are insignificant if the(suitabl¢ norms which these two buckling formulas give different results, the case
_lle(m . of a constant shear modulus would be one chance among infinitely

ISi(0ll<[Ciii(x)[| - (for every x; m bounded  (3) many possible stress-dependences of the shear modulus, and so a

where x=coordinate vectors of points in the structure. This ineonstant shear modulus is highly unlikely for either formula.

equality is satisfied for sandwich columns, which is why the dis- The difference in shear moduli i), of course, becomes sig-

crepancy between the two existing sandwich buckling formulasficant only if the axial stresS;;= —P/A is not negligible com-

has seemed paradoxical. pared toG. Such a situation arises for built-up columf®nsist-

1 1
el =eij+ 5 Uy Ui~ aeyig €i =5 (Ukit Uik,

1
(= Cijkm+ 7 (2= M)(Sidji + S it + S Sj + 51 i) 2
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ing either of a regular pin-jointed lattice or a regular moment Adaptation of Previous General Analysis to Sand-
resisting framework approximated by a homogenizingyich Column

continuum, or for highly orthotropic columns, e.g., columns made . .

of a fiber composite with a very soft matrix. With a proper defi- 10 clarify the differences between the Engesser-type and
nition of the dependence & on the axial stress, both formulasHaringx-type formulas, Bamnt's[4] general analysis of a column |
are equivalent. However, even though the equivalence of boMith sh_ear ne_eds to be adapted toa sandwich column. In stability
formulas along with(6) was demonstrated three decades agolaépaly&s, the incremental potential energy of the column must be

false perception of contradiction between these formulas has b&&Rressed accurately up to the second order in displacement gra-
widespread. dients. Since the critical axial stre§8 is not small, finite strain

The relationship between th® values for two differenim is  €Xpressions that are accurate up to the second order must be used

linear in stres&®= — P/A. Thus, if the dependence 6™ ons® N the incremental energy expression.

is linear, there must exist orma value for whichG(™ is constant. To check wh_ether there IS any difference between the
The formulation for thism is the the most convenient one for.PCf'Vallues for axllal load® applied u.nder Iqad contrtbé:g., grav-
practical use. On the other hand, if the dependence o ° ity) and under displacement contr@le., with a prescribed axial

were nonlinear. there would exist ma for which G could be displacementu, at column top, it is convenient to consider a
constant ’ general loading in whiclP is applied through a spring of stiffness

C, attached on tofFig. 1(a)). We introduce Cartesian coordinates
X; (1=1,2,3,X1=X, Xo=Y, Xz=2), positioned so thak,=axial
4 New Apparent Paradox for Sandwich Buckling coordinate of columriFig. 1(a)). The components of the incre-
i ) i ) mental displacements from the stressed initial undeflected state
In thls stud_y,_we focus attention on elastic sand\_/wch columngye ui; uz=w(x)=small lateral deflectior{displacement of the
for which a similar but not identical paradox has arisen as a COReutral axis in the direction of coordinates), and
sequence of various recent studigk9—-23,32, and was debated y, = y(x,y,z) =small incremental axial displacement; a small
at several recent conferenc@specially the ASME congresses inrotation of the cross section, assumed to remain plane but gener-
Orlando in 2000, and in New York in 20@1Explanation of this |ly not normal to the deflected beam agiég. 1(c,d). The shear

new apparent paradox is the objective _of our a_nalysis. angle y=6— (Fig. 1(c,d)) where §=w’ =slope of the deflection
LetL d_enote the length of the cqlumlrlxs effective length, and curve (the primes denote derivatives with respeckto
P the axial force. The core has thicknésand shear modulus. Obviously, the incremental axial strain in the neutral axis is

The skins have thicknegsand are, in general, orthotropic, with

axial elastic modulug& (Fig. 1(a)). Since Young’s modulus of the

core is negligible compared tB for the skins, the entire axial

force and bending moment are carried by the skins. On the ot
hand, since we may generally assume thah, the entire shear L

o[ ]

0 JA

distributed uniformly along the columrafl’1= Ug/L. The second-
order incremental potential energ§?V for small deflections
mégx) and small axial displacementgx) is

force is carried by the core. Therefore, one may substikite

1
Sy 2)(el’ — e + S EM(y,2)er,
=Ebt(h+1)%/2+ Ebt’/6~Ebth?/2=bending stiffness of the

sandwich {<h), and GA=Gbh=shear stiffness of the sand- 1
wich, b being the cross section width in tigedirection. With these + —G<m>(y,z) v?|dA dx
substitutions, the Engesser and Haringx formulas become 2
P P (Engesser type @) +f fLEE("”(y,O)(uo/L)ZdA dx+ ECU(Z) (11)
¢ 1+ (Pg/Gbh) aJo 2 2
_Gbh where the factor 47’ —e;,) is justified in[2] (Chap. 13; y=x,

(Haringx type (8)  andz=x;=coordinates of the cross section whose aref; idA
=dydz; S°(y,z)=initial axial normal stress in the straight column
before deflectionE(™(y,z) andG(™(y,z) are the tangential elas-

w? w2 Ebth? tic moduli at point §/,z); E(™(y,z) =axial elastic modulugtaken,
PE=|—2 El~ I (9) in the case of a sandwich, to be nonzero only for the skins, which
o ) normally are orthotropic G(™(y,z) =shear modulugtaken into
Similar to (6), one may check that, by making the replacement account, for a sandwich, only for the careand g(m)
ot (y,0) is the value at the neutral plagaidthickness of cone The
Goore—Goore™ 7 Oskins (10) superscript™ indicates that, for differentn, these values may in
general be different, as implied 4g).

where ogins— — Pc/2bt and G=G,=shear modulus of the Since the skin thickness<h, we consider the skins to possess

core, the Engesser-type formu(@) gets transformed into the only axial stiffness; the bending and shear stiffnesses of the skins

Haringx-type formula8). are negligible, and we may also consider0 within the skins.

Although the foregoing replacement works, it is, howeveiccordingly,
purely formalistic, with no physical basis. It is certainly paradoxi-

P \/1 4Pe
a3 * Gbh

whereP¢ is the Euler load,

cal that the shear modulus in tkere should depend on the axial U=up=-2z¢, Ug=—¢, U'=up=ey=-2zy', (12)
stress in theskins Therefore, the reason for the discrepancy be- _ _ oy — _ _ e
tween these two formulas cannot be caused by the dif‘ference?Ji‘n3 o Us=W'=6, 21372051 = Uy gt Ugy= y=W (1%)

the shear moduluS of the core material, as given l6§). Besides,
there is no reason for t@-moduli associated with different strain 1
measures to differ because the axial stress in the core is negligible 6(1T)*911:§(Ui1+ Ug,l)* a(ef;+e3)
compared to the shear modulus of core.
We thus have a different kind of paradox, which we must ex- 1 1
plain. To this end, we must not limit consideration to the material = 5(22¢'2+ W'2)—a| 22y 2+ z (W' - )? (14)
level, as in(10). Rather, we must consider from the outset a sand-
wich column constrained by the hypothesis thHat slender (since we consider deflections from the initial state of loaded col-
enough columnsthe cross sections of the core must remain planamn before buckling, the expression= —z¢ does not include
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1
HM™ 4+ 7 (2=mP{(w' = y)?

| - Pw’z]dx. (19)

The necessary condition of stability loss and bifurcation is that
: the first variation of the second-order waskV during any kine-

1 1 L matically admissible deflection variationdw(x), Su(x), dug
: must vanish(Trefftz condition[2]). So,

1
HM™+ Z(z—m)P}(w’— )

L
S5(5°W)= j [R“ﬂwﬂ Sy +
0

Fig. 2 Column loaded (a) under load control (e.g., by gravity )
and (b) displacement control X (W' — Sf) — Pw' sw’ ] dx=0. (20)

Now we may integrate the first term by parts to eliminate the
derivative of the variatiorSiy(x);

the axial displacement at column axis, corresponding to displace- L 1
mentu, at the top. After these substitutiong11) becomes 8(8°W)= f [ Hm 4+ Z(Z—m)P}(W’ — i) — PW’] ow’ (x)dx
27— 1(t 0 (m) 212 L 1
FW=3 A [(m=1)S(y,2) +E"™(y,2)]z°¢ _f (R<m>¢"+ H““)+Z(2—m)P}
0
+3(y,z)w'?
1 X (W' = w>} Sp(x)dx
+|GM(y,z)— Z(Z—m)SO(y,z) (W’—«ﬁ)zjdAdx
+[...T6 (21)
) J‘Lf EE‘”‘)(y 2)(up/L)2dAdx+ lCuz. (15) where the boundary termg,. . .]5, need not be written out in
0 Ja2 ' 2770 detail for our purpose. The last variational equation must be sat-

isfied for any kinematically admissible variations/(x) and

Note that none of the terms containidg, contains alsav(x). éw’(x). This condition requires that
Thus it is clear that the stiffness of the spring will have no effect
on the critical load for lateral buckling. So we will from now on PW —
ignore the terms containin@, which is equivalent to considering
C—o, or to settinguy=6uy=0. As the displacement control
(Fig. 2) of axial loading of the column is equivalent @—« and RM " +
the load control taC=0 (Fig. 1(a,b)), it follows that the critical
loads of lateral buckling are the same for both types of load con-Consider now simple supports at er{@swhich casd =L; Fig.
trol (which is, in principle, well knowh 2). Upon adding the last two equations, we may integrate them
Now we may integraté¢l5) over the cross section. Noting thatand, in view of the boundary conditions of simple supports, we
the elastic modulu&(™ is negligibly small within the core, that get:
the G(™ of the skins may be neglected because they carry a neg- RMy’ + Pw=0 (24)
ligible portion of the shear force, and that the bending stiffness of ) ] ' )
the skins is negligible, we obtain in the integration process tHeis equation together witt22) represents a system of two linear

following cross-section stiffness expressions and resultants: homogeneous first-order ordinary differential equationswx)
and ¢(x). They can further be reduced to one second-order ho-

1 mogeneous equation by differentiatifg2) and substitutingy’
f E(M(y,z)z?dA= R““):E““)E bth?, expressed fronf24). The result is
A

w”+k?w=0 (25)

H(m)+%(2—m)P}(w’—z//)—0 (22)

H<m>+%(2—m)P}(W’—¢)—O- (23)

where
GM(y,z)dA=HM™=G(Mbh (16)
A

1
P[H(m>+z(2—m)P}
1 k?= I : (26)
fso(y,z)dAz—P, fSO(y,z)zszz—zth. a7) RMIHM - Z (24+m)P
A A 4

Here EM is the value for the skins an@(™ the value for the Co-rl;gﬁiosnoslug?na0;r?qlgireangoiggSgofl?rtrfgg_]glgg)? ibsow()j(f;\ry
core;R™ andH(™ are the bending and shear stiffnesses of the 3 sinkx wherea is any real number. The boundary conditions
cross section. A simplification can be obtained by noting that require thatk2==2/L2 for the first critical load. If we substitute
this into (26), we acquire the following equation for the first criti-
[(m=1)S(y,z)|<E™ (18)  cal loadP at which buckling takes place:

because the magnitude of the axial compressive stress in the skin %(2—m)P2+ H(m 4 %(2+m)P<Em) P_H(m>P(Em>:0

is always negligible compared to the axial elastic modulus of the
skin. Setting alsax=1—m/2, we thus obtain 27
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whereP¢ is the Euler load, i.e., F; 0 - F*

(m)_ _2p(m)/y 2
P = 72RML 2, (28) (a) Engesser o

Equation(27) is a quadratic equation, which has fo=2 and m=2
m= —2 the following positive solutions analogous to Engesser’s
and Haringx’s formulas:

p2 72
5. _ ith p@="_
for m=2: P“_1+(P<E2>/H<2)) with Pg"=77R
29) (b) Haringx
f =-2: HO? 4pg? m=-2
orm=-2: p_= 5 \/1+w_1
2
T
with PEZEFR(’Z). (30) tr

. . . Fig. 3 Shear deformation of an element of sandwich column
It has been shown in 197[4], (and with more detailed explana- yger initial axial forces F=P/2; (a) with second-order axial

tions in[2]) that the casen=2 is associated by work with Trues- extension 2/2, and (b) at no axial extension
dell's objective stress rate, and the case —2 with Cotter and
Rivlin's (convected objective stress rate.

One could further obtain frorf27) an infinite number of sand-

wich buckling formulas, each associated with any chosen value of , | bhAx [G?—(P/bh)]¥?/2 (Engesser typeG)
m. Curiously,_however, no investigators proposed criti(_:al Ioa_d for- W= bhAx G(~242/2 (Haringx type G)
mulas associated with othen values, although many investiga- (35)

tors (e.g., Biot[1], Biezeno, Hencky, Neuber, Jaumann, South- ) ) .
well, Oldroyd, Truesdell, Cotter, and Rivin—sé2], Chap. 11 Since the foam core in an axially loaded sandwich column car-

introduced ~ formulations for objective stress rates, thre&l€S N0 appreciable axial stresses, it is convenient to use that defi-
dimensional stability criteria, surface buckling, internal bucklingition of G™ for which the shear stiffness of the core requires no
and incremental differential equations of equilibrium associaté@rrection for the effect of the axial forde carried by the skins.
with m=1, 0 and—1. As we see, that is the latter, Haringx-type, expressfon m=
—2). In that case, the shear modul@$~? is the same as that

6 Paradox Resolution: Shear Stiffness Definition for obtained in a pure shear test without normal stress, for example, in
Stressed Sandwich the torsion test of thin-wall tube made of the rigid foam.

L The solutions fom# — 2, including the Engesser-type formula,

In analogy to(6) and in similarity to(10), one may expect the 4re of course equivalent. But if they are used the shear modulus of
shear stiffnesses for the Engesser’s and Haringx’s formulas to 88 ~ore must be corrected for the effect of the axial forEes
related as =P/2 carried by the skins. It would be wrong to use in them the

H@=H(2 4+ ph/2t. (31) G value measured in a pure shear test of the foam, in which no

) o ) ) ) normal force acts on the shear plane.

Indeed, when this relation is substituted ii9) and the resulting  |ntuitive understanding can be gained from Fig. 3, which shows
equation is solved foP=P,,, formula (30) results. However, two kinds of shear deformation of an eleméat heightAx=1)
unlike homogeneous columns weak in shear, the foregoing trag$-a sandwich column. In the first kin@ig. 3(a)), corresponding
formation cannot be physically justified in the senséf, i.e., o the deformation described H@2), small shearing of the ele-
on the basis of the general transformation of tangential moduli fRent is accompanied by a second-order small axial extension of
(2) nor its special case if6). The reason is that the axial stre3%s the skins, equal to 4 cosy~+2/2 (per unit height If the initial
in the core in much less tha&™ in the core and negligible. From forcesF were negligible, this second-order small extension would
this viewpoint, the transformation appears illogical: Why shoulghake no difference but since they are not, one must take into
the shear modulus of the core be adjusted according to the axiatount the work of the initial forces &fon this extension, which
stress in the skins? . is (2F y2/2)bh or —bhS(— ¥?/2) (per unit heightAx=1). This

This has become a new apparent paradox, which must be ygsrk must be added to the work of the shear stres&@$2/2)bh,
solved. To this end, we need take a closer look at the definition @f order to obtain the complete second-order work expression. In

the shear stiffnestl of a sandwich, which we do next. the second kind of shear deformatitiig. 3b)), the initial forces
Let us imagine a homogeneous pure shear deformation of @Rjo no work. So, the incremental second-order work expressions
elementAx of the sandwich column; for these two kinds of shear deformation, respectively, are
U1: ul,l: U1,3: ell= 0, U3'l: Y, el3: 8312 ’)’/2 (32) , bh(G(Z) + SO) 72/2 (Case al
After substitution intg11), the second-order incremental potential W= G222 (case b. (36)
energy of the element is obtained as

These two case@=ig. 3) give the same incremental second-order
P b —aee |+t 2lga work if GR=GU IS0 or GP=G(?+2F/bh. We see that
2bt | 2 Mk1k1T FaBa [T 5 EmY these relations coincide witl®).
(33) From the foregoing comparisons and the discussion of Fig. 3, it
is now obvious that a constant shear mod@ygqual to the shear

5PW=Ax f
A

or modulus measured in a shear test of the f@arg, a torsional test
, . 2+m P\ 2 of a hollow tube, can be used only in the Haringx-type formula
W=DbhAx| G _TR 7 (34) (m:—2)_

Recently Simitses and Sh¢Ra3], Kardomatea$19,20,22 and
In particular, form=2 (Engesser typeand m=—2 (Haringx Kardomateas and Huahg1], studied the differences between the
type), Engesser-type and Haringx-type formulas experimentally and by
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finite element analysis. They concluded that the Haringx-type for-In the former way, modulG,, E,, andE; may be taken as

mula gives better predictions. Since they tacitly adopted a cotenstant because the stresses in the matrix and fibers are too small

stant value of incremental modul@ this is indeed the conclu- compared to the respective moduli. Since in Figa,B we can

sion that they should have obtained. The present theoretigalagine the skins acting like two adjacent fibers in an element of

analysis explains why. a composite column, and the core like the matrix between these

When can the differences between the column solutions ffibers, the situation is similar to that analyzed for the sandwich. It

different m, and particularly between the formulas of Engessemmediately follows that Haringx’s formuléb), with a constant

and Haringx, be ignored? They can if value of Gy, is the appropriate one. Engesser’s formiacould
nevertheless be used to get identical results jfof the matrix

P<HM=G™bh. @37 were transformed as a Iingar function of the in?tial stri8si the

fibers, similar to formula363g or (10).

S In the latter way, the increment&@(™ value of the composite

Equilibrium depends in general on the initial axial force in the tube being

The Engesser and Haringx formulas can also be derived frdgsted, if any is applied. However, the special case of Haringx’s

the differential equations of equilibrium. This is discussed for #ormula (m=—2) employs aG modulus that corresponds, as al-

homogeneous column weak in shear on p. 73@inand we will ready shown, to the shearing in torsion at constant length of tube

now indicate it for a sandwich. Fig.(d,d) shows two kinds of (Fig. 3@)), in which the axial stresS; in the fibers does no work.

cross sections of a sandwich column in a deflected posit@n: So, in that special case, the incremer@A&l’(m= —2) should be

the cross section that is normal to the deflected column axis, mependent of; .

which the shear force due to axial load is Therefore, theG value in Haringx's formula5) for an ortho-

0=Pw (38) tropic co_mposite can be taken as constant. O_n the other hand, the

G value in Engesser’s formula must be considered to depend on

and(b) the cross section that was normal to the column axis in th,, (linearly, in the manner of31)). This makesP., an unknown,

initial undeflected state, on which the shear force due to axial loadd so the formula becomes an equatianquadratic onefor

is P.:. The solution of course leads to the Haringx-type formula.

7 Ambiguity in Deriving Differential Equations of

Q=Py. (39 9 Remarks on Helical Springs, Built-Up Columns, and
From equilibrium, for a simply supportethinged column, the Bridge Bearings
bending moment isM=-Pw in both cases. The force- g another obvious ramification, the present analysis explains
deformation relations aré/ =Ebth*y'/2 and Q or Q=Gbhy \why Haringx's formula, [15], is the correct one for helical
=Gbh(w' =) in case a or b, respectively. Eliminatimg, v, ¥ springs, which were the objective of Haringx’s original study. It
and Q or Q from the foregoing relations, we get a differentialsuffices to note that, in the case of springs, the rotated, initially

equation of the fornw” +k?w=0, same a$25), where normal, cross section lies symmetrically within a single pitch of
the spiral, halving the separation between the pitches at the point

K= GbhP (40) diametrically opposite to the point of intersection of the cross
E(bth?/2)(Gbh—P) section with the deformed spiréee “Haringx” in Fig. 4. The
or stiffness for this cross section can be calculated easily. By con-
trast, a cross section normal to the deflected axis of the helix does
P2+GbhP not exhibit this kind of symmetry and may even cut through more
kz:m, (41)  than one pitch of the helitsee “Engesser” in Fig. % The shear

stiffness for such a cross section must depend on the axial force
respectively. Setting agai= 7/l and solving forP, we find the in the spring. Its calculation would be messy and unsuitable for
former equation to lead to Engesser’s form@#aand the latter to practice.
Haringx’s formula(5). In bridge bearings that consist of a stack of horizontal steel
We see that Engesser’s formulm€ 2) is obtained when the plates separated by bonded elastomeric lay€ig. 4 righd, the
shear deformatiory is assumed to be caused by the shear forethear force that determines the shear deformation of each elasto-
acting on the cross section that is normal to the deflected axisraéric layer is parallel to the steel plate, and thus to the cross
column, and Haringx's formulani=—2) when caused by the section that was horizontal before deflection, and not to the cross
shear force acting on the rotated cross section that was normakégtion that is normal to the current deflected axis of the bearing.
the beam axis in the initial state. This again implies that a constant shear modulus can be used only
The foregoing equilibrium derivation, however, does not showith Haringx’s formula(provided, of course, that the layers of
that the values of shear stiffness in both formulas must be diffastastomer behave elastically
ent. Especially, it does not show that the shear stiffness in theThe built-up columns are normally approximated in a smeared
direction of the rotated cross section can be kept constant, whiteanner as continuous colum(fSig. 5). They can consist ofi) a
the shear stiffness in the direction of normal to the deflected axihgle-bay regular rectangular franiganges joined by battehs
must be considered to depend on the axial force. This has beewrdich resists the shear force predominantly through the bending
perennial source of confusion. To dispel it, the work of the sheaf the flanges and the batten in each repetitive cell of the column,
forces must be considered. So, an energy approach is appropriateii) a lattice, which is idealized as pin-jointed and resists the
shear force predominantly by axial forces in the members of each
L . . . lattice cell.
8 Implications for Highly Orthotropic Composites For both cases, the equivalent shear stiffnelsef the con-
Orthotropic composite plates or columns, reinforced by fibetsyuum approximation of a built-up column may be calculated
in one or two directions, can have a shear moduBusnuch from the shear deformation of one repetitive cell of the column
smaller then the axial elastic modulls (typically 25 times ([2], p. 739, Fig. 11.6b)cA constant shear stiffness can be used if
smalle). The shear modulus of the composite can be determingte shear deformation of the cell is calculated at constant length of
in two ways:(1) by calculation from the measured shear and axighe vertical flange, as shown in Fig. (bottom). In that case,
moduli G, , E, of the polymeric matrix and the elastic modulusHaringx's formula is appropriate.
E; of the fibers, oK2) by direct testing of the composite in tension On the other hand, if the shear stiffness of the cell is calculated
and torsion. from the shear deformation in Fig. 5, the work that forées
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Fig. 4 (a) Lateral view of a helical spring and cross sections on which the

shear force is defined in Haringx and Engesser theories;

an elastomeric bridge bearing

—P/2 in the flanges do on the second-order axial extensfif

must be taken into account. This leads to Engesser’s formula. But
the shear stiffness in that formula must of course be considered to

depend orP.

Haringx’s formula with a constant effective shear stiffness is
obviously also appropriate for the overall shear buckling of large
regular multi-bay multi-story frames as used in tall buildings

(Section 2.9 in2)).

10 Summary and Conclusions

1. In the case where the initial stresses before buckling are not

negligible in comparison to the elastic moduli, the depen-
dence of the tangential moduli on the initial stresses must be
taken into account in stability analysis, and the stability or
bifurcation criteria have different forms for tangential

F

———

17 F|

L]

| |
T
| |
! |
s
I |
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—

(b) shear buckling of

moduli associated with different choices of the finite strain
measured4]. It has been regarded as paradoxical that sand-
wich columns apparently defy this condition—equilibrium
analyses based on different but equally plausible assump-
tions yield different formulagEngesser’s and Haringx’ for-
mulag even though the axial stress in the skins is negligible
compared to the axial and shear moduli of the skins and the
axial stress in the core is negligible compared to the axial
and shear moduli of the core. Here it is shown by variational
energy analysis that the aforementioned condition for the
stress dependence of the tangential moduli needed for stabil-
ity analysis is only a sufficient condition but not a necessary
one. Another condition applies to sandwich structures—if
the normal stress in a stiff component of the cross section,
the skins, is not negligible compared to the shear

Engesser

m=2

Fig. 5 Left: Column with battens and pin-jointed lattice column. Middle: Shear-
ing of a cell of batten column. Right: Shearing of a cell of lattice column. Top:
Shearing with second-order axial extension. Bottom: Shearing with no axial

extension.
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Residual Stress-Induced Center
..o.riscner | Wave Buckling of Rolled Strip
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Franz-Josef-Str. 18,

A-8700 Loeben, Austria ) ) . )
In this paper computational and analytical treatments of the center wave buckling phe-

nomenon in thin strips under in-plane loads which typically appear during cold rolling of

F. G. Rammerstorfer sheet metal, are presented. Buckling due to self-equilibrating residual stresses, caused by
the rolling process, in conjunction with global tensile stresses (due to the traction force
N. Friedl acting on the strip) is considered. The shape of the distribution of the residual stresses
over the width of the strip influences the buckling mode. Furthermore, it is shown that an
Institute of Lightweight Structures increasing global tension force leads not only to increased critical residual stress inten-
and Aerospace Enginering, sities but also to shorter buckling waves concer.ltrayed toward§ the center of the strip.
Vienna University of Technology, Taking these facts into account, a proper combination of the information gained from
Gusshausstrasse 27—29, measuring the global tensile force at which buckling appears, the wave length, and some
A-1040 Vienna, Austria characteristic shape parameters of the buckling pattern allows the estimation of the

intensity and the type of the residual membrane force distribution in the strip. By intro-
ducing dimensionless quantities, diagrams are provided which can be used for the deter-
mination of critical loading combinations, wave lengths, and shape parameters.

[DOI: 10.1115/1.1532322

1 Introduction buckling phenomena; moreover, analytical approaches were de-

It is well known in the metal forming community that residualrIVed and discussed. In those papers results have been presented
) ) ) : only for situations in which so-called edge wave buckling appears.
stresses can lead to buckling of the strips during the rolling pr: his deals wi .
. . -his paper deals with center wave buckling.

cess. Such residual stresses can be caused by thickness reductions

which are not exactly homogeneous over the width of the strip. If

the thickness reduction is more pronounced in the middle of t@e Formulation of the Mathematical Model

width of the strip, then compressive residual stresses will appear

there, and center wave buck"ng can be expected. Consequenﬂ)}[he formulation of the mathematical model follows in its prin-

thickness reductions which are larger in the edge areas than in @ieal features what has been presentedSh However, in this

middle region more likely cause edge wave buckling. Certainipaper the combination of analytical and finite element analysis is

these thickness reductions are the result of large plastic deforrh-Particular importance: The buckling modes obtained from ei-

tions. However, the resulting residual stresses—even in combignvalue analyses in finite element computations were crucial for

tion with the global traction force—are typically in the elasticdetermining proper trial functions in the Ritz-Ansatz approximat-

range. In most situations, particularly for thin strips, if buckling"d the buckling pattern for the analytical approach. The analytical

happens it is an elastic bifurcation process. Even very small @2Proach achieved this way is generally applicable and no further

sidual stresse@vith magnitudes less than some MPasay lead finite elemgnt anz_ily3|s.|s reqwred. Because the anz_ilytlcal results

to buckling and to considerably high amplitudes of the transverﬁ” be achieved in a dimensionless form, the analytical procedure

deformations in the post-buckling pattern if the global tractioff@ds to & tool which can be easily used in practice.

force is reduced. Since during this post-buckling processes the

residual stresses are released by the transversal deflections the

whole deformation history; i.e., buckling and post-buckling, can

be treated as an elastic process. i
A survey of the literature dealing with these phenomena can 4

found in[1]. Further treatments of buckling during rolling of shee

metal are presented for instance[®3] and, more recently, in

[4,5]. The character and the shape of the buckling mode a

consequently, the post-buckling pattern depend on the shape of

distribution of the residual membrane force over the width of thf

strip and on the ratio between the intensity of the residual megzs

brane forces and that of the traction force at which the trivial, i.€g

plane, configuration loses its stability; see Fig. 1.
In [4,5] the authors presented the principal features of the

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan. 1
2001; final revision, July 26, 2002. Associate Editor: N. Triantafyllidis. Discussio
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depi
ment of Mechanical and Environmental Engineering University of California—Sant®
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months after . .
final publication of the paper itself in the ASMEPURNAL OF APPLIED MECHAN-  Fig. 1~ Center wave buckling of a rolled strip metal (courtesy
ICS. of VOEST ALPINE Industrieanlagenbau, Linz, Austria )
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Fig. 2 The strip under residual membrane force distribution
and global tension

Fig. 3 Schematic representations of typical residual stress
distributions; top: according to Eq. (4), bottom: according to
2.1 Description of the Residual Stress Field. A strip of Eq. (6)
infinite length(representing a sheet metal in the rolling patiith
the widthB and a plate bending stiffnegs= Et3/12(1— v?) (with
E being Young’s modulusy Poisson’s ratio} the thicknesk is S
loaded by a self-equilibrating residual membrane force distribu-b. Polynomial distribution:
tion Rn,,(y)=Ng(y) and a constant global tension forsg; see
Fig. 2. Independent of the longitudinal coordinatethe mem-
brane force distribution is given by

1
Pn=—[M+DEA)"-1] with m=12,....., (6)

which also fulfils the equilibrium conditiofB).

Nux(Y) =Ng(y) + No. (1) Here and in the following the superscripts™and “ p” refer to
the cosine and the polynomial residual membrane force distribu-
The following dimensionless quantities are introduced: tions, respectively.
) Due to the variable exponemt in g°(7) and gP(7%), respec-
n=y/B, with —B/2<sy<B/2, —1/2<7p<1/2, tively, the required large variability of residual stress distributions
~ can be provided, see Fig. 3.
9(Y)—9(m), Ny—Ny(n)=Ng(n)+No, (2 From this figure one can see that by consideration of cosine
) ) distributions withm=11 andm=1 as well as polynomial distri-
N NB” N _NoB butions withm=11 the field of very much and moderately con-
T K2 0" K centrated as well as smoothly distributed compressive residual

_ membrane forces, respectively, is captured. This is the reason why
(Ng values within the range up to 1000 are typically of interest ithe results for these cases are presented in the figures of this paper.

cold rolling of metal stripg. Both distributions, i.e., the cosine and the polynomial one, lead
Becausé&n,, must be self-equilibrated, the following conditionto

must hold: g(n==1/2)=1. (1)
12 This means that a positive value Nfin Eqg. (1) corresponds to
- /Zg(ﬂ)d”l]:O, tensile residual membrane forces in the edge regions and com-

pressive residual membrane forces in the center regions of the
_ . 12 strip. In other words, the residual membrane force internsiig
i.e., for symmetricalg(#): f g(7)dn=0. expressed by the tensile residual membrane force at the edges of
0 the strip.

3

) 2.2 Determination of Proper Trial Functions for the
In order to capture a wide range of symmetrical residual merBuckling Pattern. In order to apply the Ritz approach as de-
brane force distributions which typically lead to “center wavescribed in[4,5] we have to find a proper Ritz-Ansatz, i.e., trial
buckling,” i.e., a buckling pattern showing waves with maximunfunctions, for the buckling pattern. For center wave buckling this
wave heights at the center of the strip, the following distributiongsk is not as easy as in the case of edge wave buckling.
are assumed: In order to find appropriate trial functions an extensive finite
element study of the problem under consideration was performed.

a. Cosine distribution: Strips of sufficient length having a widB=1.5 m, and a thick-

o(p)=1-Cpco 7y with m=1,2, ... ness t=0.5mm, made of aluminum E=7x10' N/mn?, v
=0.33) were discretized by finite shell elements. The different
and —12<=7p<1/2. (4) kinds of nominal residual membrane force distributions, i.e., co-

. N sine or polynomialaccording to Eqs(4) or (6)), were introduced
The equilibrium condition fofn,,(7) leads to via fictitious temperature loads. Additionally, different values of
1 the global tensile forc&ly were applied. Linear eigenvalue analy-
(5) ses led to the critical values of the membrane force intem$iag

functions of the global tensile fordd, and to the corresponding

1 1/2
Cm:i[fo cos"wpdy
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Fig. 4 Buckling modes for cosine-distributed residual membrane forces (with
m=1 and m=11) and for polynomially distributed residual membrane forces
(with m=11)

buckling modes. For cosine residual membrane force distributions X

the exponenm was chosen to be 1 and 11 and for polynomial W(X, 7)=qWa(X,7), Wa(x,n):cos(awn)coS( T) (8)
distributionsm=11 was considered. These three cases capture the

most characteristic cases within the wide field of varieties.

Figure 4 shows some typical results for cosine-distrib(teth
m=1 andm=11) as well as for polynomial distributionsvith
m=11) for two values of the global tensile force, expressed in _ _ 2 an
dimensionless quantities according to E¢®). For reasons of WX, 7)=AWa(X, 7). Wn(X,77) = (1= 127"+ 167°) COS(T)'
comparison, sections of equal length are cut out from the typically (9)
longer finite element models.

From the results of the finite element buckling analyses songs these trial functions the whole field of varieties of buckling
principal features of the buckling pattern can be drawn: Theodes is approximated to a high degree of accuracy, provided that
higher the global tensile forcH, the more the buckles are con-the parameterga|<2.0 in Eq.(8) andn=1.0 in Eq.(9) are prop-
centrated at the center of the strip and the smaller is their wagdy chosen. The finite element results show that buckling modes
length. For small values df, two cases have to be distinguishedaccording to Eq(8) are only relevant for values of the global
one in which the amplitude values of the buckling waves at tHensile membrane forcH which are too small to be of practical
center and at the edges are opposite to each other, and onéelavance. This statement is confirmed also by the results of the
which these signs are the same. Higher Va|u§§dj|bad to buck- analytical model as described below. Therefore, the main empha-
ling modes with straight edges of the strip. Furthermore, transvéis is laid on the solutions with trial functions according to &).
sal distributions of the amplitude function of the buckling mode Both the half-wave lengthand the parameteror the exponent
with and without points of inflexion were found. In the case of, respectively, have to be determined such that the Ritz approach
center wave buckling just symmetric buckling modes appear. Witgads to the relevant, i.e., the minimum, critical membrane force
these results the following two alternative trial functions for théntensity as a function of the global tension fordeé®(Ng) or
Ritz-Ansatz approximating the buckling pattern were chosen: NP(Ng) for a given exponenin in Eq. (4) or (6), respectively.

or
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3 Analysis 0.8 . .

The Ritz approach in combination with the concept of minimi-
zation of the total potential energydetermines the buckling load
as that eigenvalue of the residual membrane force intensity
which a nontrivial equilibrium path bifurcates from the trivial, i.e.,0.6
the flat, one.

Just for consistency’s sake the principal features of this enenl
approach are repeated frofs): The total potential energy of a
thin plate deformed in a nontrivial way, i.e., also in the directior
normal to the middle surface, and subjected to a membrane fol04 | i
stateRn,,+ N, can be taken from the literatutsee, e.g.[6]) and
reads, specialized for the considered situation, as follows:

K Pw . w2 02 | |
777 Jol e T ay?
o1 W 5w (?ZW)Z 40 10
=952 7 \axay) |4 @O . .
o 5 10 15
1 ow\?
dm=5 (Rnxx+ No)| =] dQ, (11) n
2)q IX
Fig. 5 Half-wave length of the relevant buckling mode as a
N(Z)LB function of n in Eq. (9)
INg= " g PP AMT O, (12)

The application of Gauss’ theorem leads to the following mOdiﬁe‘Fhis additional relation allows to fintj,;, and, as a consequence,

formulation of ¢ N,min(Ng) andNmin(No) for given values of andn, respectively.
K Pw 92w\ 2 oW 9 [ ow In the following text these quantities will be used without the
¢B:§J F+ F) dQ+K(1-v) . &—( ) subscript “min”. The relevant parameteror exponenn will be
ol X y a0 9% o determined below.
(13) For the more relevant case, i.e., based on (Bj.the depen-
#s is the contribution tog due to bendingg,, that due to the dence of the half-wave length of the relevant buckling mode on

membrane forces, a is the potential enerav of the boundarytn® €xponent is shown in Fig. 5. This result holds true indepen-
_ rw_NO P o yI}Ient of the shape of the residual membrane force distribution, i.e.,
force Ng atx=0 andx=L>B.

Since we are dealing with single-term shape functions we haEqS'(4) or (5). Certainly, the relevant exponentdepends on this

Yfstribution shape, and, thus, alsdoes
just one degree-of-freedom, which is related to the amplitydé - R i’ gy .
the buckling mode; see E¢g) or (9). Similar to the solution obtained 5] for edge wave buckling,

. - . _ . I/B as a function oh shows a maximum. In the case under con-
Ieasdt:ttlgntagti;ljﬁt(ig\r/]m requiresd$/oq=0, which immediately sideration this maximum is at*~1.1. Forn>n* increasingn
leads to decreasing The interval[1.0,n*] appears to be un-
ba(W;) + ¢y (w;)=0. (14) physical; however, it is of no relevance because the solutions with
) ) . ) ) ne[1.0,n*] lead to larger critical residual membrane force inten-
w; stands for the trial function with=a if Eq. (8) is used and  sijties than those obtained with trial functions according to(By.
=n if Eq. (9) is used. ) and are therefore not relevant.
If we now insert the membrane state according to(&gor (6), Equation(16) in combination with(17) leads to the following

respectively, which depends on a positive conshrgee Eq(1), solution for the critical residual membrane force intensity for a
the Eq.(14) can be rewritten with the dimensionless entities ngiven exponentn in Egs. (4) or (6):

fined by Eq.(2):

Nppg (W) +Nogy , (Wi) + b(w;) =0, (15)

as

NK(Ng) =F¥(i) + Fh(i)No. (18)

The indexk denotes the character of the residual membrane
forces: cosine-distributedk&c) or polynomially k=p), while

where gy, y and ¢y, are the contributions tehy due toN=1 the index(or the variablg i indicatesa or n, depending on the

andNy=1, respectively. This leads to choice of the trial functior(8) or (9).
- The functionsF; andF, are determined in analytical form.
- Pa(Wi) +Nody n (Wi) For a given type of residual membrane force distributicimar-
N;=— B W) (16)  acterized by Eq(4) or (6) and a given value of the exponem)

the critical intensityN;(Ny) represents for every parameteior

as critical residual membrane force intensity corresponding to tegponentn a straight line in theN—Ny-diagram (Eq. (18) is a
Ritz-Ansatz with parametea or exponent, respectively. linear relation. These straight lines intersect each other. As dis-

The right-hand side of Eq(16) contains a further unknown cussed in detail iff5] for the case of edge wave buckling, the
quantity, namely the half-wave lengthn the x-direction. Since relevant value ON(NO), ie.,
we look for the minimum possible value of the buckling param- o o
eter N; (i becomesa or n), we find | by minimizing N; with N(Ng)=minN;(Ng) (19)
respect to this quantity: i

~ is represented by the inner envelope as formed by the manifold of
ﬂ_o 17) straight linesN;(N,) with a continuously varying parametaror

' exponentn.
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Fig. 6 Functions N;(N,), i=a,n, for small values of N,. The
notation i_k denotes the combinations of buckling modes and
membrane force distribution.  j=a means cosine mode accord-
ing to Eq. (8), and i=n stands for Hermitean based mode ac-
cording to Eq. (9); k=c points to cosine and k=p to polyno-
mial distributions of the residual membrane forces.

This envelope is, for givem, implicitly described by

G(N,Ng,)=N—F,(i)—F,(i)Ng=0 (20)
Therefore, the condition for the envelope
ﬁz— d—F_l— d—F_2N0=o (21)
di di di '
yields
NO=—d—F.1/dF2 No(i). 22)
di di

This way the critical intensity can be expressed as a functidn o

(i=a or n) only instead ofN(N,):

~ dF dF,!
N(i)=F(i) - Fz(l)( 1/d—i2.

ai (23)

Finally, N(NO) can be determined by evaluating E¢®2) and

2000 7 . r :

incl. of asymptote: n_c, m=1

------------ incl. of asymptote: n_p, m=1

---- incl. of asymptote: n_c, m=11

——- incl. of asymptote: n_p, m=11

n_c, m=1

n_p, m=1

~ ----n_c, m=11

, ——-n_p, m=11

X Ac, m=1, FEM

! Oc¢, m=11, FEM
X p, m=11, FEM

500

800 1000

Fig. 8 Dependence of the critical residual membrane force in-
tensity N on the global strip tension I\~I0 for different distribu-
tions of the membrane forces. Comparison between analytical
and finite element results.

Equations(22) and (23) require the first derivatives df (i)
andF,(i), which can be calculated numerically.

For every membrane force distribution two envelopes exist for
the Ritz-Ansatz approximating the buckling patteNy(No) for
the buckling mode according to E@), andN,(Ny) for the buck-
ling mode approximated by Eq@9). Of course, the minimum of
Ni(No), i=a,n, is physically relevant. Thud\,(Ny) is the rel-
evant curve until it crosses tkNan(No) curve at a certain value of
NO=N6 ; see Fig. 6. To allow a comparison, finite element solu-
tions, obtained as described in Section 2.2, are also included in
Fig. 6.

For No=Ng the N,(Ny)-curve is relevant. Certainly, the non-
smooth transition from the one curve to the other does not really
indicate a mode-jump but reflects the approximate character of the
Ritz approach used in the estimations. This becomes also obvious
Fone compares the trial functions, determined by minimizing the
eigenvalues resulting from the Ritz approach as described above,
with the corresponding finite element solutions—see Fig. 7. In
Fig. 8 just the relevant curves are included.

This figure shows transversal amplitude functions of the buck-
ling modes, derived on the basis of E48) or (9) with the ap-
propriately determined parameter§a for cosine distributed

(23) for continuously varying. In this way also the relevant val- buckling pattern—Eq.(8), and i=n for Hermitean buckling

ues of the parameters-a, n are found.

pattern—EQq(9). Finite element solutions are also presented. With

a)

c)

Fig. 7 Transversal amplitude functions of the buckling modes. Analytical and

finite element solutions.

=1) distributed membrane force,
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ir (a) Polynomially (m=11) distributed membrane force,
Ny=10, (b) cosine (m=1) distribute~d membrane force,
Ny=100.

No=10, (c) cosine (m
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0.70 - ' - T 4 Conclusions

This paper deals with buckling phenomena caused by residual
0.60 | ~— ] membrane force distributions in rolled metal strips which are
symmetrical with respect to the midaxis of the strip, showing

{_.j i longitudinal compressive forces in the center regions and tensile
0.50 B ¢ "‘j i forces in the edge regions. It has been shown that the intensities of
: Vi o ‘c” Q;ﬁ different residual stress distributions which are critical with re-

P‘-\. & - pm=it spect to center buckling of the strip metal can be determined in
0.40 | \‘ \ Ac, m=1, FEM i o_Iependeng:e of the global tension f_orce _based on ana_lyti_cal _solu-
. \ \\ S;’ “;;}‘1?2',‘\"/' tions. A wide range of characteristic residual stress distributions

has been considered.

Increased global strip tension leads to an increase of the critical
membrane force intensity accompanied by a decrease of the half-
wave length and to buckling waves concentrated more and more
towards the center of the strip. The derived analytical solutions in
dimensionless form provide diagrams which—on the one hand—
allow a simple and quick estimation of the critical residual stress
) ) \ . intensities, and—on the other hand—allow to estimate the char-
0 200 400 600 800 1000 acter of the residual stress distribution by measuring the half-wave

~ length in combination with that global strip tension at which buck-
Ny ling appears. The finite element solutions computed for a selected
set of parameters prove the correctness of the analytical solutions.

0.30

0.20 r

0.10

Fig. 9 Depengence of the half-wave length  //B on the global
strip tension N, for different distributions of the residual mem-
brane force

Appendix

The  Mathematical  Structure  of N—A§ympt0tic
Considerations. For not too small values dfl; only N(n), i.e.,
gye solution for Hermitean based trial functions, is relevant. Rela-

the exception of the region of transition between the two kinds
fion (18),

buckling modeN,~N% (Fig. 7(b), which represents the situation
cc_;rrespon_dlng to the triangular §ymbo| in Fig, f_he deter_m_lned N(n)=Fy(n)+F,(n)No, (A1)
trial functions correspond considerably well with the finite ele-

ment solutiongFig. 7(a, c), representing situations which corre-is the starting equation. Foe>1 an asymptotic relation fdf,(n)
spond to the lowest cross symbol and to the highest triangukan be found after some mathematical operations as
symbol, respectively, in Fig.)8

- ; ~ . 48 1 1 1
As mentioned earlier, very small valuesg§ are only of lim- fi(n)= _( \ﬁ+ _) © Fy(n)=f,n. A2
ited practical relevance. Therefore, the authors did not put too ! 7 4 2/1g9%0) ! ! (A2)

much effort into improving the trial functions in the transition

Y For g(0) andm, see Eqs(4) and (5):
regime aroundN,~N% . org*(0) andm, see Eqs(4) and (5)

Figure 8 shows the critical residual membrane force intensities k=c:, m=1: g%0)=m/2—1,
N(Ng) for the practically relevant regime &,. The correspon- .
dence between the analytically obtained solutions and the finite k=c:, m=11: g¢%0)=(693/5137—1, (A3)

element solutions is excellent.

In Fig. 8 also the asymptotic solution f(ﬁ'g(n), k=c,p is
included by showing the inclination of the tangent to the curves F,(n) does not allow a similar mathematical treatment. How-
approximated b;F'g(n) for large values ofNy, i.e., large values ever, starting witm~ 1, a surprisingly accurate curve fitting of the
of n. From this one can see that in many cases the relftjoi,) numerical results can be presented as

k=p:, gP(0)=1/m.

becomes nearly linear for large valueshyf. Asymptotic consid- F,(n)=1/g"(0)+f,/n? (AD)
erations for bottFX(n) andF%(n) can be found in the Appendix.

Figure 9 shows how the half-wave lengttB decreases with k=c, m=1: f{,=0,6277, a=1,
increasingN,, for different kinds of distributions of residual mem-
brane forces. As expectable and also indicated by the finite ele- k=c, m=11: f,=0,4638, a=1,

ment ana_lyses, the residual membrane force di_stribution wit_h k=p, m=1: f,=0,8571, a=0,68,
compressive stresses almost over the complete width of the strip,

i.e.,p, m=11, the polynomial one with exponemi=11, leads to k=p, m=11: f,=0,0962, «=3,72. @5)
rather large wave lengths, while residual membrane forces which

have their compressive stresses concentrated in the center regioiccording to Egs.(21), (22), and (23), N can finally be ex-
of the strip, i.e. cd¥77), m=11, have comparably short bucklingpressed withA2) and (A4) as

waves. The analytical solutions obtained with trial functions ac- _ - -

cording to Eq(9), i.e., Hermitean-type functions, correspond well ~ N=(f18:+,/BONG P+ Ny /gk0),  Bi=af,/f;.

with finite element results as long &, is sufficiently large. For (A6)

smallerNo-values the analytical determinationléB would have  Relation(A6) can be used for practical applications and consid-
to be carried out with trial functions according to E8), which ered as an approximation of the lines in Fig. 8. However, to find
has not been done because of the irrelevance for practialand« for anyk andm, it is necessary to perform the extensive
applications. numerical analysis as outlined in Chap. 3.
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Finally, also an approximation fd¢¥B can be found according
to Eq.(17) as

'"N*l/Z(aJrl) ) (A7)

T 1
2V6 VB, °

I/B=
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Generalized Framework
for Three-Dimensional Upper
L rant | BOUN Limit Analysis
e ooy, | 1N @ Tresca Material

Atlanta, GA 30332
M. F. Randolph A new method is proposed for deriving kinematically admissible velocity fields (KAVFs)
for three-dimensional upper bound limit analyses in a Tresca material using coordinate
transformations. The method allows the incompressibility condition to be satisfied simply
by imposing certain requirements on the analytical form of velocity magnitudes. This
allows for new classes of velocity fields to be derived solely using standard procedures.
These new classes of fields include: KAVFs with new streamline shapes; new planar but
non-plane-strain KAVFs; new radial but nonaxisymmetric KAVFs. The method allows the
expression of local dissipation of plastic work in any field to be derived in a closed form.
The proposed method makes an attempt to expand the applicability of three-dimensional
upper bound limit analysis by introducing more realistic shapes of KAVFs, while main-
taining simplicity and clear engineering meanindOl: 10.1115/1.1507764

Center for Offshore Foundation Systems,
The University of Western Australia,
Nedlands, WA 6907, Australia

1 Introduction complex velocity fields is to make use of existifgimple fields
Three-dimensional upper bound limit analysis is a powerflﬁ,"at are applicable to specific conditions, superimposing different

) . ; . . elds in order to obtain improved solutions for the general case.
tool for solving bearing capacity problems in perfectly plastic MEhis can lead to rounding of the corner where two separate upper

o e D savone g ound solions rseets ) Hoviever,new, more compiex
Yy g Yy elocity fields are also needed, but how can we make sure that

yet producing a sufficiently low value for the upper bound of th ese ardi) kinematically admissible, andi) calculable?

collapsed load. In spite Qf Fhe power O.f modern f!nlte element The present paper addresses this question by developing a gen-
techniques, upper bound limit analysis still has certain advantag Falized framework for the construction of three-dimensional ve-

partlcula}rly with respect to |dent|fy|.ng failure ”.‘eCha”'SfT‘s an city fields that are both kinematically admissible and easily cal-
conducting parametric studies for different loading combinatio lable. This will allow for much greater flexibility in the
or where the material is nonhomogeneous. In many cases, lioration of new KAVFs, and the approximation of velocity

approach can lead to much simpler mathematical calculations, lds obtained from finite element analysis. A key feature of the

though this will depend on the choice of kinematically admissiblg roach is to adopt a local curvilinear coordinate system where
velocity field (KAVF) and coordinate system. The aim in this bp b y

) . one axis is directed along the streamline of the velocity field.
paper is to demonstrate how careful choice of these can lead to

easily calculable expressions for dissipation of plastic work.
Most velocity fields presented so far in the literature for upper
bound analysis consist of rigid blocks and distortional shear zones

with either straight or circular velocity fields. With a few excep- o . . , .
tions (e.g., Murff and Hamilton[1]) the mechanisms are either2 Upper Bound Limit Analysis With Tresca’s Crite-

plane strain(e.g., Shield and Druckd2]) or axisymmetric(e.g., 10N
Levin [3]). Although Levin proposed an ingenious method for A general method for determining the upper bound collapse
construction of more general nonsymmetrical KAVFs in cylindritoad for assemblages of rigid and elastic-perfectly plastic bodies
cal coordinates, he was not able to present any results apart fragx developed by Drucker et &F] and Shield and Druckdg].
for the axisymmetric case because of limited computational r¢he term “collapse” is used to describe conditions for which plas-
sources at that time. _ _ tic flow would occur under constant loads if the accompanying
~Advances in finite element analysis, particularly for threechange in the geometry of the body were disregarded. The upper
dimensional problems, suggest a new paradigm for limit analysisgund limit analysis approach in the form required in the present
whereby velocity fields are deduced from the kinematic fieldgudy is briefly outlined here.
from the finite element analysig.g., Bransby and Randolfp#]). Consider an assemblage of rigid and elastic-perfectly plastic
The velocity fields may then be used as a basis to explore effepisdies under the action of a set of surface tractions. Strain rates
of geometry variations, or heterogeneity of material propertiegan be derived from any given velocity field. Considering the
using upper bound limit analysis. An appealing approach to avoigain rates as purely plastic, the internal rate of plastic work can
be calculated(Note, we have deliberately avoided using the word
llFormerly at Department of Civil Engineering, Technion—Israel Institute of TeChLdissipation," since plastic work is often referred to as dissipation
" (():%)gtributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF of energy, which is ‘?m incorrect term. Energy .nev.er QISSIpateS, as
MECHANICAL ENGINEERSfor publication in the ASME GURNAL oF AppLiEDME-  POStulated by the First Law of Thermodynamics; it simply trans-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 20forms from one form into another. In our case, mechanical plastic
2001, final revision, Mar. 15, 2002. Associate Editor: E. Arruda. Discussion on thgork is “dissipated” as heal.

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Department ofa y,e|qity field is said to be kinematically admissible for plastic
Mechanical and Environmental Engineering University of California—Santa Barbarg, . . . .
Santa Barbara, CA 93106-5070, and will be accepted until four months after fi efOfmathﬂ governed by Tresca’s yield criterion if

publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. « the velocity components satisfy the incompressibility condition;
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and _ _ _ _ X(X,Y,Z)=x;=const (5)
» the velocity components satisfy any imposed velocity boundary ) ]
condition. which is perpendicular to all the streamlines, so that

A kinematically admissible velocity field may contain disconti-
nuities in the tangential velocities across fixed surfaces. This type
of discontinuity is an idealization of a continuous large variation
in velocity across a thin transition layer. _ _Intersection of théth streamline with the surface(X,Y,Z)=x

In the absence of inertial effects, the rate at which the appliedconst will produce a point. Coordinates of this point in the
tractions do work(determined by the velocities at their points ofcartesian systerfiX, Y, Z} are obtained by solving Eqs3) to-
application) must equal the rate of internal plastic work. The folyether with Eq.(5). However, the three constant; (y;,z)
lowing theorem has been formulated for the case where all surfagguid also define the position of this point uniquely, and therefore
tractions increase proportional(f2]): they can be used as alternative coordinates, defined in the follow-

The Upper Bound Theorem. Collapse will occur under the Ind curvilinear orthogonal coordinate system:
smallest values of the surface tractions for which it is possible to x=x(X,Y,Z)
find a kinematically admissible velocity field U

This theorem provides a method for determining upper bounds y=y(X.Y.2) @)
for the limiting values of surface tractions. For Tresca’s yield z=2(X.Y,Z).
criterion of constant maximum shearing stresg, Shield and 1e original velocity field, when presented in curvilinear coordi-
Drucker[2] showed that the upper bound solution for the surfaggyies (x, y, 2, will have a different set of componente
tractionT:{Tx,Ty,TZ}T is calculated from the following equa-

XxY x+XyYytXzyz=0 ©)
XxZx+tXyZy+X;Z,=0"

:{u,v,w}T in coordinate directiong, y andz, respectively:

tion:
u=u(x,y,z) v=ov(XYy,z) W=w(X,Y,2). (8)
J'TTVd5=W(T,V)=D(V)=f 20u|é|maﬂV+f c,/Av|dS  An important property of the curvilinear orthogonal coordinate
S v So system defined above is that the coordinate kreincides with
() the streamline. Therefore, the only nonzero component of velocity
where in the (x, y, z) coordinate system is. Components of the small
vV = vy.0 ) T—the kinematically admissible velocit strain rate tensor in general orthogonal curvilinear coordinates are
ﬁek{jl.}x vy Vet y ygiven by the following expression(§8]):
W(T,v) = rate of work done by the surface tractions; 1 v w alu Blv
D(v) = rate of internal plastic work; £y=— U,x+a,y—+a,z—) z'gxy:—(— +— —)
|e|max = absolutely largest principal component of the plastic a B Y Bla) —alB],
strain rate; 1 J w P w
Av = velocity jump across any discontinuity; S R _) . _PlY I YW
S = surface that bounds the body or the assemblage of the y B ’B*Xa Vy ’B'Zy 28yz y\B B\y ©)
bodies; ’ Y
V = volume of the assemblage of the bodies; and 1 u v . alu v [w
Sp = surfaces of all discontinuities. SZ:; }’,x;+7,yE+W,z 28xz:; o Z+ o ; )
Any variation in the maximum shearing stresg, between the ' '
bodies in the assemblage, within the volume of the bodies, ahéere
along discontinuities, must be taken into account in the evaluation _ > > 5
of plastic work in Eq.(1). Obviously, rigid bodies in the assem- «= \/(XvX) F(Y ™ H(Z
blage contribute nothing to the volume integration since the strain _ 7y 7y 2
rate is zero for a rigid body. B=V(Xy) (Yy"+(Zy)
r= VX2 +(Y )7 +(Z )% (10)
These equations are derived by calculating the rate of incremental
3 General Framework change of length of the deformed element in two different coor-

Consider a velocity fiel#={U,V,W}T in orthogonal Cartesian dinate systeméCartesian and curvilineaand comparing the cor-
coordinates(X, Y, Z), such that the velocity components of thigesponding components.

field are defined through the following equations: _ FunctionsX=X(x,y,2), Y=Y(x,y,z) andZ=Z(x,y,z) are de-
fined by solving Eqs(7). Substitution of the special property
U=U(X,Y,Z2) V=V(X,Y,Z) W=W(X,Y,Z). (2) =w=0 of our curvilinear coordinate system into expressi{#)s

. o i ) ) yields the following expression for the strain rate tensor:
This velocity field defines a family of streamlines. Let us narrow

our analysis to a class of velocity fields, where each of the stream- I U x a [u a (u
lines results from the intersection of two perpendicular surfaces o ﬁ o 2—1/ w
(examples will be given latgr : Z
y(X,Y,Z)=y;=const N (u) P 0 11)
R =Yi= e=|=—=I|— _—Z )
2
zZ(X,Y,Z)=z=const. ®) Bla Wy B a
u
The orthogonality of these two surfaces is expressed by the fol- i(—) 0 Yxd
lowing condition: | 27\a Y «a
Y xZx+Y yZy+y s2,=0 () The incompressibility condition is equivalent to the following dif-
o Y o ferential equation:
where the notatiom ,= da/db is adopted.
Each pair of constantsy(,z;) defines a different streamline. &Jr &E+ EE:Q (12)
Next, consider the third surface: a Ba ya

92 / Vol. 70, JANUARY 2003 Transactions of the ASME



which, upon integration, yields the following functional form for X=X(X,y,2)

the velocity component: Y=Y(x,y,2) 1)
f(y,z Z=7Z(x,Y,z
Uy, 2)= (g’ ) (13) v
4 satisfying uniqueness and orthogonality conditions:
wheref(y,z) is an arbitrary function of andz. It follows that the
incompressibility condition does not place any restrictions on Xy Yo Z,
variation of the velocity withy andz-coordinates, but its variation ' ' '
with the x-coordinate depends on the functional form@énd y. J={Xy Yy Zy|#0 (22)
The characteristic equation for the strain rate terisay, satis- X, Y, Z,
fying condition(12), is ’ ’ ’
£3—pe—q=0 (14) XXy + Y Yy +Z2,Z,=0
where XXy +Y,Yy+Z,Z,=0 (23)
XX +Y, Y, +2,Z,=0.
2 IB,X z B,x Y x Y x 2 a Sy 2 a S, 2
p=s B * F?Jr Ty * 28 s + 2y's Then, a family of non intersecting streamlines can be associated

(15) with thex-coordinate lines. In this case it is not really necessary to
) resolve the system of Eq®1)—the streamlines can be defined in
a 51) Bx|  a parametric form.
B To illustrate this approach, let us consider a class of velocity
(16) fields where each streamline in the field lies entirely within some
plane. We shall refer to these fields pknar velocity fields.
_u_fy2 (17) Streamlines in velocity fields can never intersect except along
axes with zero velocity. In planar velocity fields this condition is

a aBy’
The absolutely largest value of the principal strain rate is obtain@ytomatically satisfied in the following two cases:
Case |:Planevelocity fields—where all the planes are parallel

in closed form after solving the cubic E(L4) ([9]): to each other-

L p 1 3v3|q| Case ll:Radial velocity fields—where all the planes intersect
|&|max=2 §CO .

§arccos— (18) along the same straight line.
2\/F’7 In the following we illustrate derivation of the coordinate surfaces

By substituting this expression into E(l) and expressing an for these two cases.

infinitesimal volume in curvilinear orthogonal coordinates 4.1 Plane Velocity Fields. Let us choose th&-axis of the

dV=apBydxdydz (19) Cartesian coordinate system in such a way that all the planes
) ) . . containing streamlines are orthogonal to it. The coordinate surface
we can calculate the volume integral in Ed) using simple nu- ; is then a plane given by=Z-Z,, so thatZ,=Z,=0 and

merical or analytical integration. ) .. Z,=1. The uniqueness conditid®2) becomes
The surface integral in Eq1) is taken over the discontinuity
surfaces. In many cases these discontinuity surfaces coincide with XY —Y X %0 (24)
XY XY

the coordinate surfaces y, or z, in which case the infinitesimal
area of the discontinuity is given by one of the following thre
expressions:

dS=pBydydz d§=aydxdz d$S=aBdxdy (20)

wheredS,, dS,, anddS, are the infinitesimal areas of the coor- XXyt Y xYy=0
dinate surfaces, y, andz, respectively. The velocity jumpuv Xz=Y.=0.
across the discontinuity is calculated as a vector difference be- . ) ) . )
tween the tangential components of the two velocity vectors &able 1 gives details of three simple coordinate transformations
both sides of discontinuity. In a case where the discontinuity c8tisfying both uniquenes4) and orthogonality condition®5)
incides with the coordinate surfaseone of these two vectors is (actual examples illustrating these fields graphically are given in
perpendicular to the discontinuity and its tangential component$$ctions 5 and 6 of this papefhe streamlines in the three cases
zero. In cases where the discontinuity coincides with the coordonsidered compriséa) straight parallel lines inclined to any
nate surface or z, one of these two vectors lies entirely within the= COnst plane by anglé; (b) concentric circular arcs centred at
discontinuity; its tangential component is parallel to th&he point{Xo,Yo}; and(c) involute curves arising from an evolute
x-coordinate line and has a length defined by expressiofL3). circle of radiusR centered at the poifX,Yo}. The last of these
This simplifies the calculation fdiAv| in the surface integral in 1S included as an example of a curved, but noncircular, family of
Eq. (1), allowing for simple numerical or analytical integration. streamlines, which has found application in the flow of material
As is seen from the above derivations, use of a curviline&@St @ cylindrical objecf 10)). . .
orthogonal coordinate system simplifies integration of the rate of IN the first two cases, the coordinate transformation leads to an
internal plastic work. Consequently, the upper bound surface tr&XPlicit expression for the coordinate surfagesee Table 1L In

@nd it follows that, in order to have a nontrivial solution, orthogo-
nality conditions(23) must be reduced to

(25)

tion can be calculated easily for the chosen KAVF. the third case the surface is contained implicitly in parametric
form (with x as the parametgiin the coordinate transformation
4 Derivation of Streamlines equations. In all cases, analytical expressions are given in Table 1

N for the maximum principal strain rate, in terms of a streamline
Applicability of the above method to a chosen KAVFE depend\%locity that is songe geFr)leraI function of coordinayesnd z.

entirely on our ability to obtain a closed-form solution for the

system of Eqs(7). This requirement, however, involves severe 4.2 Radial Velocity Fields. Let us choose th¥&-axis of the

restrictions on the possible shapes of KAVFs. In order to avoi@artesian coordinate system in such a way that it belongs to all the

complications arising from this requirement, let us invert the prolplanes containing streamlines. In this case the coordinate surface

lem and consider some transformation of coordinates is a plane given by =Xtanz, so that
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Table 1 Key functions for

plane velocity fields

Straight Circular Involute

Coordinate transformations X =Xy +xcosy—ysiny X=Xy+ycosx X=Xy+R (cos x+(x- y)sinx)

Y =Y, +xsiny+ ycosy Y=Y, +ysinx Y=Yy +R(sinx—(x~ y)cosx)

Z=2Zy+z Z=Zy+z Z=Zy+z
Coordinate surface, y y=¥ -Yy)cosy—~{X - X, )siny [ C-Y, P+ (XX, P From first two equations above
Scaling parameters o, B, ¥ o=f=y=1 a=y; B=y=1 a=R(x-y);B=R;y=1
Streamline functions s, u =u; u=f(y, = D ou=

s=u; u=f(y:2) s=uly; u=f(yz) s=—2 u=1(nz)R

R(x-y)

Principal strain rate 1722 . y 2. 2 . x=y |

Ie‘lmax —-2_ S,y +S,Z ielmax =5 s,}' +s,z ]elmax = 2 s,zy +R2S:2'4'
Volumetric element dV =dxdydz dV = ydxdydz dv =R? (x _ y)dxdydz

Z =X tanz
Z,=Xtanz

(26)

Z ,=X jtanz+X(1+tarf z).

The uniqueness conditiof22) becomes

XxYy=Y

X#0

X,#0
' (27)

X X (1+tarfz2)+Y Y ;=0
X ,=—Xtanz . (28)
Y,=0

Table 2 gives details of three coordinate transformations satisfying
the equatiorZ =X tanz, and both uniquene$27) and orthogonal-
ity conditions (28). Similar to the examples for plane velocity

and it follows that, in order to have a nontrivial solution, thdields, the streamlines compris@) straight parallel lines inclined
orthogonality condition§23) must be reduced to

Table 2 Key functions fo

to any Y=const plane by angl@; (b) concentric circular arcs

r radial velocity fields

Straight Circular Involute
Coordinate transformations X =(xcosy—ysiny+Ry)cosz | X =(ycosx+Ry)cosz X =(Ry +R{cosx +(x~ y)sinx))cos z
Y=Yy +xsiny+ycosy Y=Y, +ysinx Y= +Rsinx - (x~ y)cos )

Z =(xcosy~ ysiny+ Ry )sinz

Z= (ycosx+R0 )sinz Z=(R, +R(cosx+(x—y)sinx))sinz

Coordinate surf: =(Y- (Y i i
suriace, y y=(¥-Y)cosy ( X?47? —Ro)sm\y Jy nF (m Ro) Equations (29)

Scaling parameters o, §, v a=8=1; a=y,B=1and a=R(x-y),B=R and

Y=xcosy—ysiny+ Ry Y=ycosx+ Ry ¥Y=Ry+Rcosx+ R{x~ y)sinx
Streamline functions s, u s=u and s=ufy and u

u=f(y,z)/(xcosy~ ysiny+R,) §= and

) V-ysiny+R)l u=f(y,z)/(ycosx+Ry) R(x-y)
I(.2)

R(R cos x + R(x ~ y)sin x + Ro)

Principal strain rate

2

. =Ja cos( arccosb) where :
4(scos\|l) +s +c s2y

3c?

3«/§|sc05\|,r|sfvc2
\/(4(scosw)2 +s,21 +c2s,2y).i

c=xcosy—ysiny+ Ry

b=

]e[ = y«/_ cos( arccosb) where : |s|max (x y)J;cos[ arccosb} where:

_ 4ssin xf +s2 +cs? 2= 4(Rscosxf +R2s% +c2sh
- 3c? 3¢?
3\[3-|ssinxis2 2 b 3«/3!scosx|sfyc2
\/(4(ssmx)2 +s ‘e sz )3 ‘/(4(Rscosx)2 +R%s?2 +52s3,);

c=yoosx+R, c=Rcosx+R{x~y)sinx+R,

Volumetric element

dV =(xcosy— ysiny + Ry dxdydz

dV=y(ycosx+R0)dxdydz dv =R*(x-y)

(Rcosx + R(x - y)sin x + Ry Mdxdydz
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centered at the poifRR, cosz Y,,Rysinz}; and(c) involute curves dbs2b !

derived from an evolute circle of radiu® centered at the point “—p
. fe——H
{Ry cosz,Yy,Rysinz} ([11]). . P

For the involute curves, the coordinate surfagesannot ) '
be obtained analytically, but are given in a parametric form by !
equations :
VX%+Z?=Ry+ R(cosx+ (x—y)sinx) 29 i
Y=Y+ R(Sinx—(Xx—y)cosx) (29) !

wherex is a parameter. Fig. 1 Schematic layout of the bearing capacity problem

4.3 Discussion. The general framework presented above al-
lows for derivation of the three-dimensional kinematically admis- . . i . .
sible velocity fields from any unique orthogonal transformation ¢#on ACD in such a way that it avoids collision with the obstacle
Cartesian coordinatei, Y, Z}. In fact, each transformation can(Fig- 2b)). This may be achieved through new shapes of stream-
generate three different families of streamlines, depending whitfes €.g., hyperbolic streamlines.
of the coordinate lines are chosen to act as streamlines, with nevs 5 Hyperholic Streamlines. Let us consider a plane coor-
fields pelng qerlved from the same transformat(qm) by inter- - ginate transformation
changing variables, y, and z. For example, by interchanging

variablesx and y in the coordinate transformation for straight X=Xo+ \/—x2+ m

streamlines in Table 1, we obtain a new family of straight, but

radial, streamlines emanating from the cerés,Y}. Y=Yq+ \/x2+ Vx4 (y+yo)? (32)
The coordinate surfacesare obtained by resolving the modi- Z=Z4+z.

fied transformation equations to giveY { Yg)=(X—Xg)tany.

From Egs.(10) it follows that 8=x and a=y=1, and their sub- This coordinate transformation satisfies both unique24sand

stitution into Eqs(15)—(19) produces orthogonality(25) conditions. Coordinate surfacgsare obtained
by resolving Egs(32) to give (y+Ye)2=(X—Xo)/(Y—Y,) and
B 452+ szy+ x232Z 1 3\/§|s|szzx2 their intersection with the planeproduces a family of hyperbolic
€lma— \/ —5—7——Co09 5 arccos ’ ines. i
max— \ 3x 3 T 452+s?y+xzs?z)3 streamlines. From Eq$10) it follows that
(30) V2X 5 V2(y+Yo) 1 ()
= pg=——7 7 =
dV=xdxdydz (31) A+ (y+yo)? A+ (y+yo)?

wheres=u andu="f(y,z)/x is some function describing a par-and their substitution into Eq$15)—(17) produces
ticular velocity field.

This section has covered virtually all shapes of streamlines pre- _ - Xsssjzz
sented so far in the literature. Derivation of these fields using the a= 20+ (y+y9)H)® (34)
proposed approach has allowed closed-form expressions of the 0
maximum absolute values of principal strain rates to be obtained %652 x2s% X232y

by means of a standard procedure. This reduces calculations of the p= —; 7=+ = =+ 5

upper bounds to simple numerical integration, while in some cases X+ +Yo))™  2J(x*+(y+ye)?h) A FYo)

closed-form upper bound solutions may be obtained. (35)
However, the benefits of the proposed approach extend far Rgrere

yond simplifications in calculations. In this paper we will demon-

strate some potential applications of the approach, namely ud X+ (y+yo)? f(y, 20+ (y+yo)?
« derivation of KAVFs with new streamline shapes; S= T and u= Va(y+yo) (36)
« derivation of new plane KAVF$non-plane-strain Y™Yo
« derivation of new radial KAVFgnonaxisymmetrig are some functions describing a particular velocity field. For a

plane-strain casej ands are independent of, reducing expres-

5 Applications: Fields With New Streamline Shapes  sion (34) to q=0 and simplifying expressioN35), which after
L substitution into(18) and (19) produce
In order to demonstrate application of the proposed approach to

derivation of KAVFs with new streamline shapes, let us consider ) x5s? s
the following simple bearing capacity problem. 18| max= X+ (y+yo) 2 + 4(y+yo)2;

5.1 Bearing Capacity Problem of a Rough Strip Footing 2%(y + o)
0

Near a Rigid Obstacle. Consider a rigid_rc_)ugh strip footing of dv= ﬁdxdydz (37)
width 2b on saturated clay between two rigid rough obstacles at a VXT+(Y+Yo)

distance of (& d)b from either edge of the footing, and subjected . . S
to an average pressune,Fig. 1). 5.3 Solution. Let us construct a hyperbolic velocity field in

Due to symmetry, only half of the problem will be considere@ Passive shear zone ACBHig. 3. The origin of the Cartesian
below. Clearly, wherd=1, the upper bound bearing capacity offeordinate system XOY is chosen at point C. Substitutiig
the footing under vertical load is given by the Prandtl solujion = Yo=Yo into Egs.(32) and resolving them with respect xcand
—(2+m)c,, which also happens to be the exact solution. TheWe obtain
corresponding kinematic mechanism, consisting of two rigid (Y+Y0)2=(X—Yo)(Y—Yo)
blocks ABO and ACD and a fan shear zone ABC is shown in Fig. 2%%= (Y —Yyo)2— (X—Yyo)?" (38)
2(a). However, for obstacles located closer than that, when 0 0
d<1) the Prandtl mechanism is not kinematically admissible, bd&he first Eq.(38) produces a family of hyperbolic streamlines:
cause the passive block ACD will collide with the obstacle. For 2 yo(X+2y)
cases when €d<1, one possible solution of the problem would = M

39
be to modify the Prandtl mechanism by adjusting the passive re- X=Yo (39)
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Fig. 2 Failure mechanisms: (a) d=b; (b) 0<d<b
The streamline passing through the origin is defineg¢ Y. This (b—Yyy) (Y+vo)?
streamline also represents a discontinuity separating the passive XaD= 1- b 7. (42)
shear zone ACD from the rigid half-space and emerges to the V2 (b=Yo)

surface at point D with coordinateé= —db andY=b. Param-

The velocity field is defined by the second E&6), where an
etery, is defined by substituting these coordinates grd into y y £80)

arbitrary functionf(y) is defined from the velocity continuity

Eqg. (39): condition between the fan shear zone ABC and the hyperbolic
—db shear zone ACD. Along the radius AGyc=v/v2 andXac=0,
Yo=1—g (40) whereuv, is the vertical velocity of the footing, which after sub-

stitution into the second E36) producesf(y)=uv,. This leads
so that the hyperbolic discontinuity surface is described by  to

—dbX voVX*+(y+yo)* vo VX (y+yo)*
=~ X(1—d) +db" (41) s=—————— andu=———""—.  (43)
X(1—d) 2x(y+Yo) V2(y+Yo)

In Fig. 3(@), a family of these curves bounding the passive Substituting(43) into (37) we obtain
shear zone is shown for varying parameterAs is seen, this

family covers a wide range of shapes, from the original Prandtl E+ (y+yo)? 2X(Y+Yo)
triangle atd=1 to half of this triangle ad=0, with a smooth |é|max=ﬁ; V= ﬁdxdydz
hyperbolic boundary for any intermediate valuedof (Y +Yo VX (Y +Yo)

Once the boundary is established and paramgjds defined (44)

from Eq. (40), the whole family of streamlines is defined by suband integration of37) over the volume ACD according tél),
stituting y, into (39). In Fig. 3b), this family of streamlines is gives an expression for the plastic work in this volume:
shown ford=0.4 for various values of curvilinear coordinate B
The first streamline in the family passes through the point C with DL Yan=0 Xa X dxd 45
Cartesian coordinate®, 0) and is defined by.p=0. The last ACD= UoCu oY Y0)? xay. (45)
streamline in the family passes through the point A with Cartesian he
coordinatesX=Y=b and substitution of these coordinates into Substitutingx,p from (42), integrating Eq(45) and substitut-
(39) producesy,=—b. All the streamlines are perpendicular toing for y, from (40), we obtain
the radius AC bounding the fan zone ABC. 4—(1+d)(1+d?)

Because in the proposed method integration of plastic work in - = T 77

Ypc=—b

Daco= voCyb. (46)

the volume ACD will be carried out in curvilinear coordinates 1d

andy, it is necessary to define integration limits in these coordi- p|agtic work along the discontinuity CD is calculated using the
nates. As is clear from the previous paragraph, coordiyaterct that the discontinuity surface coincides with one of the
changes within—b=<y=0. Coordinatex changes between its re-

spective values along lines AC and AD. Along the line AC,
=Y and from the second E@38): x,c=0. Along the line AD, I fXADyo
CD™ %u

y-coordinate surfaces, namejy=0, giving

lucoly=0dS; - 47)

Y=b and after eliminatingX from Egs.(38) we obtain

Xac=0

Substitution of Eqs(20), (40), (42), and(43) into (47), and sub-
sequent integration yields

Xaply=0 X (1+d)(1+d?)

Vo 4d voCyb. (48)

Xac=0
Total plastic work in the passive shear zoneDiss D cp+ D acp
=[2+(1+d)(1+d?))6d voc,b, so that the upper bound of the
collapse pressure in the entire mechanism is

( L 1 1+d+d? 49
=l1+7+—=+——|c,.

p m 2d 6 Cu ( )
Fig. 3 Examples of hyperbolic velocity fields: (a) discontinuity 5.4 Discu'ssion. Remarkably, the_ new hyperbolic she'ar Zzone
surfaces bounding the passive shear zone for various values of produced a simple closed-form soluti#B), which paradoxically

d; (b) hyperbolic streamlines for d=0.4 contains a hyperbolic term! Fat=1 this solution is identical to
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2 b : for rigid walls that approach right to the edge of the footing, by

5 reducing the present fan angle belem2 again matching the hy-
Aiw perbolic streamlines to the velocities emerging from the fan zone.

]

|

|

|

This is outside the scope of the present paper, but the example has
served to demonstrate the general approach, and also(ahat
closed-form expressions for the dissipation terms can sometimes
be achieved, andb) the method can lead to improved upper
bounds compared with existing mechanisms.

6 Applications: Plane But Non-Plane-Strain Fields

Fig. 4 Comparison of different velocity fields in the passive There are certain classes of problem where it is reasonable to
zone assume streamlines that lie in parallel planes, but where the ve-
locity fields vary in the direction normal to the planes. Such cases
are referred to here as “plane but not plane-strain velocity fields.”
the Prandtl(exac} solution, because in this extreme case the hy- In order to demonstrate application of the proposed approach to
perbolic shear zone degenerates into a rigid block. Derivation @érivation of non-plane-strain KAVFs, let us consider the bearing
the plastic work in this zone looks rather elaborate, due to tils@pacity problem of a rigid smooth square footing of widthéh
necessity to demonstrate clearly the proposed procedure. Hs&turated clay subjected to undrained moment loalin@rig. 5.
ever, once derived, the hyperbolic shear zone can be used in cbhe form of the failure surface is identical to that proposed by
struction of the kinematic mechanisms in a way similar to that &hield and Druckef2] for purely vertical loading of a square
the fan shear zones and rigid blocks in a search for sharper upfsting, which led to an upper bound for the vertical lo&d, of
bounds. V=[46+m(2+ 6)]b%c,~23.7&%c,. Under moment loading,

For example, in the particular cade=v2—1 of our problem of the footing rotates and the soil within the fields OBCDI and
a strip footing near the rigid obstacle, the mechanism construct®ilMNJ is assumed to move in vertical planes parallel to NOD.
by extending the fan shear zone ABC into the passive zone AGNote that, although the footing is smooth, a symmetric mecha-
(external arc CD in Fig. ¥ produces the upper boung=(1 nism is assumed at this stage, with soil beneath the trailing half of
+37/2)c,~5.71c,, . By contrast, the hyperbolic shear zone ACLCthe footing moving upwards as the footing rotates; the case where
(internal hyperbola CD in Fig.)4oroduces a sharper upper boundthe soil breaks from the footing and remains stationary in OLMNJ
p=(2+ w+v2/3)c,~5.61c,. Both of these are lower than a fi-and OFGHJ merely reduces the final dissipatiand resulting
nite element solution, which yieldp=5.81c,, (compared with ultimate momentby a factor of 2. At the sides of the footing, soil
5.17c, for the case ofi>1). within the fields OFGHI and OFGHJ is assumed to move in ver-

While the present solution gives unrealistically infinite capacittical planes parallel to OH, with zero velocity in the plane
as d approaches zero, in principal the approach could be exten@HGF.

X1= y3 x1= y3

Fig. 6 Coordinate transformations and velocity boundary conditions: (a) in the plane of
rotation; (b) perpendicular to the plane of rotation
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Table 3 Internal plastic work for square footing under moment loading

In plane of rotation Normal to plane of rotation
Region 1: Table 1 (Straight) bz bz
537 o s 632 0 ,
Dy=2¢,f | ﬂs]mxdxldyldz=gb EX:N Dy=2¢,[ | [lfpednidnidz =50,
00 -y 00 -y
Region 1: Interface 50 3 1,3 ; 5 0 3 1 )
Dopr =¢ U1 dxldJ:z=—b €89 Dogy =¢, uy|dxd, |2z = —=bc 6
ue‘; bj—zl | 2 2\/6 u OFJ u{ J_zl l| 1 D) ﬁg 7Ad]
vz 7
Region 2: Table 1 (Circular) 57';3"/4 b%—ia .
542 2
Dy=2¢, | Bl yzdxzdyzdz=%b3cu90 D2=2Cu£ g 'TLEIMdedeyzdz=
00 w4 7/
T *[6-+2 3 2
3+642+2431In .8
10845( Ji—l} e
Region 2: Interface b3'¥4 b-z 3 oy s b3nfs 3
Dyer =¢, iy | ——dx, . |[=dz = —=bc,0 Drvy = 222k J:dz=lb3 9
BCI u£1v4| 2| N R PRl Gy cugn£4lu2| N Pl .8
Region 3: Table 1 (Straight) bz bz
Dy=2 P dxydy;dz = =b%c,8 Dy=2 HE e drydyydz == b3, @
3= cuf j ﬂelnm 34y3az ==07¢, 5 3= Cu_[ I J’Hw 30Y3492 = 1o €Y%
00 0 00 0
Region 3: Interface b%‘i b_F
. 2 1 b2
Depr=c.] | |”3|dx3dJ:Z=—b3cueo Doy =c,f | |wsldnsd, |5z =—=bc,8
00 26 0 2° 7206
Let us start with the field OBCDI. As is seen from Fidag in The maximum principal strain rates af&| .= 6 /v2 in the

a section through a plane parallel to the plane of rotation, the figithngular shear zones 1 and 3, ditha= fo\Y2+ 22/ (y,V2) in
is built of two triangular shear zones 1 and 3 with straight streanfyg fan shear zone 2. The expressions for the internal plastic work

lines, and one fan shear zone 2 with circular streamlines. Theeach zone and the corresponding interfaces are summarized in
Cartesian coordinate system is chosen with the origin at the cenfgi|e 3.

of the footing and axi& perpendicular to the plane of rotation. In The total plastic work in the field OFGHJ is calculated by sum-
shear zone 1, a new coordinate systeiyy z with the origin at the ming the plastic work in each zone to give

point A is obtained from the transformation for straight stream-

lines in Table 1, withyy= /4, Xq=b andY,=Z,=0. A similar
transformation, but withy=— /4, yields coordinate system Dorchi™
XgY3z in shear zone 3. In the fan shear zone 2, the coordinate
systemx,y,z with the origin at the point A is obtained from the % b3c.B (51)
transformation for circular streamlines in Table 1, with=b and uvor

Y,=Z,=0. The velocity fields in the three zones are all parallel tbinally, Eq.(1) in our case can be written as

the % axes, with velocity magnitudes given by(y;,z) .

=v260y,(b—v2y;), whereé, is the rotational velocity of the foot- M 6o=4(Doscort Dorerd (52)
ing. On the interfaces OBI, BCI, and CDI, the velocities simplifyand after substitution of50) and (51) we obtain an upper bound
to u;(y;,z)=v26yz. Using the expressions in Table 1, the maxifor the collapse moment:

mum principal strain rates até|y.,= 6, in shear zones 1 and 3,
- : ; : +2v2+ +
and \s\maxzba_ol(yz\/i) in shear zone 2. The expressions for thg, — 4+2v2 4\/6+ mv2 3+33/3+18/3+2V3 In V6-+2
internal plastic work in each zone and the corresponding inter- 3 54 V3
faces are summarized in Table 3. 3 3

The total plastic work in the field OBCDI is then obtained by ~ Xb°c,~12.71b°c,. (53)

summing the plastic work in each zone to give This upper bound may be compared with a value Mf

1 = 1 - _ =13.4b3c, using the mechanism adopted by Paolucci and
i 4 _( 1+ —| |b3c,6,. (50) Pecker[12], some 5% above the above solution. The present so-
3 4 6 4 lution may be improved by adjusting angles AOB and DAC, but
Next, let us consider the field OFGHJ. As is seen from Fig),6 the main advantagg of adopting_ a similar mechanism for rotational
in a section by a plane perpendicular to the plane of rotation, t otion as for vertical translgitlot[z]), IS th_at gexcellent upper
field is also built of two triangular shear zones 1 and 3, and o é)und solutlo_ns may be obtained for combinations of vertical and
fan shear zone 2. The Cartesian coordinate system is chosen Wiment loading.

the origin at the center of the footing and axisparallel to the L . . .

plane of rotation(but rotated in absolute terms relative to Fig/ APPlications: Nonaxisymmetrical Fields

6(a), so that the streamlines lie within tfze=const planes The In order to demonstrate application of the proposed approach to
coordinate transformations are identical to those for the field OBeriving nonaxisymmetric KAVFs, let us consider the bearing ca-
CDlI, while the velocities in the three zones and the correspondipgcity problem of a rigid rough circular footing of raditson
interfaces are given by;(z) =v26yz. saturated clay subjected to undrained moment loaMingrig. 7).

V2i+\6 w2
6 ' 216

\/€+2>

(3+6x/§+9x/§+2\/§|n‘/_

Dogcoi=
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Fig. 7 Rotation of a rough circular footing

The footing rotates around an axis parallel to the ground surface . b \ 'y, cog w/2+ 8)+b
and passing through poii and the kinematic mechanism under  U;(Xy,Y1,2) =6, cos{z)(simS yl)

consideration(of a shape proposed [13] for vertical loading is (55)
shown in Fig. 7. The mechanism consists of a rigid conical block

based on the footing with the tip of the cone located at pBiahd so that at x,=w/2+ 5. uy(7/2+8,y,,2)= Ux,(Y1,2). Then,

two shear zones. As is seen from Fig. 8, in a section trough the  is calculated using the expression in Table(crcular

zone 1 and a triangular shear zone 2. Figure 8 also shows velocity

boundary conditions for the fan shear zone 1 in the plane of rota- 27 [bising (wl2+s

tion. In other planes, rotation of the rigid cone produces moreDlzzcuf J f |&|may1(y1 cOSXy +b)dx,dy;dz.
complex velocity boundary conditions, including circumferential o Jo i 56
velocity components as will be described below. (56)

The Cartesian coordinate system is chosen with the origin at theDiscontinuity surface AB is in fact the, = 7/2+ § coordinate
center of the footing and axig perpendicular to the plane of surface. Therefore, plastic work on this surface is calculated using
rotation. In the fan shear zone 1, a new coordinate sysigiiz  Egs.(20) and (54) to give
with origin at pointA is obtained from the transformation for

Y1 COSX;+b

circular streamlines in Table 2, witR,=b and Y,=0. Velocity D 2m [bising T sl 4bldv.d
boundary conditions on the cone surface AB are defined by ana- A8~ Cu o Jo |uzl| yrcog 5+ + 10z
lyzing the three-dimensional velocity field from rotation of the
rigid cone, giving 4cosé , .

= mb Cueo. (57)

. b
Ux, = fo COS(Z)(sin(S yl)’ Uy, =0; Finally, in the shear zone 2, a new coordinate sysiey,z
with origin at pointA is obtained from the transformation for
straight streamlines in Table 2, with=—7/4, Ry=b and Y,
=0. The velocity field, satisfying boundary and incompressibility

conditions, is parallel to the,-axis, with magnitude given by

o b
u,= 6, sm(z)cos&(m— yl) (54)

Wherei9O is the rotational velocity of the footingjxl, Uy, andu,

are boundary velocity components 3, y;, and zdirections, o b _

respectively. The velocity field, satisfying these boundary condi- Uz(X2,¥2,2)= 0o COS2)| s yz)

tions and incompressibility condition, is given by circular stream-

lines parallel to thex;-curvilinear coordinate, with magnitude Yy, coq w2+ 6)+b (58)
given by X, cog ml4) +y, sin(w/4)+b’

Equation (58) satisfies both the incompressibility condition and
continuity of velocitiesu,(7/4y,,2z) =u»(0y,,z) at the bound-
ary AC between the shear zones 1 and 2, defineck by/4,
X,=0 andy;=Y,. Then,|&| IS calculated using the expression
in Table 2(straight streamlingswith plastic work in shear zone 2
given by

27 (blsiné (y2
D2=2Cuf f f || max( X2 COS 7/4) +y, sin(w/4) +b)
o Jo 0

X dx,dy,dz. (59)

Finally, Eq.(1) in our case can be written as

Fig. 8 Coordinate transformations and velocity boundary .
condition M6y=D1+Dpg+D; (60)
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non-plane-strain KAVFs; new radial but nonaxisymmetric

18 KAVFs. An additional advantage of the method is that it allows
16 1 for expressions of local plastic work in any field to be derived in
14 closed form. When these expressions can be integrated analyti-
12 Total cally, we obtain analytical solutions for upper bounds of collapse

loads, but even numerical integration of these expressions does

) 107 not constitute a problem of significant complexity and can be
8- easily performed. The proposed method makes an attempt to ex-
Shear zone 1

61 pand applicability of three-dimensional upper bound limit analysis
Interface AB by introducing more realistic shapes of KAVFs, while maintaining
47 Shear zone 2 simplicity and the clear engineering meaning of this approach.
71
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Three-Dimensional Green’s
Functions in an Anisotropic
Half-Space With General
Boundary Conditions

This paper derives, for the first time, the complete set of three-dimensional Green’s func-
E. Pan1 tions (displacem(_ants, stresses, and _derivat_ives_ of displacements an_d stresses with respect
to the source point), or the generalized Mindlin solutions, in an anisotropic half-space
(z>0) with general boundary conditions on the flat surface® Applying the Mindlin’s
superposition method, the half-space Green’s function is obtained as a sum of the gener-
alized Kelvin solution (Green’s function in an anisotropic infinite space) and a Mindlin's
complementary solution. While the generalized Kelvin solution is in an explicit form, the
Mindlin's complementary part is expressed in terms of a simple line-integral ovet.[O,
By introducing a new matriX, which is a suitable combination of the eigenmatrides
and B, Green’s functions corresponding to different boundary conditions are concisely
expressed in a unified form, including the existing traction-free and rigid boundaries as
special cases. The corresponding generalized Boussinesq solutions are investigated in
details. In particular, it is proved that under the general boundary conditions studied in
this paper, the generalized Boussinesq solution is still well-defined. A physical explanation
for this solution is also offered in terms of the equivalent concept of the Green’s functions
due to a point force and an infinitesimal dislocation loop. Finally, a new numerical
example for the Green's functions in an orthotropic half-space with different boundary
conditions is presented to illustrate the effect of different boundary conditions, as well as
material anisotropy, on the half-space Green’s functiof®Ol: 10.1115/1.1532570

Structures Technology, Inc.
543 Keisler Drive,

Cary, NC 27511

Mem. ASME

Introduction engineering applications, the mixed boundary conditions, in par-
ticular the slippery condition, have been also used in various prac-
tical problems([20,21]). For example, in rock and foundation en-

interests in both theoretical and applied mechafits 3). With ﬁineering the slippery boundary condition has been used to model
increasing popularity of the integral equation method among d 'éarge-size soil deposit underiain by a hard bedrock I2).

ferent engineering fields, research on various Green’s functions’i ) >
9 g ! ﬁ%’plate theory, the roller or simple supported condition resembles

increasing. The half-space Green’s function alone has been ) slippery surface conditio§23)). The slippery condition has

plied in materials sciencg4-6]), rock engineering[7,8]), in- . ; . .
: been also used to describe the connection between an ideal fluid
verse problenf6], and contact mechani¢g9—12]). However, be . d a solid in material sciendé24)), and to model the bone

cause of complexity, most three-dimensional half-space Gre | in bi hanicd 25
functions are for the traction-free boundary condition only, includMplants in biomect an_lcé{ .])' . . . ,
Besides its applications in conventional engineering, Green's

ing the isotropic half-space solution by Mindli&3], transversely ; . : ;
isotropic half-space solution by Pan and CHad], and aniso- function method now becomes an essential tool in the numerical

tropic half-space solution by Willi§9], Barnett and Lothd4] studies of strained semiconductor quantum devices where the

Barber and Sturl&l5], Ting [2], Wu[16], and Pan and Yuaji7]. Strain-induced quantum dot growth in semiconductor nanostruc-

While the half-space Green’s functions with a rigid surface cdHres is crucial to the electronic performan¢@6-28). While

also be reduced from the corresponding bimaterial Green’s furknder two-dimensional deformation, the strain-induced elastic and

tions, no Green’s function solution exists in an anisotropic halflectric fields can be easily analyzed by the analytical solution of

space with any mixed surface boundary conditions, with the eRU ([29,30), for those in the three-dimensional space, the Green’s

ception of the transversely isotropic half-space Green’s solutié#nctions, as embedded in the Eshelby ten§6(31]), are re-

by Yu et al.[18] for the slippery boundary condition, which in-quired in the corresponding studies. ) )

cludes the isotropic solution of Dundurs and Hetem] as a In Green'’s function solutions |nV0|V|ng material anISOtrOpy, the

special case. Stroh formalism has been shown to be mathematically elegant and
While the traction-free and rigid boundary conditions on théchnically powerful([2,32,33). Under two-dimensional defor-

surface of a half-space are perhaps the most common onedmation, Ting and co-worker§2,34,39) first derived the Green's

functions in anisotropic half-plane with general boundary condi-

ICurrently at the Department of Civil Engineering, University of Akron, Akron,iONS. Two new eigenmatrices were introduced to replace the

OH 44325-3905. e-mail: pan2@uakron.edu original eigenmatrice®\ and B, and the solution of the general

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF boundary value problems was expressed in terms of a new single
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- . .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb. lgstmh formallsm([2,34]). The general boundary conditions con-

2001; final revision, Mar. 5, 2002. Associate Editor: D. A. Kouris. Discussion on treidered by Ting and co-worker§2,34,39) include, as special
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmeniefses, the traction-free, rigid, and slippery boundary conditions,

Mechanical and Environmental Engineering, University of California—Santa Bax; ; ; ; ;
bara, Santa Barbara, CA 93106-5070, and will be accepted until four months ;é}arr]d their solution covers at least elght different sets of boundary

final publication of the paper itself in the ASMEOURNAL OF APPLIED MECHAN- COhditiO!’lS(tO be defined latgr While th.e tWQ'dimenSional defor-
ICS. mation in terms of the Stroh formalism is relatively easy, the

Green’s functiongdue to a concentrated souycare of great
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corresponding three-dimensional deformation is much more com- u;=0; u,=0; uz=0 (2a)
plicated. Although in recent years, the Stroh formalism was ex-

tended to certain three-dimensional Green's function solutions t;=0; u,=0; uz=0 (20)
([2,16,17) no literature exists on generalizing the Stroh formalism

to the three-dimensional problem with general boundary condi- up=0; 12=0; us=0 ()

tions. o u;=0; u,=0; t3=0 (2d)
In this paper, the author shows that, similar to the two-

dimensional case, the Green’s function in an anisotropic half- t,=0; t,=0; t3=0 (2¢)

space with general boundary conditions can also be derived in Ui=0° t,=0° t.=0 )

terms of the extended Stroh formalism. The present study follows 175 27 3T

a recent development on three-dimensional Green’s function solu- t,=0; u,=0; t3=0 (29)

tion in anisotropic bimaterials with perfectly bonded interface

([17)). Itis found that, similar to the three-dimensional bimaterial t;=0; t,=0; uz=0 (20

case, the three-dimensional half-space Green'’s function with g
eral boundary conditions can also be expressed as a sum °f|5
generalized Kelvin Green'’s functior{the infinite-space Green’s
functions and a Mindlin’s complimentary part. While the former t=(013,023,033). 3)

has an explicit expressidfid6—39), the latter can be expressed inSimilar to the corresponding two-dimensional analy@34]),

terms of a simple line integral ové0,=]. Furthermore, a new : : ~ ; . i
matrix, namedK, which is a suitable combination of the eigen-}/ivfnymfy Equations(2a—h) by the following simple vector equa

matricesA and B, is introduced so that the Green’s functions
corresponding to different boundary conditions can be concisely l,u+1t=0 4)
expressed in a unified form, including the existing traction-free | dl 3 di | tri h | ¢
and rigid boundaries as special cases. Also studied for the fifgperel, andl, are d lagona nag_ rices whose elements are
time are the limit cases of the Green'’s functions when the sour%'(-]fl er one or zero, and satisfy conditions
and/or field points are on the surface of the half-space with gen- lyt1e=1; 1,;=0 (5)
eral boundary conditions. It is proved that even for these special . . .

th | being the unit matrix.

cases, the corresponding Green'’s function solutions, the gene}%'F . ; -
ized Boussinesq solutions in particular, are still well defined. To 't IS S€en that Equation®a) and (2€) corresponds to the rigid

; : ; d traction-free boundary conditions, respectively, with,I()
enhance our understanding, a physical explanation for these sc?r_[]- — .
tions are also offered in terms of the equivalent concept of t_e(l'o) ang.t('u ,I[)_—(O,I). On Ehg olt)her Eandt,_ thi sllppzryl sur-
Green’s functions due to a point force and an infinitesimal disl ?(Cf %08 i |0nd||s_ (;_eprisirz)e Wi Y qﬁh'o(? ) tand fL{h
cation loop. Finally, a new numerical example for the GreengV iad 0,0,1] andl,=diad 1,1,0]. We remark that instead of the

here the vectott(t,,t,,t3) is the traction on the=constant
e defined as

functions in an orthotropic half-space with different boundar |spl(¢js1_ceme_nt a?d stlres_s 2fu3n4ct|otrrl1 vzt_:toclsd() adc;pteflj Itn ﬂt]'e
conditions is presented to illustrate the effect of different bound- o-dimensional analysiff2,34)), the displacement and traction

ary conditions, as well as material anisotropy, on the haIf-spa¥ o . . .
Green’s functions. At the source levek=d where the point force is applied, the

In the following discussion, the three-dimensional C_:‘reen}isplacement and traction vectors are required to satisfy the fol-
functions due to an interior point force in an anisotropic hal lowing conditions:

space with general boundary conditions will be also called the Ul,—g-=U|,—g+
generalized Mindlin solutions. When the source point is located
on the surface of the half-space, the corresponding Green's func- t] =g~ —tl=q+ = 8(xy—d1) 8(xp— d)f (6)
tions will be then called generalized Boussinesq solutiaes the along with the radiation condition so that the solution in the half-
generalized surface Green'’s functions, see ¢415]. Also, by space vanishes as| approaches infinity.

Green’s functions, we mean the Green’s displacements, stresses,

and derivatives of displacements and stresses with respect to the

source point.

getors (,t) are used in this paper.

Stroh Formalism in the Transformed Domain

To solve the problem described in the previous section, the
Problem Description two-dimensional Fourier transforiiie., for the displacement

Consider an anisotropic half-space occupying domgir0 ~ e i
bounded by the;=0 plane. Let a point forcé=(f,,f,,f3) be Uk(y1,Y2,2;d)= U(Xy ,Xp,Z;d)eYeedxydx, — (7)
applied in the half-space at source poit(d,,d,,dz=d) with . . .
dggo and the field ?)oint be denote% leE((Xll,Xzz,ngfzg.z As IS applied to Eq(1). In Eq.(7), « takes the summation from 1 to

usual, the problem domain is artificially divided into two regions?: . . .
2>d and Oiz<d. y 9 A general solution to the Fourier transformed equatior(10f

In the two regions of the half-space, the equations of equili§a" Pe expressed &2,17)
rium in terms of displacements, in the absence of body forces U(yy,y,,z,d=ae"P7 (8)
are written as . . . .
with p anda satisfying the eigenrelation
[Q+p(R+RT)+p?T]a=0. 9)

)‘/I’he superscripf denotes matrix transpose, and

CijkiUk,;=0 1

whereC;;y is the elastic stiffness tensor of the half-space.

In this paper, the following eight different sets of boundar
conditions on the surface=0 ([2,34]) will be discussed. In other Qik=CijksNjNs, Rik=CijsNjMs, Tix=Cismjms (10)
words, the half-space Green'’s functions are required to satisfy om%h
of the eight sets of boundary conditions: wi

ny,N,,N3)=(cow,sind,0 11
2Thereafter, the scalar variablzandd will be used exclusively for the third field (M2:n2:na)=( ) ()
coordinatex; and the third source coordinatl, respectively. (my,m,,m3)=(0,0,1).
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Note that a polar coordinate transform, defined below, has beéring these conditions as well as the requirement that the solution
used: should vanish a$x| approaches infinity, the half-space Green’s

function in the Fourier transformed domain can be derived as
(12) ([2,17) follows:

Y= 7 sing. For O<z<d:

It is observed that Eq(9) is the Stroh eigenrelation for the ~ =i LAle Px 72Dy g™ —j LA e iPx 72
oblique plane spanned yandm defined in Eq(11). It has been UY1y2,zd) =7 "Ae Ya"—in "ACe )

y1= 7 cosd

also showr(see i.e.[2]) that its eigenvalues are either complex or Y(yl V2.z;d)= B<efip* ”(Z,d)>qw_§<e,3* ) q (23)
purely imaginary due to the positive requirement on the strain _ ) -
energy density. (Y1,Y2,2;d)=C(e P n(zfd>>q°°_ C(e Px77%)q,

Using the Stroh eigenvalues and the corresponding eigenvg&,—r 7>d:
tors, the traction vectdron thez=constant plane and the in-plane ’

stress vectos, namely Uy1.yo,z;d) = —ip LA(e P« 72 OYg* —j 5~ 1A(e 1P« 7%)q
t=(C1zaUi1, Cozalk,1 »CaaalUk,1) (13) Ty1,Y2,2;d)= —B(e P« 72 O\g* —B(e P+ 7)q  (24)
$=(011,012,02) qy1.Y,z:d) = — Ce~1Ps 12-dyg» — C(e~ 1P 7).

=(CraqUi,i »CaaaUk, » CoaqUi 1) (14)  where
can be expressed in the Fourier-transformed domaila3) 9" =ATfelVada (25)
T=—inbe P (15)  and
T=—j ncefipné (16) <e—ip* 7y = diag[e‘iplﬂz,e‘ipﬂz,e‘ipS”Z]. (26)
with The complex vectog in Egs.(23) and(24) is to be determined.
1 Motivated by the unified and elegant expression for the Green’s
b=(RT+pT)a=— —(Q+pR)a function in an anisotropic half-plane with general boundary con-
p (17) ditions ([2]), we have found that if we introduce a new matkix
c=Da defined as
The matrixD is defined by K=I,A+1B (27)

Ciiin.4+0C Cion +pC Ciian . 4+0C then the complex vectay for the eight different sets of boundary
1l P13 b1zl Phaszs baazalla Phiss conditions(2a—h) can be expressed, in a single vector equation, as
D=| C121aNatPC1213 C122:NaTPCr223 Ci22Net PCo2s3|.

—k-1 ip, 7d\ A T£alY d,
C21aNatPCo213 Coo2aNatPCo223  CopaNetPCozs ) a=K"K(e AT o ) _(28)
(18) It is also observed that the new matix like A andB, is inde-
endent of the radial variablg, an important feature to be used
ater. Equation28) is a very surprising result and will be the key
factor when deriving the physical-domain Green'’s functions.

If p;, &, andb; (j=1,2,...6) are the eigenvalues and the ass
ciated eigenvectors, we let

Imp;>0, pj+3=5j, a,-+3=§j, b 3=bj, Cj+3=€j Substituting Eq_.(28) into Egs. (23) and (24) _gives the h_alf-
] space Green’s displacements and stresses in the Fourier trans-
(J=1273 (19) formed domain, which possess the following important features:
A=[a;,a,,83], B=[Dby,b,,bs3], C=[c;,C;,C3] 1. As discussed by Pan and Yuptv], the first terms in Eqs.

{gg) and (24) are the Fourier transformed-domain Green'’s func-
tions for a homogeneous and anisotropic full space. Inverse of
these Green’s functions, i.e., the physical-domain solution, has
been obtained by Tewaf6], Ting and Leg37], Sales and Gray
[38], and Tonon et al[39] in an explicit form. Therefore, the
biTaj+a1-Tbj:5ij (20) inverse Fourier transform needs to be carried out only for the

. . second terms of the solution, which resemble the complementary
with &;; being the Kronecker delta. art of the Mindlin solution([13]).

It is worthwhile mentioning that should repeated elgenvalué)szl These unified Fourier transformed-domain solutioigs.

occur, i.e., for transversely isotropic or isotropic materials, aslighés) and (24)) include the eight different sets of the boundary
perturbation on the material stiffness tensor would make the nditions(2a-h). Thus, to solve for the Green’s function in an

distinct with negligible error([40]). Therefore, the unified and apisotropic half-space with different boundary conditions, one

simple solution presented in this paper can be applied to materignﬁy needs to assign the matrik defined by Eq.(28) with the

with any material symmetry. corresponding boundary conditions, a remarkably simple result
Half-Space Green’s Functions in the Fourier Trans- parallel to its two-dimensional counterpf®]).

formed Domain 3. In deriving the Fourier transformed-domain solution, the
matrix K has been assumed to be nonsingular. This can be proved
Of¥flowing a procedure similar to the corresponding two-
dimensional analysif 2]).

where Im stands for the imaginary part and the overbar deno
the complex conjugate. It is further assumed thatre distinct
and the eigenvectorg;, andb; satisfy the following normaliza-
tion relation:

For the anisotropic half-space, the general boundary conditi
(4) on the surface=0 and the conditior{6) at the source level
z=d, become, in the Fourier transformed domain, as

I, U+1i=0 (21)
and Generalized Mindlin Solution

Having obtained the Green’s functions in the Fourier trans-
~ - . (22) formed domain, we now apply the inverse Fourier transform to
t),—g- —t|,—q+ =feVala, Egs. (23) and (24). To handle the double infinite integrals, the

’l‘-j|z:d’:’l‘j|z:d4r
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polar coordinate transforr(il2) is introduced so that the infinite In Egs.(33a) and (33b), T*(x;d) and S”(x;d) are the full-space
integral with respect to the radial variablgcan be carried out Green’s stress tenso(39]), and
exactly. Thus, the final half-space Green’s function in the physical

domain, i.e., the generalized Mindlin solution, can be expressed as (Gy) (E’lK)ij
a sum of a Kelvin's part in an explicit form and a Mindlin’s 2iT o 75 0.d= Zd)co+ (xa—d)singTv2
complementary part in terms of a line integral oy8r2sx]. The {=piztpd=[(xa=dy) (Xo=dp)sindl} (34)

integral for the latter can actually be further reduced to an integral

over [0,7]. In what follows, we will use only the displacement Derivatives of the Green’s displacements and stre@sesor$
solution to illustrate the derivation and list the final results fowith respect to the source poind{,d,,d3) are found to be
other Green'’s functions. Assumption will be also made that the

source point is interior to the half-space. The limit case, namely, au(x;d) du*(x;d) 1 WXG ATq -
the corresponding Boussinesq soluti@rhen the source poirtt is ad; - ad; 22 0 2(9)) 4 (35)
on the surfacewill be discussed later.
Applying the inverse Fourier transform, the Green’s displace- =di & coY. coY
ment in Eq.(24) becomes {g1) = diagl cost, cosy, cos]
i _ (g,) =diag[sind,sing,sind] (36)
U(Xy,Xp,2;d) = — _2f f{rflA<e"p* (=) .
4 (gs)=diag[p;.p,.ps]
g e Xeda)Ye
X e e Seeydysdy, aToed) T (cd) 1 [7— ]
__f f{ —1A<e—ip*7;z> J ] 0
471_2 7
) 3(x;d)  9S”(x;d) 1 [(—
X ge %« daValdy,dy,. (29) = = | CG3(g;)ATd6d  (370)
1z ad; ad;  2m? ), T
The first integral in Eq(29) corresponds to the full-space Green'’s _
displacement that is already available in an explicit faf36— (K‘lK)ij
39)). Consequently, the inverse transform needs to be carried out (Gs)jj I Een 00— [(Xa— d1)COSH+ (Xp—dp)SInd]}°"
only for the second integral, or the complementary part. Denoting (38)

the full-space Green'’s function tensor by’(x;d) with its row

and column indices corresponding to the displacement componenEquations(31), (33), (35), and (37) are thecompleteGreen’s
and point-force direction, respectively, and introducing the poldunctions in an anisotropic half-space with general boundary con-
coordinate transform(12), the half-space Green'’s displacementlitions, or the generalized Mindlin solutions. It is emphasized that

tensor can be rewritten as these Green'’s functions are presented in a unified and very simple
. 5 form so that the eight different sets of the boundary conditions
. I ” = 5 (2a—h) are all included. To find the Green'’s functions for a given
d) — A ip, 7z
Uixid)=U"(xd) 471-2J0 dGJ’O Ale ) set of boundary conditions, one only needs to assign the corre-

_ spondingK matrix. For example, foK =B, the present half-space
X KK (P« 1)@ 7l(x1 = d1)cosi+ (xp=dp)SFIA T 5 Green'’s displacements and stresses will then reduce to the existing
solution ([2,4,16,17) for the traction-free boundary condition
(30)  case. since the present solution includes all the eight different sets

Since the matriced (alsoB andC) andK K are independent of Of the boundary conditions, it is therefore particularly convenient
the radial variabley, integral with respect ta; can therefore be When investigating the effect of different boundary conditions on

performed analytically, resulting in the following compact form: the problem solution based on the Green's function method.
Considering the complexity of the problem and yet the simplic-

. 1 (m— ity of the final physical-domain Green’s function expressions for
U(x;d)=U"(x;d) + 52| AGIA de (31)  all the eight sets of the boundary conditions, it is seen that, by
0 resorting to the Mindlin's superposition approach, the extended
wheré (three-dimensional Stroh formalism is indeed a very powerful
_ and elegant method. A direct application of the Fourier transform
(K‘lK)ij method, without employing the Stroh formalism, would require
—piz+p;d—[(x,—dy)cOSH+ (x,—dy)sind] (32) three-dimensional Fourier inverse integrals for the infinite Green’s
function, and four-dimensional Fourier inverse integrals for the
It is noticed that the integral interval in E(81) has been reduced complementary par{42]).
from [0,27] to [0,7r] based upon certain properties of the inte- Besides their concise expressions, the present half-space
grand as a function of ([41]), plus a new relation for the matrix Green’s functionggeneralized Mindlin solutionsalso possess the
K™K, i.e., K"K (#+m)=—K IK(#). Similar properties have following important features:
also been used to derive the Green’s stresses, derivatives o{
Green'’s displacements and stresses.
Following a similar procedure, the half-space Green’s stre
tensors can be derived and the results are listed as

(Goij=

. Similar to the bimaterial Green’s functions with perfectly
Bgnded interface[17]), the half-space Green’s displacements,
Stresses and derivatives of displacements, and derivatives of
stresses are inversely proportional to, respectively, a linear, qua-

1 (7— dratic, and cubic combination of the field and source coordinates.
T(x;d)=T*(x;d)+ Ff BG,ATdé (33a) This feature resembles the behavior of the full-space Green’s dis-
™ Jo placements(«1/r), stresses and derivatives of displacements
1 [ («1/r?), and derivatives of stresses{/r®), with r being the
S(x;d)=S"(x;d) + _zf CG,ATd#. (3%) distance between the source and field points.
27 Jo 2. Different to either the bimaterial Green'’s functions with per-

fectly bonded interface or the half-space Green’s functions with
3Thereafter, the indiceisand] take the range from 1 to 3. traction-free boundary condition®e) where the source poird
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can directly approach the interface or the surface for all the thr&@e second terms in these equations are proportional to one of the
point-force directions, the half-space Green’s functions with oth&; matrices defined by Eq$32), (34), and(38), which are again
seven sets of boundary conditions need special attention whegular and well defined. Therefore, in conclusion, the generalized
approaching the surface, a very interesting feature to be discusBedissinesq solutions with general boundary conditions are still
in the next section. well defined and regulaiif z#0).

3. Since the source point is not on the surface of the half-spaceTo enhance our understanding, we now offer a physical expla-
(i.e., d#0), the integrals in Egs(31), (33), (35, and(37) for nation to the generalized Boussinesq solutions in terms of the
performing the complementary part of the half-space Greereguivalent concept of the Green’s functions due to a point force
functions are regular and thus can be easily carried out by a stand an infinitesimal dislocation loop. Using the Betti’s reciprocity,
dard numerical integral method such as the Gauss quadratureit can be showri[44—48) that the following important equivalent

between the Green’s function of a unit point force and that of a
unit infinitesimal dislocation loop holdén a dimensionless forin

Generalized Boussinesq Solution

In the previous section, we derived the generalized Mindlin
solution in an anisotropic half-space with general boundary con-
ditions (2a—h). While the field pointx can be anywhere in the half while the right-hand side of Eq39) denotes the Green'’s stress
space, the source poiit is assumed to be interior to the half-componenti k) at the field pointx due to a point force in thith
space(i.e.,d#0). We recall that in the Mindlin solutioff13]) to  direction atd, the left-hand side denotes the displacement in the
an isotropic half-space with traction-free boundary conditiongh direction at the field point due to an infinitesimal dislocation
both field and source pointx andd) can be arbitrary, and the Joop, with index {,k) for the dislocation direction and the normal
corresponding Boussinesq solutiffor a point force in any direc- of the dislocation plane, at the source poinTherefore, the stress
tion on the surface; sef43]) can be directly reduced from Mind- field due to a point force can be equivalently considered as a
lin solution by taking the source point to the surface., d=0).  displacement field due to an infinitesimal dislocation loop. The
Furthermore, the special half-space surface Green's functipiiter is well defined with an apparent physical meaning: The dis-
where the field and source points are both on the suffaeez=0 placement response on the surface of the half-sgdsmced=0)
andd=0), can also be obtained either from Mindlin solution withdue to an interior infinitesimal dislocation loop at the source point
z=0 andd=0 for from Boussinesq solution witk=0. Actually, x (sincez+0). A very interesting consequence of Eg9) is that if
this feature also holds for the Mindlin solution in a transverselihe boundary condition is rigi€2a), then the stress field within
isotropic ([14]) and general anisotropic half-spa¢@,4,15-17).  the whole half-space, due to a point force in any direction on the
It is important at this point to emphasize that this feature is basgdrface, is zero! Furthermore, our numerical tests have shown that
upon the condition that the surface of the half-space is tractiofor such a case, the displacement field is indeed zero. The only
free(i.e., Eq.(2)). Then, it is natural to ask the question: Can onfonzero components are the derivatives of the displacement and
safely take the source point to the surfdte., d=0) in the gen-  stress with respect to the third source coordimatéhile whether
eralized Mindlin solution to obtain the corresponding generalizest not this special Boussinesq solutiowith rigid boundary con-
Boussinesq solution? The answer is yes! dition) has any application is unknown to the author, it is worth

First, it is observed that if théth component of the traction mentioning that these numerically obtained features on the dis-
vector is zero(i.e., t;=0) on the surface, with boundary condi-placements, stresses, and derivatives of displacements and stresses
tions in other two directions being properly given, then the corrgre consistent with those in the corresponding two-dimensional
sponding generalized Boussinesq solution exists for a surfaggf-plane([2]) where analytical solutions exist.
point force acting in theth direction. Furthermore, this solution  vet, another limit case is when the field and source points are
can be directly obtained from the generalized Mindlin solution bigoth on the Surfacé_e.’zzdzo)' The corresponding response is
letting d=0. We point out that the field point is assumed to bg special case of the surface Green function, and it is discussed
interior to the half-spacé.e.,z#0), leaving the case afl=0 and gnd presented in the following section.
z=0 being treated separately in the next section. It is very inter-
esting that Boussinedgee[43]) derived solutions in an isotropic
half-space subjected to two general types of boundary conditions )
to which the present boundary condition sé2d) and (2h) have Special Surface Green’s Function
direct connection. Therefore, for example, for the boundary con-wnen poth the field and source points are on the surfeee
dition set(2d), the generalized Boussinesq solution to a normgl_ y— ) the half-space Green’s functions are redugeam ei-
point force (i.e., in the xs-direction on the surface with fixed ther the generalized Mindlin or Boussinesq solutidosa particu-
tangential displacementge., u; =0 andu,=0) is well-defined |5 class of Green's functions called special surface Green's func-
and can be directly reduced from the generalized Mindlin solutigyns. Similar to the generalized Mindlin or Boussinesq solutions,
by takingd=0. _ these special surface Green’s functions can be expressed as a sum

_Now, let us examine the case where itfe component of the of the generalized Kelvin solution in an explicit form and a Mind-
displacement vector is zel@e., u;=0) on the surface, which is |iy's complementary part. For the complementary part, however,
also subjected to a surface point force in tttedirection at the - the jnvolved one-dimensional integral becomes singular and exists
origin. Since the displacement component0 is described on nly in the sense of finite-part principle val(e7—49). Assum-
the whole ‘surface while a concentrated traction componeRy that the field and source coordinates on the surfaceqrey)
ti(=—4(x)) is also given at the surface point=(0,0,0), the and (d,,d,), respectively, and expressing their relative position in
resulting boundary condition is over imposedkat(0,0,0! How-  terms™ of the polar coordinate as;—d,=r cosdy; X,—ds
ever, if we release the displacement conditiona{0,0,0 for Ui, —r sing,, then these special surface Green's functions are obtained
due to the fact that this is a concentrated force=at0,0,0, then  45([50))
the boundary value problem will be well defined. Actually, from a
mathematical point of view, i.e., from Eq631)—(38), it can be S
proved that wherd=0, these Boussinesq solutions are still well . - 1 |1 ("AKTKAT
defined and regular as long 2% 0. It is noted that the first terms Uid)=U"(xd) - 5— » Cod 6— 65) do
in Egs. (31), (33), (35), and (37) are the infinite-space Green’s
functions that are regular and become singular if and only if the -
field and source points are coincident to each offer, x=d). +i[AK1KAT],,_(,O+,,,2] (40)

u™(d;x) = afl(x;d) (39)

w
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Fig. 1 Variation of in-plane stress component o, along the line x=y on the surface z=0, caused by
the point force f =(0,0,1) and d =(0,0,1). Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions  (2a-h).

Mxd)  aUrcd) 1 (1 ”A?’lK(gJ-)ATde P 7 CK KAT ,
ad;  ad 2mr2 ) 7w, cof(6— 6p) Sxd)=S"0xd)+ 5720 7 o COS(0— by)
d[AK ~2K(g;)AT d[CK KAT
[ OI<gj> ] ) L . ] )
o 0=0y+ w2 o 0= 04+ w2
S Sd) _ ST (xd) 1 {2fﬂchlK<gj>ATde
1 1 (7BK “KA = 3
Py T e < ad; ad 2mr3| 7w ), cos(6—6;)
T(xd)=T*(x;d) + 27Tr2{7-rf0 c02(0—0y) i i B
o | dF[CK1K(gj)AT]
_d[BKIKAT a2
L (42)
4 0= 0+ /2 o
+[CK'K(g;)AT] ) (45)
w 1 T 0= 0o+ /2
aT(x;d)  aT*(x;d) 1 2 ("BK™K(gj)A
= + 34— de Several features regarding to the special surface Green’s func-
ad, ad; 2mr3| 7w, cos(0—6,) . ; 1 ,
] J tions with general boundary conditions are observed:

[d?2BK K (g;)AT]
+.[d20

+[BK ~K(g))AT]

(43)
0= 0+ ml2
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1. Similar to the interfacial Green’s functions in anisotropic
bimaterial with perfectly bonded interfa¢gs0]), the surface dis-
placements, stresses and derivatives of displacements, and deriva-
tives of stresses are inversely proportional, respectively, to?,
andr?, wherer is the distance between the field and source points
on the surface Z=d=0), a generalized consequence of self-
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Fig. 2 Variation of in-plane stress component o, along the line x=y on the surface z=0, caused by
the point force f =(0,0,1) at d=(0,0,1). Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions  (2a—h).

similarity [9,15]. For the special surface Green'’s function compaerial Green'’s functions of Pan and Yua7] for a perfectly
nent which is inversely proportional 1q r?, andr?, the corre- bonded interface by letting the elastic teng@yy, in the z<0
sponding finite-part integral has singular order of diécosd), half-space being much stiffer than that in the concerned half-space
two (1/cod6), and three (1/cd¥), respectively; therefore, the regionz>0. Although the isotropi€[19]) and transversely isotro-
special surface Green’s functions are completely determined Big ([18]) half-space Green’s solutions were studied before for the
the values on a unit circle on the surfaced=0 (with field point ~ Slippery surface boundary conditio(2h), no numerical result is

on the unit circle and source point at the center of the girdlee ~ available. Nevertheless, the present generalized Mindlin solutions
finite-part integrals can be carried out accurately and efficientiiave been self-checked for the boundary conditi@ag and(2e),
using an adaptive scheme proposed recently by Pan and Y: for two of the mixed boundary conditions, namely conditions
[50]. (2d) and(2h), to be discussed below.

2. For the traction-free boundary conditiofi2e), the corre- Boussinesdsee[43]) derived the solution in an isotropic half-
sponding special surface Green's function was discussed prespace when its boundary is subjected to two general types of
ously by Willis[9], Barnett and Loth§4], Barber and Sturl§l5], boundary conditions: namely, the normal tractigand tangential
Ting [2], Wu [16], and Pan and YuafL7]. Even for this case, the displacementsu, andu,), and normal displacement, and tan-
complete special surface Green'’s functions are not available in @@ntial tractions t, andty). If, for the former, we assume a unit

literature until very recently[50]). normal point force at the original and let the tangential displace-
3. All the special surface Green’s functions corresponding foents be zerdi.e., u,=u,=0), then the dilatation at any field
the boundary condition€a—d) and (2f-h) are new. point x=(x,y,z) of the half-space caused by this normal point

force is found to be

Numerical Examples

For an anisotropic half space with general boundary conditions A=uy;;=
(2a—h), no previous solution is available except for the traction- ’
free (2e) and rigid (2a) cases. While for the former, the Green’s
displacements and stresses were studied previously by Barrett aigtre\ and u are the two Lame constants.

Lothe[4], Tine[2], Wu [16], and Pan and Yuall7], the Green’s  Similarly, for the latter, if we assume a unit point force in the
functions for the latter can be numerically reduced from the bima-direction at the original, traction-free in thg-direction ¢,

—Z
2m(N+2u) C+y?+2%)%?

(46)
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Table 1 Reduced and normalized stiffness matrix Cj in the  cases if\=—0.026251. This result not only has validated some of

half-space the present Green’s functions, but also has shown that even the
10352019 0523837 0523837 .0 0 0 isotropic case can be easily handled by the present Stroh formal-
1153771 .0405268 .0 .0 .0 ism using a slightly perturbed elastic prope(ft#0]). For instance,
1153771 (-)%33333 ~8 -8 to use the present Stroh formalism for the isotropic material, an
' 0333333 .0 orthotropic material was assumed with one of the three Poisson’s
.0333333  ratios being perturbed te=0.2999 while the other two being kept

at v=0.3.

Next, the effect of different boundary conditions as well as
material anisotropy, on the surface stress field is studied for an
=0), and zero-displacement in tizedirection (,=0), then the orthotropic half-space. The stiffness matfix its reduced and
dilatation at any field point=(x,y,z) of the half-space caused by normalized form from Pan and Yan§50] is given in Table 1. For

this tangential point force is obtained as this example, the source is fixedds (0,0, while the field point
—X varies on the surface of the half-spacexas(x,x,0), with xe
A=u;; = I 2 (B2 (47)  [—1,1]. While Figs. 1 and 2 show the variation of the normal

stresseso,, and o, caused by a unit point force in the
z-direction, Figs. 3 and 4 show the variation of these normal
stresses €y, andoy,) due to a unit point force in the-direction.

It is seen that while Boussinesq soluti@t6) corresponds to the
present Green’s function with boundary conditi¢u), solution

(47) corresponds to that with the boundary conditi@h). For the ; ; .
former, the point force is in the-direction and for the latter it is in In these figures, results for the eight different sets of boundary

the x-direction. conditions (2a—h) are labeled as BC 1 and BC 8, respectively.

In the numerical testing, a Young’s modulEs-2.6 and Pois- These numerical results are believed to be new and possess the
son’s ratior=0.3 were assumed for the isotropic half-space. Fdellowing interesting features:
the field point at X,y,z)=(1/3,143,1/43), both Egs.(46) and . . .
(47) give Fihe sam(é ydilz)altagioh va\lqu\—)0.026252, v(vhil>e that 1. For the given mat.erla[orthotropllc), .the surface normal
predicted by the present Green’s function solutions for the tRi/€SSE¥xx anday, are either symmetri¢rigs. 1 and 2or anti-

0.02 T | T | I l I I I [ I | I I f I I | I

0.01

-0.01

20.02 | E— T T | l 1 I | | | I I l ! l 1 | |
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
x (=Y)

Fig. 3 Variation of in-plane stress component o, along the line x=y on the surface z=0, caused by
the point force f =(1,0,0) at d=(0,0,1). Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions  (2a-h).
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Fig. 4 Variation of in-plane stress component o, along the line x=y on the surface z=0, caused by
the point force f =(1,0,0) at d=(0,0,1). Labels BC 1 to BC 8 correspond to the eight different sets of
boundary conditions  (2a-h).

symmetric(Figs. 3 and #4 a general feature also associated witpoint force in an anisotropic half-space with general boundary
the Mindlin solution in an isotropic half-space with traction-freeconditions, also called the generalized Mindlin solutions, are de-
boundary conditions. rived for the first time. Applying the Mindlin’s superposition
2. The effect of material anisotropy on the surface normahethod, the half-space Green's function is obtained as a sum of
stresses can be clearly see by comparing Fig. 1 to Fig. 2. For B¢ generalized Kelvin solutioGreen’s function in an aniso-
1 and BC 5, both normal stresseg, and o, should be the same tropic infinite space and a Mindlin’s complementary solution.
if the material is isotropic. However, the magnitudes are mugjyhile the generalized Kelvin solution is in an explicit form, the
different in the orthotropic half space far,, and oy, under Mindlin's complementary part is expressed in terms of a simple
boundary condition BC 1 or BC 5. line-integral over[0,7]. To handle the eight different sets of
3. ltis of particular interest to order the normal stressgs  poundary conditions, a new matri& a combination of the eigen-
andoy, at the surface point=0, i.e., the symmetric poinfrom  mairicesA andB, has been introduced so that the Green’s func-
the largest tensiomaximum to the largest compressidmini-  iqns corresponding to the eight different sets of boundary condi-
. S . Yions can be expressed in a unified form, including the existing
While for those in Fig. 1, the descent order is BC 1, BC 3, BC 4,5 tion free and rigid boundaries as the special cases.
?CB% E%gf%gf%gf%%%c é—‘;(,:fgr ;m%sg(ljnSFlﬁlisz’ogsirsg The corresponding generalizeq Boussinesq solu(mnmqurce
tﬁat the‘ boundary cc;nditioﬁ case’ BC(E’Id (2d)) is iﬁ neutral for oint on the surfac)ean_d the s_pe(:lal surface Green's functn()iur_s
which the normal stresses,, and o, aloﬁg the linex=y on the .bOth th_e source a_lnd f'EI.d points on the surjéuave been studied
surface are zero. While BC 1 and BC 3 predict a tensile and BC't?odeEja”S' In pda_lr_tlcular, ';.hzs. beﬁ_n proved thhat underl_thedggneral
BC 5-8 a compressive value for the normal stregs, BC 1 and . undary conditions studied in this paper, the generalized Bouss-
BC 2 predict a tensile and BC 3, BC 5-8 a compressive value foresd solution is still Wel!-deflned, along with a physmgl explqna—
the normal stress-... tion in terms of the equivalent concept of the Green’s functions
vy due to a point force and an infinitesimal dislocation loop.
A typical numerical example has been also presented for the
Green’s functions in an orthotropic half-space with the eight dif-
In this paper, the complete set of three-dimensional Greeri&rent sets of boundary conditions. The new numerical result il-
functions (displacements, stresses, and derivatives of displadestrates clearly the effect of the boundary conditions, as well as
ments and stresses with respect to the source poidit® to a material anisotropy, on the half-space Green’s stresses. It is be-

Conclusions
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General Solution for Mechanical
and Thermal Stresses

in a Functionally Graded Hollow
Cylinder due to Nonaxisymmetric
Steady-State Loads

In this paper, the general theoretical analysis of two-dimensional steady-state thermal
stresses for a hollow thick cylinder made of functionally graded material is developed.
The temperature distribution is assumed to be a function of radial and circumferential
directions with general thermal and mechanical boundary conditions on the inside and
outside surfaces. The material properties, except Poisson’s ratio, are assumed to depend
on the variable r and they are expressed as power functions of r. The separation of
variables and complex Fourier series are used to solve the heat conduction and Navier

equations.[DOI: 10.1115/1.1509484

dimensional transient temperature distribution. Tanigawa et al.
. . . 114,15 solved the thermal stresses for a slab and a semi-infinite
Functionally graded materials are new, advanced, heat-resist

. ) . y with the assumption that the nonhomogeneous material
materials used in modern technologies as advanced structures Sberties are power functions of the thickness directioihese

addition to superb heat properties, they are corrosion and eros ers, due to their mathematical limitations, have a constraint for
resistant and have high fracture stiffness. The basic concept i

mix the ceramic and metal such that the material properties cqp- er ofzin shear modulus of elasticiti(2). In the study of

. : . Hermal stresses of functionally graded material plates, spheres,
tinuously vary from one constituent material to the other. In e_ffe_c linders, and semi-infinite bodies in two and three-dimensional

t_he governing equations for the temperature and stress d'St”% SEes tﬁe traditional potential function method is used. This

tions are coordinate dependent, as the material properties are fffti g of solution has limitations in choosing the boundary con-

tions of position. P

Th wtical th | and st lculati itions for stresses and displacements.
ere are some analytical thermal and stress calculations 104, o nresent paper, a direct method of solution of the Navier

functionally graded materials in the one-dimensional case f ; ; ; PR
thick spheres and cylinde§1,2]). The authors have consideredggtjear?t?gidig[gﬁe;t:tﬂgéh';Sh t?)os;nr:jcl)(te Tﬁ\e/egg]rfe:rlgll |:§gggso?fnt]2<_a
the nonhomogeneous material properties as linear functions oy anica| and thermal boundary conditions. A thick hollow cylin-
The thermal an_d stress a_naIyS|s of these types of structures Qi¢ made of functionally graded material under two-dimensional
sometimes carried out using the theory of laminated composilgs 4y _state temperature distribution with general types of thermal
([3-7)). The material properties are, however, continuous funG, 4 mechanical boundary conditions is considered. The function-
tions of position and therefore there are some objections to t ﬂ’y graded material properties of the cylinder are assumed to be
analogy of functionally graded materials with composites. Haékpressed by power functions in None of the limitations con-
et al.[8,9] used the layerwise theory of plates to model the wav@qayeq in the previous referencg¢$4,15) for the power of ma-
propagation in a plate made of functionally graded material agdyja| hroperties are applied in this paper. The Navier equations in
used the quadratic element. They §h0wed that the quadratic f&tims of displacements are derived and solved analytically by the
ment may well express the properties of the functionally gradeflect method, so any boundary conditions for stresses and dis-
material plates across the thickness. The quadratic layered ele”FQEements ce’m be satisfied. By setting the power index constants
0

1 Introduction

method may well express the material properties of the functioa, ;5 15 zero, the method of solution and the results are reduced to
ally graded material along the graded direction, but it is basical ose of thick cylinders of isotropic material.

an analytical-numerical technique with approximate solutions.
Using the perturbation technique, Obata and NH@| pre- N . .
sentedga squFt)ion for the transien(t] thermal stresses in a prl)ate mgde Derivations of Governing Equations
of functionally graded material. The same authors used the perturConsider a thick hollow cylinder of inner radiwsand outer
bation technique to derive the thermal stress equations of the thiekliusb made of functionally graded material. The cylinder's ma-
hollow spheres and plates made of functionally graded materiadsial is graded through thedirection, thus the material proper-
under different temperature distributiorisl1,12)). Obata et al. ties are functions of. Let u andv be the displacement compo-
[13] presented the solution for thermal stresses of a thick hollowents in the radial and circumferential directions, respectively.
cylinder made of functionally graded material under twoThen the strain-displacement relations are
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where(,) denotes partial derivative. The stress-strain relations for C1iT(a,0)+Cy,T ((a,0)=1,(0)
plane-strain conditions are ' 9)
Co1T(b,0) +CoxT (b, 0)=Tf5(0)

o =(N+2u) €t Negyg— (BN+2u)aT(r,0)
" " " wherek=k(r) is the thermal conduction coefficient, the symbol

Too=(N+21) €9t N —(3N+21)aT(r,0) (2) (') denotes derivative with respecttpa, andb are the inner and
outer radii of the hollow cylinder, respectively, ai@j; are the
Org=2HEry constant thermal parameters related to the conduction and convec-

where oy, and €;(i,j=r,6) are the stress and strain tensordion coefficients. The functionf; (6) andf,(¢) are known on the

T(r,0) is the temperature distribution determined from the he{iner and outer radii, respectively. .
conduction equationg is the coefficient of thermal expansion, We assume that the nonhomogeneous thermal conduction coef-

and\ and . are the Lamesoefficients related to the modulus officientk(r) is a power function of as

elasticity E and Poisson’s ratio as K(r)=kor™ (10)
N= vE wherek, andmg are material parameters. Using E(®.and(10),
(1+v)(1-2v) 3) the heat conduction equation becomes
E 1 1
n= m T'”+(m3+1)FTYr+ roﬁg:O. (11)

The equilibrium equations in the radial and circumferential direcSinceT(r,6) is a periodic function o#, it may be written in the
tions, disregarding the body forces and the inertia terms, are form of complex Fourier series as

1 1 - _
Urr,r+FUrG,H+F(Urr_UBG):O T(r,0)= 2 Tn(r)ema (12)
4) m
1 2 whereT,(r) is the coefficient of complex Fourier seriesTd(fr, 6)
Ure,r"‘?”ae,e""?"’re:o- and is

T

To obtain the equilibrium equations in terms of the displace T.(r)= ﬂf T(r,6)e "’do. (13)

ment components for the functionally graded material cylinder,
the functional relationship of the material properties must be
known. Since the cylinder's material is assumed to be grad&#bstituting Eq(12) into Eqg. (11), the following equation is ob-
along ther-direction, the modulus of elasticity and the coefficientained:
of thermal expansion are assumed to be described with power

1 n?
laws as TH(r)+(Mg+1) = Ti(r) = 5 Ty(r)=0. (14)
E(r)=Eqr™ . . . . .
(5) Equation(14) is the Euler equation and has solutions in the form
a(r)=agr™ of
whereE, anda are the material constants amg andm, are the Ta(r)=Aqr?. (15)

power-law indices of the material. We further assume that t
Poisson’s ratio is constant.
Using the relationgl) to (5), the Navier equations in term of

réeubstituting Eq.(15 into Eq. (14), the following characteristic
equation is obtained:

the displacements are B?+myB—n?=0. (16)
1 vm 1 1-2v\ 1 The roots of Eq(16) are
U+ (ML) —U 4| 1| S ut | | U a(16
' ro 1- 2=2v|rc -m m2 1/2
— S B.n2
+( 1 ) 1 ((4+2m1)v—3) 1 Priz=——F| 7N (17
55,7 Vot | 55, |2V
2-2v|r 2—2v r Thus
+
:%((ml+ M) r™e 1T pmeT ) (6) Tn(r)=AnsrPrit Aporfrz, (18)
Substituting Eq(18) into Eq.(12), gives
+( +1)1 ( +1)1 +(2_2V)1 =
v m —0v ,—(m Y% A | T3V .
T 1 r o 1 2 1—2p/r2".00 T(r,0)= E (Anlrﬁ”1+An2rﬁ”2)emﬁ- (19)
1)1 3-4y 1 _ T _
5T Ut | 5 tmy 5 U, Using the boundary conditior(8) to determine the constangs,;
1-2v/r 1-2v r .
andA,,, yields
2+2v) R R o
= aof .
1-2v)7° 0 > [(Cp1@Pri+ Cppfpafn ) Ay, + (Cprale
n=-—w
Heat Conduction Problem. The heat conduction equation in . )
the steady-state condition for the two-dimensional problem in po- +CraBnal2 A, 1e"'=1(6) (20)

lar coordinates and the thermal boundary conditions for a func-
tionally graded material hollow cylinder are given, respectively, as

©

2 [(CoibPrit CyppnibPri~ 1) Ay +(CyybPre

’ n=—o

o+l

asrs<b

Tt —r=o=t+x O +CooBrobfr2 1) Ay ]eM =15(6).

1 1
?T'r-l‘ ?TVWZO
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In Egs.(20), the right-hand sides are the coefficients of complex Equations(26) and (27) are a system of ordinary differential

Fourier series of left-hand sides as

(Cyg@Pni+ CypBnalfm Ay +(Cppafie+ CppBnafne A,

LI ()e "’do
2m )t

(21)

(CoabPri+ CppBnbPri ) Ap; +(CoibPrz+ CyppBnbPrz HA,,

— —iné
P sz(a)e de.

Equationg21) are a system of algebraic equations for the constant
coefficientsA,; andA,,, where the solution by Cramer’s method

IS
1 ™ .
Anl:E [(CpbPr2+CyyBobPr2~ 1) f1(6) — (Cyqqale
+CyoBraPe )T 5(6)]e”"d0/(C,— Cy)
1 T
An2=§f [(Cyg@Pni+CypBn1aPm ™) f,(6) — (CyybPn

+CppBnialmHf;(6)]e "d6I(C,—Cy)
where

C1=(Cyy@1+ CypByyalni=1) (CoybPre+ CopfnpbPa )

Co=(Cyyaf2+ C 1o a2 1) (CygPri+ CopyybPor~Y).

Solution of the Navier Equations. To solve the Navier equa-
tions, the displacement componentér,#) andv(r,6) are ex-

panded in the complex Fourier series as

©

u(r,8) = 2 up(r)en?

= (24)

©

v(r,0)= D, vy(r)en’

n=—w

whereu,(r) anduv,(r) are the coefficients of complex Fourier

series ofu(r,#) andv(r,d), respectively, and are

u (r)=ir u(r,0)e""de
" 2o J

(25)
1 ™ )
va(r)= 5 f, v(r,0)e "dg.

Substituting Eq(19) and Eq.(24) into Eq.(6) and Eq.(7), yields
(1—2y)n2> 1

—-Uu
r2 n

le l
1-v 2—2v

( in )1 o (4+2m1)v—3)1
+ —v+Hin| —————

2-2)r 2—2, r2Yn

1
up+(my+1) Fur’]+

(I+v)ag _
Zﬁ[(mﬁ My + Byp) Apgr Pt me 1

+(My+ M+ B) Aot ozt M2~ 1] (26)

(272v)n2)1 in |1
1-2v 2% l1=2, Tu”
1 in(2+2v)ay
24102,

1
vp+(my+ 1)Fv,'1*(m1+ 1+

3—4v

N
M1,

+m [AparPrtmet

+ Ao Prztm2— 1] 27)
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(22)

(23)

equations having general and particular solutions. The general so-

lutions are assumed as

ud(r)y=Br7 (28)
vi(r)y=Cr”.
Substituting Eqs(28) into Egs.(26) and(27), yields
L L vm, L (1-2v)n?
n(p=D+(m+ g+ ——1-——
4+2m;)v—3
i 2_7’2 ( 2_;)" nC=0
14 14 (29)
|7 374 B 1 1 1
IE'FE"le nB+ 77(7]— )+(m1+ )7]_m1_
(2—2w)n?
C1-2v |7

A nontrivial solution of Eqs(29) is obtained as

1 1 vmy 1 (1—2v)n? 1
n(p=D+ M+ D+ ——1-—— —|n(n—1)
(2-2vn?] [ g
+(my+1)p—m;—1— =2, +n 5”2,
(4+2my)v—3 7 3—4v
M | S L I

Equation(30) has four rootsy,; to 7,4. Thus, the general solu-
tions are

4
uﬁ(r):Z By i
= (31)

4
uﬁ(r):zl NpjBojf 7
“

whereN,; is the relation between constariég; andC,,; and is
obtained from the first of Eq29) as

) vmy (1-2v)n?
| 7/nj(77nj_1)+(m1+1)77nj+ 1—» 1- 2_2y
Noy= Ty (A+2my)v—3
2—2v 2—2v
j=1,2,3,4. (32)

For isotropic materialsmi;=0) and forn=1, Eq. (30) has re-
peated roots and hence a solution of the formirof must be
considered fou§(r) andvi(r).

The particular solutions®(r) andvf(r) are assumed as
up =D rﬂn1+m2+1+D rﬂn2+m2+1
n( ) nl n2 (33)
Uﬁ(r): Dn3r3n1+m2+ 1+ Dn4an2+m2+l.
Substituting Eqs(33) into Egs.(26) and (27), yields
dyDpyyrPrit M=l d,D rhnet M1y gD orfotme-t

+d Dpgr P2t M I=dgrArat M1y dopPrat M=l (34)
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d;Dpgr it M=l doD rhn2t My gop  r ot me-l
+dyoDporPr2tMet=q, rhntme=1yd rhr2tm—1
(35)

where constantd, to d;, are given in the Appendix. Equating the
coefficients of the identical powers yields

d;D,1+d3D,3=ds

dgDny+d7Dpz=dyy

d,D,»,+d,sDa=dg
diDpotdgDa=d;s.

(36)

37

Equations(36) and (37) are a system of algebraic equations,

where the solution is given by the Cramer’s method as

_ d5d7_ d3d11

ni d1d7_ d3d9

_ dedg—d,dsp

"2 dadg—d4dyg

_ dldll_ d5d9

n3 dld7_ d3d9

_ dad1,— dedio
" dadg—dadyo”

The complete solutions fan,(r) andv,(r) are the sum of the
general and particular solutions and are

Un(r)=ud(r)+uf(r)

(38)

(39)
vn(r)=va(r)+op(r).

Thus

|
(14 v)(Boj+my

DOj:

4

Up(1) =2 Byjf 701 Dggr At M2 14 D M1
=1
J (40)
4

Un(r)zz Nnjanr”"i+ Dn3r3”1+m2+1+ Dn4rB"2+m2+l.
i=

Forn=0 the coefficienN,; in Eq. (32) is undefined because the
system of Eqs(26) and(27) for n=0 is two decoupled ordinary
differential equations as

Y 1, vmy 1 (1+v)ag
u0+(m1+1)Fu0+ rvfl I'_ZUO:TV
><((rnl—"_I’“Z—"_BOI) (41)
Aggr Por" M2~ 1t (my+ My + Bop) Agar P02 M2 1)
1 1
vg+(m1+1)Fv(’)—(m1+1)r—2v020. (42)
The solutions of Eqs(41) and(42) are
2
Uo(r)ZE (Bojr 70i+ DgjrPoitmeth)
o (43)
4
vo() =2, Bo;r i
i=3
where
-my _(mZ wm, L 2
R N R
=1
703 (44)

Noa=—(My+1)

+ mz)avoj

Substituting Eqs(40) and (43) into Eq. (24) give

2
u(r,0)=, (Bl i+ Do;rfort M+ 1) ¢
j=1

4
2 anrﬂnj
j=1

n=-%,n#0

+ Dnlrﬁn1+m2+1+ Dnzrﬂn2+m2+1 ing

|

+DpgrAmtmetlyp p P2t metl

e

(45)

©

>

n=-o,n#0

4
2 NpjBnjr 7ni

4
o0,0)=3, Byt
j=3 j=1

ein(i

Substituting Eqs(45) into Egs.(1) and(2), the strains and stresses

are obtained as

114 / Vol. 70, JANUARY 2003

(1V)[(,Boﬁmz*l)(ﬁoj'+m2)+(301+m2+1)(m1+1)+ 1

j=12.

le

:

-V

2
Err:Z- ( TIOJ'BOJ'I'TIOJ'_J""(IBOJ_"‘ m2+ 1)Dojrﬁoj+m2
i=

|

+Dpa( B2t my+ 1)r5n2+m2} gind

©

4
2 ﬂnjBnirnnj_l"_ Dpa(Bny+My+ 1)rFaatme

j=1

+

n=-o%,n#0

(46)

©

>

n=—o,n#0

4
> (inNy,

=1

|

2
6«967:21 (Bojr 701~ 1+ DojrPoit M2) +
i=
+1)Byr i1+ (inD g+ Dpyy ) r At ™2
einG

+(inDpg+ Dpy)rPztmz 47)
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n=-on#0 | j=1

® 4
1 .
Erazz((ﬂm_l)BoJ”O“‘ Z {2 (in+ (7
~ 1)Npy)Byjr i+ (inD g+ (Bpa + M) Dgg) r At * M2

+(inDn2+(ﬁn2+mz)Dn4)r5n2+m2 ein0 (48)

N 52
\\}t{:{g{’!' h' %

Eo
(1+v)(1—-2v)

2
o= D (1= v) 55+ v)Bgyr oM™t
j=1

+(Vﬂoj+vm2+ 1_(1+ V)ao)DojrBOj+m1+m2
4

2 ((1=») mpj+ v(inNp;+ 1))anr’7ni+ml"1 Fig. 1 Temperature distribution in the cross section of a cyl-
i=1 inder (example 1)

©

+

n=-on#0

+((1=v)(Bnatma+1)Dyy+v(inDp3+Dpy)

—(1+ v)apAn)rPrrt MMy ((1—v)(Bro+My+1)Dpy It is recalled that Eqs(45) through(51) contain four unknowns
Bnh1, Bn2s Bns, @andB,,. Therefore, four boundary conditions are
ino required to evaluate the four unknowns. These boundary condi-
€ (49) tions may be selected from the list of conditions given in &g).
Assume that the four boundary conditions are specified from

+ v(iNDps+ Dpa) — (1+ v) aghAyy)r Pzt Mt me

£ 2 the list of Egs.(52). The boundary conditions may be either the
0_69:—0 E (1= v) mo; + v)Bgir 701t M1 given displacements or stresses, or combinations. Expanding the
(1+v)(1-2v) |\ =1 ! ! given boundary conditions in complex Fourier series gives
+| (1= v)(Boj+ Myt 1—(1+ v) arg) Dgyr Poit Mt m2 g,-(0)=n; Gj(me"’ j=1,....4 (53)
o 4 where
+ 2, (v (1= w)(inNpj+ 1)) Byr 7ni * M1 1 (n _
n=-0on#0 | j=1 Gi(n):ﬁf gj(n)e—mede j=1,.. 4 (54)

+(v(Brat My+1)Dpy+(1—-)(inDpg+Dpy) = (1+v) o N .
PR Substituting the four boundary conditioiS2) with the help of
X agAny) TPt T2+ (p(Brpt M+ 1)Dppt (1—v) Egs. (53 in Egs.(45), (49), and(51) the constants of integration

Bn; are calculated.
X(iNDpg+ Dyp) — (1+ 1) @A) r Pz Mt m ) e’ (50)
3 Results
E Consider a thick hollow cylinder of inner radiss=1 m and
01 p=———| (04— 1)Byr 704+ M1 outer radiush=1.2 m. The Poisson’s ratio is assumed 0.3 and the
" (1+w) modulus of elasticity and the thermal coefficient of expansion of
" 4 the inner radius ar&; =200 Gpa andy;=1.2x 10 ®/°C, respec-
. e tively. For simplicity of analysis we consider the power law of
—_— n + 1 . . L] .
+n:_2n¢0 []21 (in+(770) = 1)Npj) Byjr 7ni™ M material properties be the samerag=m,=m,;=m. To examine
’ the proposed solution method, two example problems are consid-
+(inD g+ (Bpg+My)Dpg)rAratmtm; ered. The first example problem may have some physical interpre-

tation, while the second example is chosen to show the math-
ino ematical effectiveness of the proposed method.
e (51) As the first example, consider a thick hollow cylinder where the
inside boundary is traction-free with given temperature distribu-
To determine the constanB,;, we may consider any generaltion T(a, #) =60 cos 2°C. The outside boundary is assumed to be

from of boundary conditions for displacements and stresses agadially fixed with zero temperature. Therefore, the assumed
boundary conditions vyieldo,,(a,6)=0, o,4(a,0)=0, u(b,6)

+(inDpat+(Bnat mz)Dn4)rB”2+ml+m2)

u(a, #)=g.(0) =0 andv(b, ) =0. The thermal boundary conditions are substi-
tuted in Eq.(19) to obtain the temperature distribution, where the
u(b,6)=g,(0) constants of integration are obtained from E@2). In general,
the displacement and stress boundary conditions are substituted in
v(a,0)=0s(0) Egs.(52), and with proper function expansiofs3), the constant

coefficients of the series expansion are obtained from(t4).

v(b,0)=94(6) (52) Figure 1 shows the temperature distribution in the wall thick-

o (a,0)=gs(0) ness along the radius and circumferential directions. Figure 2
e ° shows the resulting thermoelastic radial displacement due to the
o (b,0)=ge(0) given temperature variations. The resulting circumferential dis-
placementv is shown in Fig. 3. It is noted that, due to the as-
ore(a,0)=g(6) sumed boundary conditions, theandv -displacements are zero at
r=b, and follow the pattern of the temperature distribution at the
o9(b,0)=gg(6). inside surface at/a=1. Figures 4, 5, and 6 show the distribution
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Fig. 2 Radial displacement in the cross section of a cylinder
(example 1)
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Fig. 3 Circumferential displacement in the cross section of a
cylinder (example 1)

Fig. 4 Radial thermal stress in the cross section of a cylinder
(example 1)
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Fig. 5 Hoop thermal stress in the cross section of a cylinder
(example 1)

of the radial, circumferential, and the shear thermal stresses in the
cross section of the cylinder. It is interesting to see that all com-
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Fig. 6 Shear thermal stress in the cross section of a cylinder
(example 1)
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Fig. 7 Radial distribution of radial thermal stress o, at 0==/3
(example 1)

law index on the distribution of the radial thermal stress is shown
in Fig. 7. This figure is the plot ofr,, versusr/a at 6==/3. It is
shown asm increases, the radial thermal stress is increased.

As the second example, a thick-walled cylinder may be as-
sumed with zero temperature distributioril(&,0)=0 and
T(b,6)=0), but exposed to mechanical boundary conditions. The
stress and displacement boundary conditions are assumed to by

2

%
o (a,6)=400 sir( - 0) MPa

_ 2
or¢(a,8)=500“cosd MPa (55)

u(b,0)=0

V204404,

ponents of stresses follow a harmonic pattern on the outside sur-
face. The radial and shear stresses are zero at the insider surfege,8 Radial displacement in the cross section of a cylinder
due to the assumed boundary conditions. The effect of the powéxample 2)
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Fig. 9 Circumferential displacement in the cross section of a
cylinder (example 2)
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Fig. 10 Radial mechanical stress in the cross section of a cyl-
inder (example 2)

Fig. 11 Hoop mechanical stress in the cross section of a cyl-
inder (example 2)

Fig. 12 Shear mechanical stress in the cross section of a cyl-
inder (example 2)

Journal of Applied Mechanics

The reason to select such boundary conditions is to examine the
mathematical strength of the proposed method. These types of
boundary conditions may not be handled with the potential func-

tion method. It is examined that series expansion of(&4). rap-

idly converge after 31 number of terms. Therefore, in the calcu-

lations and plotting the figures, 31 terms of each series are
considered.

Using Egs.(52) to (54), the boundary conditions given in Egs.
(55) are expanded by the integral series and the unknown coeffi-
cientsB,; are determined. Figures 8 and 9 show the radial and
circumferential displacements in the cross section of the cylinder.
According to the boundary conditions=v=0 atr=Db. At the
inside surface =a, u, andv are harmonically varying. The stress
distributions are shown in Figs. 10-12. Stress patterns in inside
and outside surfaces follow harmonic patterns. The given har-
monic boundary conditions far,, ando,, atr =a, have general
influence on the pattern of stress distributions in the cylinder’s
cross section, as seen from Figs. 10 through 12.

4 Conclusions

This paper presents the analytical solution for the nonaxisym-
metric thermal and mechanical stresses in a thick hollow cylinder
made of functionally graded material. The method of solution is
based on the direct method and uses power series, rather than the
potential function method. The advantage of this method over the
potential function method is its generality and mathematical
power to handle any type of the mechanical and thermal boundary
conditions. It is to be emphasized that the proposed method does
not have the mathematical limitations to handle the general types
of boundary conditions which are usually countered in the poten-
tial function method.

Appendix
The constantsl; defined in Eqs(34) and(35) are given as
d1=(Bnrt M+ 1)(Bn1+my) +(My+1)(Bn+my+1)
vmy (1-2v)n?

1Y T

do=(Bnat Myt 1)(Bna+My) +(My+1)(Brp+my+1)

ym 1-2v)n?
n 1717( v)
1-v 2—2v

dai (/3”1+m2+1 (4+2m1)V*3)
=N T2, 2—2v

d4:|n(

Bnotmy+1  (44+2my)v—3
2—2v 2—2v
(I v)(my+my+ Bny) @oAns

S 1-v

_ (14 v)(My+my+ Bno) aphn,

d
6 1-v (56)
d7=(Bn1t Mo+ 1)(Bnatmy) +(My+1)(Bny+my+1)
(2—2v)n?
Mol

dg=(Bnat M+ 1)(Bnatmy)+(My+1)(Br+my+1)

(2—2v)n?

—m-1- 1-2v
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Localization of Vibration
Propagation in Two-Dimensional
Systems With Multiple

w-c.xie § Substructural Modes

Professor,
Solid Mechanics Division,
Faculty of Engineering, Localization of vibration propagation in randomly disordered weakly coupled two-
University of Waterloo, dimensional cantilever-mesh-spring arrays, in which multiple substructural modes are
Waterloo ON N2L 3G1, Canada considered for each cantilever, is studied in this paper. A method of regular perturbation
e-mail: xie@uwaterloo.ca for a linear algebraic system is applied to determine the localization factors, which are
defined in terms of the angles of orientation and characterize the average exponential
rates of growth or decay of the amplitudes of vibration in the given directions. Iterative
formulations are derived to determine the amplitudes of vibration of the cantilevers. In the
diagonal directions, a transfer matrix formulation is obtained. For a given direction of
orientation, the localization behavior is similar to that of a one-dimensional cantilever-
spring-mesh chain. The effect of the stiffnesses and the disorder in the stiffnesses of the
cantilevers on the localization behavior of the system is investigated.
[DOI: 10.1115/1.1507766
1 Introduction method of Green’s functio{3,4]) may also be employed to de-

In engineering applications. there are manv structures Suchtermine the localization factors for both monocoupled and multi-
9 g app ' Y ’ C%%Ehi‘d one-dimensional structures.

long satellite antennae or space trusses used in space solar POWg}. |,caization problems in the context of structural dynamics,

stations, which are designed to be composed of identic_ally CYuch work has been done during the past two decades in both
structed elements assembled end-to-end to form a spatially p@tisory and experiments. However, because of the inapplicability
odic structure. When analyzing the vibration of these large spagethe methods of transfer matrix and Green’s function, which are
structures, they have been traditionally treated as perfectly peirmulated for one-dimensional systems, to higher-dimensional
odic structures. However, due to defects in manufacture and ggstems in their current formulations, the degree of difficulty, and
sembly, these nominally periodic structures can never be perfeatie amount of computation involved in studying higher-
periodic but are in reality randomly disordered. The vibrationalimensional systems, most of the research work on localization in
behavior of a disordered periodic structure can be significantiyructural dynamics has been restricted to one-dimensional struc-
different from that of a perfectly periodic structure. For a perfectljures. Detailed reviews of literature on localization in one-
periodic structure, the vibration modes are of wavy shapes adiinensional systems may be found in the papers and references in
extend throughout the structure; whereas, when a structure is di¥ special issue ohocalization Problems in Engineeriri].
ordered, vibration is confined to a small region with the ampli- In engineering applications, there are many structures, such as
tudes decaying exponentially away from the center. The averdgége floor systems of shopping malls and airport terminals, which
exponential rate at which the amplitudes of vibration decay is ti§@ould be realistically modeled as large plates stiffened in two
localization factor. orthogonal directions, i.e., two-dimensional disordered periodic

For one-dimensional monocoupled structures, the transfer nfiuctures. Itis therefore of practical importance to study in detail
trices are of dimension 22, and Furstenberg’s theorej] for the localization behavior of disordered two-dimensional periodic

products of random matrices may be applied to determine tR¥Stems. However, because of the complexity of mathematical

localization factors. For multicoupled structures, the dimension odelling _angi analy5|s c_>f large realistic two-dlmensmnal disor-
the transfer matrices is higher thark2; the multiplicative er- ered periodic engineering structures, to obtain some general

godic theorem of Oseledd@] has to be employed to obtain thekmw'que on the Iocallgatlon behavior  of dlsordfered two-
gmensmnal systems, simple models of two-dimensional

localization factors. The localization factor is related to the sma “antilever-mesh-spring arrays have been considered, which can be

est p_osmve Lyapunov exp_onent_for the corresponding discrete udied using elegant analytical approaches.

namical system. A on(_a-dlmensmnal mc_mocoupled structure may, 4 earlier study[6]), the free-vibration mode localization in
be regarded as a special case of a multicoupled structure in whigh, jimensional cantilever-spring arrays with single substructural
there is only one positive Lyapunov exponent. Since the smallgghde was investigated. This was the first publication on vibration
Lyapunov exponent is also the largest for monocoupled structurgsyge |ocation of two-dimensional structures in the context of
the determination of the localization factors is much easier. TR@ctural dynamics. A regular perturbation method for a linear
- eigenvalue problem was applied to obtain the amplitudes of vibra-
e oty s k. lon of the canievers and a fistorder approximation of the lo-
CHANICS. Manuscript receiveg by the ASME Applied Mechanics Division, August 6,Ca_|lzatlc_)n factors, which \_Nere defined in te_rms of the angles of
2001; final revision, April 3, 2002. Associate Editor: O. O'Reilly. Discussion on thé@fientation and characterized the exponential rates of growth or
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmenggcay of amplitudes of vibration in the given directions. When

Mechanical and Environmental Engineering, University of California— ; B ; i R ;
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until fg)IOtted in the logarithmic scale, the vibration modes were of hill

r . . . . . .
months after final publication of the paper itself in the ASMEURNAL OF APPLIED SLhape with the amplltudfes O.f V|brat|on dec.aylng linearly away
MECHANICS. from the cantilever at which vibration was originated. The results
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presented if6] were extended if7] to the free-vibration mode Al y\
localization in two-dimensional cantilever-mesh-spring arrays ¢ L
with multiple substructural modes, in which multiple substructural ~ “~7+1 7SV T — 2
modes are considered for each cantilever. +LJ Ly I+1, J+1

In Ref.[8], a method of regular perturbation for a linear alge-. 2 p ; d displ ts of a twoudi ional
braic system was applied to study localization of vibration propa.J: - "~arameters and displacements of a two-dimensiona
. . . . . ntilever-mesh-spring array
gation in randomly disordered weakly coupled two-dimensiondl"
cantilever-spring arrays with a single substructural mode under
external harmonic excitations.

In this paper, the work presented [i8] is extended to study a J(h={al,t), ... a1},
localization in vibration propagation in two-dimensional ’ ' '
cantilever-mesh-spring arrays with multiple substructural modes, b,,J(t):{bﬁ'J(t), . ,bﬁJ(t)}T,
which is a more realistic model of engineering structures, al- T
though simplified. Employing a method of regular perturbation for HD)={$1(2), ... .¢s(2)}",
a linear algebraic system in the block matrix form, first-ordefhere ¢,(z), @=1, ... S, is the ath normal mode shape of a
approximations of the localization factors are obtained. cantilever given by

For a two-dimensional system with a single substructural mode,
when the mean values of stiffness of the cantilevers inxtla@d _ - - N oA _
y-directions are the same, there is only one frequency passbarf?jt,*(z)_COShﬁaf_CosﬁaC— aq(sinhB,{—sing,{), (=
whereas when they are different, there are two frequency pass- i . .
bands. On the other hand, for a two-dimensional system @ith" O the first three cantilever modes, the parameters e
substructural modes, depending on the average values of stiffngdd 73410, a,=1.01847, «;=0.99922, B,=1.87510, B,
of the cantilevers in the andy-directions, the possible number of =4.69409,8;=7.85476. _
frequency passbands is betweBrand 25 with various possible ~ Following [7], the total kinetic energy of the cantilever-mesh-
combinations. Therefore, there are many properties of vibratigRIng array Is

N

propagation localization for systems with multiple substructural Ny Ny L

modes that are not observable for systems with a single substruc- 1 _ 1J AT (O (2 P+ (1) b(2) 12 d z
tural mode. The objective of this research is to obtain some gen- <} 321 2 J, {[8,,(0 D+ by (H ()T dz
eral knowledge on the localization behavior of vibration propaga- (1)
%)Sdlerll disordered two-dimensional structures using a Slmp“f'evc\j/here m, , is the mass per unit length of cantileverd). The

potential energy due to bending of the cantilevers is
Ny Ny [ E

ITVJ - T 2
5 fo[aa,J(t)rﬁ”(Z)] dz
2 Perturbation Formulation for Vibration Localiza-

tion S 2
+ TJ [by s(1)@"(2)]°dz}, 2

2.1 Equations of Motion. Consider the forced vibration of 0
a two-dimensional cantilever-mesh-spring array as shown in Fighere EI}; and EI} ; are the flexural rigidities of thel(J)th
1. The system is subjected to harmonic exciting fofegs“t and  cantilever in thex andy-directions, respectively.
F¥e'“t in thex andy-directions, respectively, applied at the tip of Considering only small deformations, the potential energy due
the (1,Jo)th cantilever. Each cantilever of lengthis connected to the extensions of the springs is
to its eight neighboring cantilevers by massless meshes and linear Ny Ny oy
springs located at heiglit. The parameters and displacements of _ Treh (AR V20 kv (AU V2 pedl adly2
the cantilever-mesh-spring array are shown in Fig. 2. The numbers VS_; 321 LKL AL+ KAL)+ KiS(Ar)
of columns and rows of cantilevers in the array Akg and Ny,
respectively. +K(A1)], 3)

If S substructural modes are considered for each cantilever, tvr\]/ﬁereAh

v di dr ; ;
x andy components of the displacement of theJ)th cantilever Ly A'HJ’ A'va and A_"J aze the extensions of.the QO”'
are, respectively, zontal springK|' 5, vertical springky ;, and diagonal springs;

- - and Kl‘"’J , respectively. The potential energy due to the extensions
Xz =a (1) d(2), vy (z,t)=Dby ;(t)(2), of the meshes is
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Ny Ny

=2 47

AM(z,1)]%dz

2,

L L
+K;?3”f [A,”j;v(z,t)]zderKﬂgd'f (A" (z,t)]%dz
0 0

L
+K,"5dffo [A,”j;df(z,t)]zdz], 4)

whereA ™
and in columnJ, A,
in row | and on lineJ, A% (z,t) andA"*(z,t) are the exten-
sions of the Ieft and rlght slanting meshes in panédl respec-
tively, andK™", K"y, K", K["’" are the normal stiffnesses
per unit Iength of the correspondlng meshes.

(z,t) is the extension of the horizontal mesh on line

The Lagrange’s equations of motion are, ferl, ... Ny and
J=1,... Ny,
d| JT Vv d[ dT oV
oo =R, | =Rl )
8 5/ Jg dt\ gb, ,/ by

where V is the total potential energy given by=Vc+Vs
+Vu, Rlx0'30=e'“"F(x)¢(L), R,VO’ =e“'F¥p(L), andR} ;=RY
=0, forall I #14, J#Jg.

Substituting Eqs(1)—(4) into Egs.(5) results in the equations

of motion for forced vibration of the cantilever-mesh-spring array:

MX + Kx = Fe“t, (6)
in which M is the mass matrixK is the stiffness matrix, and the
displacement vectax and the load vectoF are given by

T

. T T
x={aj;,b1 ;815,015 - - - ANy Ny PNy N

F={0",0"; ...;0",0";F5¢"(L),F}¢"(L);0",0"; ...;0",0"}".

To nondimensionalize Ed6), let

EIX

w2:_
0 mL4’

x=LymM~Y%&elet,  f= M~ 2,

L3m

wherem andE|* are the average values of the mass densities
and the flexural rigiditie€ 1} ; of cantilevers, respectively.
Transform the nodal coordinatek J) to the global coordinates
i using the following relationships as in R¢6]:
2(1—1)Ny+23-1,

i_[ 2(1—1)Ny+2J,

i

Without loss of generality, it may be assumed thas an odd
number and it corresponds to tkedirection; hencd +1 is an
even number and it corresponds to thealirection. Lettingu;
=8, U= b| 5, the nondimensional displacement vectdre-
comesu, where

for x-direction|

N
for y-direction|
i—1

+ 1.
2N, 1

1, 0=in 22
I T

u={ug,ug; ... ;U;NHN\fl'UENHNV}TI U={Uj, ... Uis}",
and the nondimensional load vector becomes
f={0",07; ...;0",0%;f] f[,,;07,0";...;0",0"},  (7)

where the global coordinateg and j+1 correspond to the
(I9,Jo)th cantilever, and

Journal of Applied Mechanics

”"3”(2 t) is the extension of the vertical mesh

-1 — Fy — K
f]:fXE¢(L)I J+l )/2 ¢(L) fngr fyzgr
‘ EIX /My
07212 m
where %cb(L) is a vector of dimensiorS give by (11,1,
-1,...)"
The equations of motion become

Au=f,
whereA= wazM UM Y2y, p= wzlwg.
For simplicity of presentation, assume that there is no disorder
in the geometry of the array, the mass densities of the cantilevers,
the meshes and sprlngs connectlng the cantilevers, and denote
K=k K =kv, Kl =2kd, KM=k, KPP=k,
Kmdl =K ar” 2K , for aII values of I,

(8)

J, in which Kdlr
—Kd'r/(EIX/L3) KM= LK™ (EI¥/L®), where “dir” is h, v,

dl, dr. The only sources of disorder are the bending stiffnesses of
the cantilevers in bothx and y-directions denoted as
=EIf JEI* andk?, ,=EIY /EI*.

Therefore, in the block form, matrig = [Ak,] in which there
are NyNy, block rows and block columns, respectively, and each
block is of dimensionSX S. The nonzero block elements in the
ith block row (corresponding to th&-direction are

A=K B+ (2K"+ 4k Dy + (26" + 4x— ),

Aii—2=Ai == (K'®y+ k"),

©

Aii—on,-2= T Ai—on, - 15 AL i—an, 2= A i-ang 43
=Aiivan,-2= AN, 1= Alran, 2

— (k9P + «1),

*Ai,i+2NH+3:

and the nonzero block elements in the-()th block row(corre-
sponding to they-direction are

Air1is 1=K, B (2K + 4K By + (267 + 49— v),

Ai+1,i—2NH+1:Ki+1,i+2NH+1:_(k"‘I’H+KU|), (10)

—Aisgi—ang-2=Aisti—an, 1T Airsi-an 42T Ak Li- 2N, +3
=Aisvirang -2 Aivtivan, 17 A LiraN, 42
e (1 d
=Aistj+an,+3= — (K@ + ),

where g*=diag3;, . .. B, ®y=
whenS=3 andH=L,

@H(H)P"(H). For the case

B*=diag12.36236, 485.51882, 3806.54627

4 -4 4
(I)H:(I)L: -4 4 -4 .
4 -4 4

2.2 Perturbation Analysis. To apply the method of regular
perturbation, weak coupling is assumed, i.e., the magnitudes of
the off-diagonal elements &, which are functions of the nondi-
mensional stiffnesses of the meshe8 «', and « and the
springsk”, k¥, andk¢, are much smaller than the magnitudes of
the diagonal elements @f, which are functions of the nondimen-
sional flexural rigidities of the cantileveks andk!, ;. Matrix A
may be written as

A=A+ A, (11)
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M1 M-1
ElimaN,~1)v ElimaN+)y

g M-l
(i=2N,+3)7

whereA is the diagonal matrix obtained from the main diagona’ 7
of matrix A and is given by
I

: diag A diag diag SM‘I SM_I
A=diagATT" A5 - AN 2NN (i=2N=2)v (i=2Ny+2)7

J—1 e

" ) | N
AlRO—diagAX | A5, .. ASS k=1,... NNy, : \\
and fori odd, @=1,... S, | AN
| N
Al =KB+ (2K + 4Kk D, + (26" + 4K — v, | [P M1
a,a iBat( ) ( (12) | Ei-2)y \\ v M €(i+2)y
Aa=K 1 Bot (2K + 4K D o+ (267 + 4 — . B K =
In Eq. (11), matrix A is of the form SA=[ Ay ], where the } e } AN :
diagonal blocks are, for odd, M~1 , M-1, M-1
€ Gitan, 1)y EGiaN, 1)y € (12N, 43y
SA ;= (2K "+ 4k DO, SA; .1, 1=(2k+4k%) DO, M- AN -1
7 EGaaN,~y N € (42N, )y

where®? equals®y, except all diagonal elements that are setto C/+] = = »

and the off-diagonal blockéA, |=A, ,, k#I, which are given by

Egs.(9) and (10). . . .
The method of regular perturbation for a linear algebraic sys ) :

tem in the block form is applied to solve E). Expanding the J-1 J J+1

response vectan as Fig. 3 Coupling of cantilevers in the transfer of vibration

u=utéut---+86Mu+---, (13)
and substituting Eqg11) and(13) into (8) yields L S
m m-1 ra | — E (khq) +ihs [ M-1 | M-1 ]
Au+(Adu+ SAU)+- -+ (AdMu+ SAST tu)+---=1. Eia™ Al = ay T K Oay)LE(i-2)y T E(i+2)y
The zeroth-order perturbation equation is s s
— h d 0o _M-1 d d
AU=T. (14) — (2k"+ 4k );l D9 &M —;l (K9 .+ x95,,)
Substituting Egqs(12) and(7) into Eq.(14) results in the zeroth- % M-1 M—1 M-1
order solution [=ei-an,-2y T Bli-any -1y~ 8- 2N, +2)y
M-1 M-1 M-1
u=(ug,u3;ug,ug; ... ;U;NHNV—l’U;NHNV)T' TE(i-2N,+3)y E(i+2Ny-2)y " E(i+2N,-1)y
U= (A% =1 =f (Al )7L — (ALY L L (- 1)S(AL9 YT, - -
j= (A i= (ALY (Az2) (mDXAss) _8?{'+21NH+2))/+8’(\{I+21NH+3))/] , (19)

U= (A ) M= AALD L — (AL L L

pra=( JHJH.) = hAALD (A22) and fork=i+1 even, which corresponds to tlyedirection, Eq.
(—DSALH 1T, (15) (18) becomes

s

ui=uj; =0, fori=13,... NyNy—1, and i#j. 1 ) . _
I I 8X+1)a:A|+l 21 (k cDay+K 5a7)[8?f72lNH+1)y
a,a (VT

This result indicates that, in the zeroth-order, only the directly
forced (4,Jp)th cantilever is excited.

S
For theMth-order perturbationM=1,2, .. ., theperturbation M-1 d 0 M-1
equation is +8(i+2NH+1)y]_(2kv+4k );1 Dy (i+1)y
AsMu+ sASM tu=0. (16) s
_ d d M-1 _M-1
Express theMth-order amplitude of vibration vectasMu as a = (KD gyt ¢ ‘sﬂv)[s(i*ZNH*Z)y Bi-2ny-1)y
linear combination of the unit vectar,;, which is formed by
2Ny Ny, blocks of dimensior8 in which theth element of théth BN+ 2)y Ell— oy +3)y EliT Ny —2)y
block is equal to 1 and all other elements are equal to 0, as : : .
2NyNy S M—1 M-1 M—1
— & e —& 1t (20)
Mu= sMu . 17 (i+2Ny—-1)y T E(i+2Ny+2)y ™ E(i+2N,+3)y
2 2 el (7)

o ) o ) ~ Equationg(19) and(20) give the relationships between the ampli-
Substituting Eq(17) into (16), multiplying the resulting equation tyde of vibration of the I,J)th cantilever, corresponding to the

by ug, from the left results in global coordinates andi+ 1, in the Mth-order perturbation and
INUN those of its eight neighboring cantilevers in thd { 1)th-order
178 S perturbation. This coupling of cantilevers in the transfer of vibra
M_ M-1, T . -
ka ™ Ak zl 521 21 (UkgOAUIR). (18)  tion can be better visualized in Fig. 3.

As shown in Fig. 1, each cantilever is coupled with its eight
It is easy to show thanla:SAuw:&Akﬂ',B, which is the element adjacent cantilevers through meshes and linear springs. In the
of SA located on thexth row of thekth row block and thesth  zeroth-order perturbation, only théy(Jo)th cantilever that is di-
column of thelth column block. rectly forced is vibrating. For the first-order perturbation, the eight
Using Eqgs.(9) and(10) and after some calculation, the follow-neighboring cantilevers on the first layer are brought into motion
ing results are obtained. F&=i odd, which corresponds to thethrough coupling; whereas for the second-order perturbation, the
x-direction, Eq.(18) becomes 16 cantilevers on the second layer are brought into motion. In
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J y amplitudes is invariant for a specific direction and it is reasonable
to define the localization factors in terms of the angle of orienta-
- tion.
JO [ M JO JO '||'M It may be noted that, when the full linear algebraic syst8is

' solved and the true amplitude vector of vibratigrof the (I,J)th
cantilever, which is on th¥th layer, is used in Eq21), the exact
value of the localization factox 4 is obtained when the number of
layer M approaches infinity.
~ On the other hand, when applying the method of regular per-
turbation,v; may be written as, following Eq(13), V;=V;+ v,
+ &%vj+---. Since cantilever|(J) or the global coordinaté is

on theMth layer, 8™v;=0 for m<M as discussed above, which
results in

i
|
| Mth layer
| .
|
|
|
|

Vi=Mvj+ MLy - (22)

However, because of the large amount of computation involved, it

[0+va o is difficult to evaluate Eq(22) beyond the leading term. Hence, in
fe——n] u; this study, only the leading term in the perturbation sefi2®) is
J=J taken, i.e.,vi=8"v,={(6Mu)",(6Mu,.,)"}T, the elements of
which are obtained using Eq$19) and (20). The localization
Fig. 4 Definition of the localization factor factor \ 4, obtained using Eq(21) with v;~Myv; is therefore a

first-order approximation.
For the four cantilevers located at the corners of b layer,

general, for theMth-order perturbation, I8 cantilevers on the which correspond to the angles of orientatin 45 deg, 135 deg,
Mth layer are brought into motion for the first time. As shown ir225 deg, and 315 deg, Eq4.9) and (20) can be simplified sig-
Fig. 4, if the (,J)th cantilever is on thé/th layer, it satisfies the nificantly. Because of symmetry, only the diagonal directibn
condition|l —1o|=M and/or|J—Jo|=M. For themth-order per- =45 deg is considered in the following formulation. As discussed
turbation (n<M), all cantilevers on and outside tiMth layer above, the amplitudes of vibration of the cantilevers on i
are at rest([6]). Therefore, vibration extends or propagates outayer in theMth-order perturbation depend only on the amplitudes
ward a layer for each increment in the order of perturbation arf vibration of the cantilevers on theV(—1)th layer in the ¥
the Mth layer is the farthest layer that vibration can extend to in.1)th-order perturbation. Since the cantilevég{M,Jo+M)
the Mth-order perturbation. The amplitudes of vibration of thyy theMth layer, which is located in the directiof=45 deg, is
cantilevers on theMth layer in theMth-order perturbation are coupled with only one cantilever on théi( 1)th layer, i.e., the
therefore determined by the amplitudes of vibration of the canizntilever (,+M—1,J,+M—1), the amplitudes of vibration of
levers on the (1 —1)th layer in the M —1)th-order perturbation. \he canilever (,+M,J,+M) in the Mth-order perturbation de-
Hence, if the (,J)th cantilever, corresponding to the global coorpend only on those of the cantilevep ¢ M —1,J,+M—1) in the
dinates andi+ 1, is on theMth layer, the terms on the right SIdES(M —1)th-order perturbation. Equatiofs9) and(20) are simpli-
of Egs. (19) and (20) that correspond to cantilevers not on thgjeq a5
(M —1)th layer are equal to zero; for example, the second sum-
mation terms in Eqs(19) and (20) are equal to zero.

In Ref. [8], where localization of vibration propagation in a 1 ZS ; ) - -
two-dimensional cantilever-spring array with one substructurai"ﬂ(:——{ KD ., + k%S, ) e —an. —2)v— E(i—aN — ,
mode is considered, it is found that the amplitudes of vibration are” Aual|7-1 ( 7 PLei-2u, -2y~ 02,0y
of hill shapes when plotted in the logarithmic scale. The ampli-
tudes of vibration of the cantilevers decay linearly in a specific

direction(angle of orientationin the logarithmic scale away from s (23)
the cantilever that is directly forced. This observation suggested M __1_ E (K9, + k95, )[— &ML
the definition of the localization factors for a two-dimensional 8(”1)“_A'a+j = ayT K Oay)L ™ E(i-2Ny - 2)y
cantilever-spring array in terms of the angle of orientati8i), ’
which are analogous to the localization factors for a one- M1
dimensional randomly disordered system and characterize the av- +8(i72NH71)7] )
erage exponential rates of growth or decay of amplitudes of vi-
bration.

A localization factor is defined as wherei=j+2M(Ny+1). Equation(23) may be written in the

1 J-Jo matrix form as
Ng=— lim MInHViH, f=tan ! e (21)
M—x 0 M-1
_ _ _ _ el £ -2N,-2

where Vi:(UiT inT+1)T:(Ui1x coaUis Uy - 1U(i+1)s)T is [e";' ]:TM( 8M—lH ] (24)
the nondimensional amplitude vector of vibration of theJjth i+1 i-2Ny-1
cantilever on theMth layer (corresponding to the global coordi-
natesi andi+1), and@ is the angle of orientation as shown 'nwhereqm:{a{q, . ,8{2}1—, andTM is the transfer matrix given

Fig. 4.
The localization factors defined in E1) are consistent in the by

sense that, in numerical simulations, two different valuedviof

— yield the same value of; as long as the cantilevers,{) on

the two different layers correspond to the same angle of orienta- T™M=

tion 6. This confirms that the exponential decay rate of vibration

™ -1V

M M
_Ti+1 Ti+1
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[ kYD, + kid,, KD g ]
T T AT
Al,l Al,l Al,l
KiD,,  KiD,+ kY k9 ®,g
T|'vI = A|2,2 Alz,z Alz,z
Kid g, Koy,  KDggt k! P
Al Al Al g
L Ass Ass Ass | &
£
Equation(24) leads to 3
y 0 3
£ €
=TMTM1---T1[ : ] 25
{EM 1] EJQH 29

40 60

80 100

whereg)=u; and &), ;=u; ., as given in Eq(15).

Hence, in the diagonal direction &= 45 deg, a first-order ap-
proximation of the propagation of vibration is expressed in terms
of a product of transfer matrices 08X 2S. This implies that the
localization behavior of a two-dimensional cantilever-mesh-spring
array in the diagonal direction @f=45 deg is similar to that of a
one-dimensional system with multiple substructural mo@@$.
The numerical method presented[®] can be applied to deter-
mine the localization factors.

The ath frequency passbands corresponding to vibration domi
nant in thex andy-directions are located around, respectively,

Frequency v

(a)

V= B+ (2kN+ 4k D, + (26" + 4kY),

Vi:MkyBiJr (2KY+ 4k D, + (2k° + 4KY),

Localization factor A

with certain bandwidths.

For weak coupling of the cantilevers, i.e., small values of the
nondimensional stiffnesses of the sprirds k¥, andk® and the
meshes<", «”, and«Y, the locations of the frequency passbands
are given approximately by~ 8%, %~ u,B%. The fol-
lowing three cases are possible.

45

100 200 300 -
400 500 g0 700 800 oq 1000 ©

Frequency v

(b)

Case 1.uwu=pmy

In this case, the frequency passbands corresponding to vibratic
dominant in thex-direction and they-direction coincide and are
well separated. For example, jifi,= ui,=1 and three substruc-
tural modes are taken, i.65=3, the passbands are located around

for both x and y-directions: 12.36 485.52 3806.55.

Case 2.py,# my,, Without overlap 1]

For certain values ofuy, and uy,, the frequency passbands < 9+

corresponding to vibration dominant in thedirection and the 3 §:
y-direction are well separated. For exampleuif,=1, ui,=5, g 6
S=3, the frequency passbands are located around K i:
RS

x-direction: 12.36 485.52 3806.55 S %:
y-direction: 61.81 2427.59 19032.73. 07

1000 H500 3000

. 4000
Case 3.mu# my, With overlap 5000 6000

7000
For certain values ofu, and w, , there may be overlaps be- Frequency v
tween the frequency passbands corresponding to vibration dorr (©

nant in thex-direction and those corresponding to vibration domi- o b a
nant in they-direction. For example, ifuy,=1, uy,=7.84, S F|g.d5 Localization factors:  pu=py,=1, k'=k"=k=x"=x
=3, the frequency passbands are located around =x?=0.01

x-direction: 12.36 485.52 3806.55

y-direction: 96.92 3806.47 2984332 3 Numerical Results

Numerical results of the first-order approximation of the local-
in which the third frequency passband corresponding to vibratidgration factors for vibration propagation in disordered two-
dominant in thex-direction and the second frequency passbardimensional cantilever-mesh-spring arrays are presented in this
corresponding to vibration dominant in tlyedirection overlap.  section.
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(c) ©

Fig. 6 Localization factors:  pg=1, py,=5, k"=k'=k9=x"

; it . - = h— gV jod— oh
— V= 1=0.01 Fig. 7 Localization factors:  p =1, pyy,=7.84, k'=k"=k=k

=k"=k9=0.01

For the purpose of illustration, three substructural modes arep; ; ; e T P
consideredpfof each cantilever ’i.é5=3. The nondimensional Given the nondimensional forcds a_mdf_y, and the excitation
) ) o o R frequencyv, the zeroth-order approximation of the amplitude of
bending stiffnesses of the cantilevers in thandy-directionsk \ipration vectoru is given by Eq.(15). Iterative Egs.(19) and
and kY, ; are uniformly distributed random numbers with mean20) are employed to determine the amplitudes of vibration of all
valuesuy, and uy, and coefficients of variatiody, and éy,, and the cantilevers on thélth layer in theMth-order perturbation.
the exciting forces are taken &g="f,=1. For each iteration, two independent uniformly distributed random
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Fig. 8 Localization factors:
kh=k'=k9= k=K"= K9=0.01

numbers are generated faf andk?, ; for the cantilever corre-
sponding to theth global coordinate. Equatiof21) is then em-

ployed to determine the localization factorg.
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Fig. 9 Localization factors:
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large. All cantilevers outside th&th layer are at rest in the
Mth-order perturbation. Therefore, a large two-dimensional
cantilever-mesh-spring array may be imagined as one with 2

The determination of a first-order approximation of the local+1 rows and 2 +1 columns and the cantilever that is directly
ization factors requires only the amplitudes of vibrations of carfierced is located at nodeM+1,M +1). The localization factors

tilevers on theMth layer in theMth-order perturbation foM
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are plotted for 0 deg <180 deg only due to their symmetry.
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First-order approximate localization factors are shown in Fig. £erved that the localization factors are minimum inxhgirection
for px= miy=1, Sx= Sky=0.1. Sinceuyx= uxy, andS=3, there (=90 deg) and maximum in the diagonal direction® (
are three frequency passhands as discussed in Section 2. Becaué® deg and 135 deg
the statistical properties of the cantilever-mesh-spring array in theWhen =1, uy,=7.84, 5= &=0.1, there are five fre-
x-direction are the same as those in thdirection, the vibration quency passbands, in which the third passband corresponding to
propagation localization behavior in thedirection (=90 deg) vibration dominant in thex-direction overlaps with the second
is the same as that in thedirection (=0 deg). Furthermore, passband corresponding to vibration dominant inytkgirection.
because of the symmetry of the two-dimensional cantilevelumerical results of the localization factors are shown in Fig. 7.
spring-mesh array in the statistical sense, the localization factdise interesting shape of the localization factor plot in the fourth
are symmetric about the horizontal ax&<90 deg), vertical axis frequency passband around=3806 where the overlap of the
(6=0 deg, 180 deg and the diagonal lines¥&45 deg, 135 deg passbands occurs is noteworthy. In this passband, vibration is
passing through the cantilever that is directly forced. It is seen thddminant in both thet andy directions, and the localization factor

the localization factors are minimum in the and y-directions

in the x-direction (#=90 deg) is the same as that in the

(#=0deg, 90 deg, and 180 deand are maximum in the diago- y-direction (=0 deg). In other frequency passbands, properties

nal directions §=45 deg and 135 deg

of the localization factors observed for the cagg=1, uy,=5

When ui=1, i, =5, k= dky=0.1, the localization factors can also be observed here.

are shown in Fig. 6. In this case, there are six frequency passWhen the stiffnesses of the springs and meshes in the diagonal
bands, three of which correspond to vibration dominant in thdirections are reduced, the coupling of the cantilevers in the diag-
x-direction and three of which correspond to vibration dominamnal directions becomes weak, resulting in larger values of the
in they-direction. Sinceu,<uyy, the coupling in thex-direction  localization factors. Because of the limit in the length of the paper,
is relatively stronger than that in thedirection. Hence the local- numerical results are not presented here.

ization factor in thex-direction (=90 deg) is smaller than thatin  To study the effect of the degree of disorder on the localization
they-direction (=0 deg). The localization factors are symmetridoehavior of the system, the case&f= d,,=0.01 is considered.
about the horizontal axis 6=90 deg) and vertical axis & The localization factors are shown in Fig. 8 faf,=1 andu,,

=0 deg, 180 degbut not the diagonal line(=45 deg, 135deg =7.84. It is seen that for smaller values of disorder, the localiza-
passing through the cantilever that is directly forced. It is oliion factors are small, implying a smaller degree of localization.
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This result is expected; as an extreme case When §,,=0,i.e., 4 Conclusions
for the perfect periodic system, the localization factor is zero in

the passband and there is no localization. In this paper, the localization of forced vibration propagation in

two-dimensional cantilever-mesh-spring arrays with multiple sub-

The case 0fg,=0.1 andéi,=0.01, i.e., the disorder in the structural modes is studied. A method of regular perturbation for a
x-direction is different from that in thg-direction, is considered linear algebraic system in the block form is applied to obtain

n th_e foIIowmg._The localization factors are shown in Fig. 9 fOI|fteratively the amplitudes of vibration of the cantilevers on the
Mrx— 1 and/ka—7.84.

Mth layer in theMth-order perturbation in terms of the ampli-
To_furt_her compare the ef'fect_ of Fhe valuesif and 5ky.0n the tudes of vibration of the cantilevers on thil - 1)th layer in the
localization behavior, the localization factors for the diagonal d

. . . . M — 1)th-order perturbation. The amplitudes of vibration of the
rection #=45 deg, which are obtained usin 5 and the t . - :
method of transfgr matrig 9]), are shown in Fiqg EJ(.% 20r the Case;:antllevers on lth(Méh Iayebr n thel}{l th-orger perturbatlor} fOMf h
_ _ e : arge are employed to obtain a first-order approximation of the
%f\;tvf«eklxl k% oevnnd/;cl)(? thzlitrfiré? S\;agt'g#fv:l/%(uis 5@X—%n?h5é(ylc'>gsl localization factors of the two-dimensional system. The localiza-
) x— Yky— Y -

ization factors are zero in the passband and there is not Iocali%%—n factors are defined in terms of the angles of orientation and

N o : aracterize the exponential rate of growth or decay of the ampli-
tion. Th(_e localization factors increase when the valuegigfand tudes of vibration in the given directions. For a given direction of
Sxy are increased.

. orientation, the localization behavior is similar to that of one-
Consider the caseui=1, uiy,=7.84, 5,=0.1, and g, . L ; S
~0.01 as an example Ol 1y . In the first and the third dimensional systems. In the diagonal directions, changes of the

frequency passhands around 12.36 andy=485.52, vibration is amplitudes of vibration of cantilevers can be expressed in terms of

. . i o ; a product of random transfer matrices and the localization factors
dominant in thex-direction. The statistical properties of the s3./Smay be determined using the method of transfer matrix. The effect
tem in they-direction have little effect on the dynamical behavior

o .of the stiffnesses and the disorder in the stiffnesses of the cantile-
of the system. Hence, the localization factors of a system WI{H o . - .
8=0.1 and 5,=0.01 are the same as those With,— y, vers on the localization behavior of the system is investigated. The

—0.1 near the fifst and the third frequency passbands. This can eneral vibration propagation localization behavior observed in

observed in Fig. 10, as the localization factors for both cas%s simplified two-d_imensional cantile\_/e_r-mesh-_spring_ arrays i?
concur around the fir’st and the third frequency passbands. Xpected to be applicable to more realistic two-dimensional engi-

On the other hand, in the second frequency passband arolif§""9 disordered periodic structures.

v=96.92, vibration is dominant in thg-direction. The statistical
properties of the system in thedirection have little effect on the
dynamical behavior of the system. Therefore, the localization fafcknowledgment
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Feedback Stahilization of
Quasi-Integrable Hamiltonian
W. Q. Zhu Systems

Professor
Z.L. Huang A procedure for designing a feedback control to asymptotically stabilize with probability
Associate Professor one quasi-integrable Hamiltonian system is proposed. First, a set of averagsibtioas-
tic differential equations for controlled first integrals is derived from given equations of
Department of Mechanics, motion of the system by using the stochastic averaging method for quasi-integrable
Zhejiang University, Hamiltonian systems. Second, a dynamical programming equation for infinite horizon
Hangzhou 310027, P. R. China performance index with unknown cost function is established based on the stochastic
dynamical programming principle. Third, the asymptotic stability with probability one of
the optimally controlled system is analyzed by evaluating the largest Lyapunov exponent
of the fully averaged fteequations for the first integrals. Finally, the cost function and
feedback control law are determined by the requirement of stabilization of the system. An
example is worked out in detail to illustrate the application of the proposed procedure and
the effect of optimal control on the stability of the systef@OI: 10.1115/1.1483833
Introduction and the Khasminskii's procedure is a powerful approach to evalu-

A . . . ating the largest Lyapunov exponent of higher-dimensional sto-
The feedback stabilization of stochastic systems is an import g : s
problem in control theory. Although the basic formulation an%has‘tIC system12,13). Especially, the combination of the sto-

fundamental equations of stochastic stabilization have be Iﬂastlc ei\ieraglggh rr|1<ehthod_ fokr._’ qua5|-|3tegrable bHamlllyoglan
known since the 196041]), the only results of any significance ystems(_[ ) and the Khasminskir's procedure may be applied to
for a long period were th(;se pertaining to linear stochastic Syrél_gher-dlmensmnal nonlinear stochastic syst¢[ds, 15).

tems and employing quadratic control critefi]). For nonlinear At the same time, a nonlinear stochastic optimal control strat-

stochastic systems, the progress on stochastic stabilization ﬁgg for quasi-Hamiltonian systems was proposed recently by the

. ; esent first author and his co-workgf46—18) based on the
been plagued by a fundamental technical obstacle in the Lyapu gcfgchastic averaging method for c?tfasi-ng)niltionian systems

analysis. In recent years, the stabilization of nonlinear stochas 4,19) and the stochastic dynamical programming principle. It

systems has received much attention and several interesting )
sults have been obtained. Particularly, the concept of stocha§ ?];iig:g?\vé’r}Stk\]/agr;hsrigl?;?ngg has several advantages over ex

control Lyapunov function has been introduced and the sufficien In the present paper, a procedure for designing a feedback con-

conditions for feedback stabilization have been derived by Floch- X i . o o
inger [3,4]. The stochastic stabilization problem for strict-Prm law to asymptotically stabilize with probability one quasi in-

- .~ tegrabe Hmiltonian systems is proposed. The procedure is a non-
feedback systems was solved and a systematic backstepplngtﬁ\%i-al combination of the nonlinear stochastic optimal control

sign scheme was developed by Pan and BfShrThe inverse ; Y -
optimal stabilization of strict-feedback systems was designed aﬁ ?rtﬁl?g n?;r? ;hgt:&psm:ﬁhe;%ﬁglcg %Sf/lvco?liaez”gﬁtoifnq; ;Sa'"'?ée”%as?le
extended to output-feedback systems by Deng and Ki6ti@]. trate the pro zsed r-ocedure
Notable advances on input-to-state stabilization were also mae prop P )
by Tsinias[9].

A recent trend in the study of stochastic stability is to employ
Lyapunov exponent rather than Lyapunov function. According t8tochastic Averaging
multiplicative ergodic theorem due to Oseledd€)], the neces-
sary and sufficient condition for the asymptotic stability witl
probability one of a linear stochastic system is that its large

h Consider am-degree-of-freedom controlled quasi-Hamiltonian
System governed by the followingpairs of equations of motion:

Lyapunov exponent is negative. A procedure for evaluating the OH!

largest Lyapunov exponent of linear system of stochastic dif- Qi=—

ferential equations was proposed by Khasminkii] and the IPi

procedure has been successfully applied to certain two- _ aH' GH’

dimensional linear stochastic systems. The direct use of Khasmin- Pi=— —=—¢{—5 T Ui+ i Wi(t)

skii's procedure to the system of dimension higher than two has Qi P,

not met with much success principally due to the difficulty of ij=12:,n k=1,2;--,m @

discussing diffusion process occurring on surface of unit hyper-
sphere in higher dimensional space. However, the stochastic ahere Q; and P; are generalized displacements and momenta,
eraging method may be used to reduce the dimension of stochagsispectively;H’=H’(Q,P) is twice differentiable Hamiltonian;
systems. Thus, a combination of the stochastic averaging metm?j@- Ci’j(Q,P)i U=u(Q.P); fi=Fy(QP); W(t) are Gaussian
- white noises in the sense of Stratonovich with correlation func-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF i _ .l _ .
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- tions E[W()W(t+7)]=2Dyd(7); Cjj, ui, .and fikfj Dy are
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 12,assumed to be of the same OrderSQWheree Is a Sma_-” param-
2000; final revision, January 15, 2002. Associate Editor: A. A. Ferri. Discussion @ter. The system governed by H@) is generally nonlinear. The
the paper should be addressed to the Editor, Professor Robert M. McMeeking, Bigst summation terms on the right-hand side of EL).represent
partment of Mechanical and Environmental Engineering University of Californiar;a; : f : C L ;
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until f(qllrss.lpatlon while the. Secon.d Summatlon terms the mU|tlpllcatlve
months after final publication of the paper itself in the ASMBURNAL OF APPLIED excitations of Gaussian white noiseg.are the feedback control
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Equation(1) is equivalent to the following set of ltequations: aH,
dH,=|F,(H)+{ uj—=) |dt+ G, (H)dB(t)
d i dt "
Q'_aPi ri=1,2;--,n; k=12;--,m (8)
ap= | M Tt o nnere
=150 Cij&_Pj ahigp, T o dBy(1) H=[Hy Hy, - H T,
(2) 2
e e &HﬂHrJrl *H,
ihj=1,2;--,n; kl=1,2;--,m (H)= C”ﬂPj oP, 2 TGP P,
where B,(t) are unit-independent Wiener processes anal’ AH, dH,
=2fDf". The double summation terms on the right-hand side of brs(H)=Grk(H)Gsk(H):<Uikﬂjkﬁ ﬁ> 9)
! J

Eq. (2) are known as the Wong-Zakai correction ter(h20]).
These terms usually can be split into a conservative part anduad
dissipative part. The conservative part can be combined with 1 [to+T
—dH'/9Q; to form overall effective conservative terms (- D= “m_f [-]dt (10)
—dH/9Q; with a modified Hamiltonian H=H(Q,P) and T T 0

m._'(]ap‘:,&H /,‘/wi' The dlsglpatlveﬁ pa'rt cg_n _be .Combmeddenoting a time-averaging operation. The time-averaging in Eq.
with —c;;0H"/P; to constitute effective dissipative termsg) anq(g) may be replaced by space-averaging using the ergodic
—CijoH/9P; with ¢;;=¢;;(Q,P). With these accomplished, EQ. property of the associated integrable and nonresonant Hamiltonian

(2) can be rewritten as system onn-dimensional torus((14]). The averaging of term
9H u;oH, /9P; will be completed later since; are unknown so far.
in:a_Pidt Dynamical Programming Equation
IH Consider then-dimensional controlled diffusion procesf(t)
dpP,=— (_ +Cjjm— U; | dt+ o dBy (1) (3) governed by Eq(8) on an infinite time intervall0,»2). Assume that
3Q; aP; the stationary solution exists in the system. Then we may formu-
_— ] _ late an ergodic control problem: finding Markov feedback control
Lj=12;--,n0 k=12;--,m. law u;=u;(Q,P) to minimize the expected average cost function
The Hamiltonian system with modified Hamiltonidh gov- 1 T
erned by Eq(3) with ¢;j=u;= =0 is assumed to be integrable. J=Ilim T E[ f (f(H)+(u"Ru))dt (11)
That is, there exin-independent first integral$d,,H,, - ,H,, T 0

which are in involution. This last term means that any two of the

. i o= T
commute each other, i.e., Where E[ -] denotes expectation operatioms=[u;,Us," " ,U,]

and R is a positive definite matrix; or, simply to minimize the

[H,H;1=0, i,j=1,2;--,n (4) average cost function
1 T
where J= Iim?f (f(H)+(u"Ru))dt (12)
gH; H;  dH; oH, Toe IO
[Hi Hj]= N A 1,2;-+,n (5)  whenH(t) is ergodic. The dynamical programming equation for

this ergodic control problem can be established based on the dy-

is the Poisson bracket ¢1; andH; . The Hamiltonian system is namical programming principle as followg22]):

assumed to be nonresonant. So, the motion of the system is almost

periodic and the orbits of the system are uniformly distributed on min[ f(H)+(uTRu) + ﬁ = (H)+<u_a_Hf>}

n-dimensioned torus. " oH | " "oP;
Introduce transformations

1IO 2V B
H,=H,(Q,P), r=1,2;--,n. (6) t3 rs(H)m =y (13)

The Ito equations foH, are obtained from Eq(3) by using Ifo \yhere
differential rule as follows:

1T
oH oH, 1 9°H, oM, y= “mTf [f(H)+(u* TRu*)]dt (14)
T—oo 0

R ={ ~Cugp, 5p, * 2 TkIiGp ap, TR, | Ut
is the optimal average cost function autl is the optimal control.
I ﬂov dB(t) The necessary conditions for minimizing the left-hand side of
ap; KTk Eq. (13) are
i,j,r=1,2;--,n; k=1,2;--,m. 7) I yruan Y M
gu; | W RUTUSE o8

Take Q1,Q5,**,Q, andH{,H,,--- ,H, as the new state vari-
ables of the system. Then the system is governed by(Baend i,r=212;--,n. (15)
then equations foQ; in Eq. (3) with P; replaced byH, andQ; in

all these equations according to the transformati@nslt is seen The optimal feedback control law is thus obtained from &)

that Q; are rapidly varying processes whité, slowly varying as follows:

processes. According to the Khasminskii's theor¢?i)), theH, 1 dH, oV

converge weakly to an-dimensional diffusion process as-0 in uf=-— E(Ril)ijﬁ IH.

a time interval Gst<T, whereT~o(e ). The Ifoequations for P

averagedH, are of the form i,j,r=12;--,n (16)
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where R’l)ij is thei, j element olR L. If R is a diagonal matrix sumptions permit us to derive an expression for the largest Lyapu-

with elementsR;, then Eq.(16) is reduced to
. 1 oH, oV
u. = — — ——
i 2R 9P; oH,

i,r=1,2;--,n. 17)

mov exponent of Eq(19) using a procedure similar to that due to
Khasminskii[11].
To this end, introduce the following new variables:

1
p==InH

5 (24)

Substituting Eq.(16) or (17) into Eq. (13) and averaging the
. ) " . . .~ and
terms involving u;” lead to the final dynamical programming

equation. For example, in the case of diagoRathe dynamical

programming equation is of the form

N 1 [[oH\2\ [ aV\?
MR 5 2R\ 9P, (m

+1b H il
7 Drs( )m-)’
rs=1,2;-,n. (18)

a;=H,/H, r=12;-n. (25)

The ltoequations fop and«, are obtained from Eq19) by using
Ito differential rule as follows:

dp=Q(a@)dt+3,(a)dB(t) (26)
da,=m,(a@)dt+ o, (@)dB(t)
r=1,2;--,n; k=1,2;--,m (27)

For givenf(H) andR, the optimal control law is obtained from \yherea=[ay, ey, -, a,]",

solving Eq.(18) and then substituting the resultimy/JH, into

Eg. (17). Note thatu} are generally nonlinear i®; andP; . For
the problem of feedback stabilizatiof(H) andR will be deter-
mined by the requirement of stochastic stabilization as shown in

the following section.

Stochastic Stabilization

The asymptotic stability with probability one of quasi- -
integrable Hamiltonian systems without control has been studied
by evaluating the largest Lyapunov exponent of the averaged Ito
equations for first integral§13,15]). Here we extend the result to

controlled quasi-integrable Hamiltonian systems.
Substitutingu* obtained from Eq(17) and(18) into Eq.(8) to

o 1 n m
Fia-7 2 X Gu(@Goi(a)

ss/ =1 k=1

b=

1
Q(a)=§

S

m

Fua) +F(at a, 2

s,s'=1 k=

m(@)=—a 1 G @)Ggri(@)

N| =
L
M s

Grk(@)Gs @)

s=1 k=1

ork<a>:erk<a)—argl Gl @). (28)

replaceu; and averagingi* 9H, /aP; lead to the following aver- Note thatx?_,a,=1. So, onlyn—1 equations fory, in Eq. (27)

aged lfoequations for controlled first integrals:

dH,=F,(H)dt+ G, (H)dB(t)

r=12;--,n; k=12;--,m (29)
where
E<H>=Fr(H>—i<(ﬂ)2> ﬁ). (20)
2Rg \ | 9Py dH,
Let H be sum ofn independent first integrals, i.e.,
n
ﬁzrzl H,(Q,P). (21)

are independent. In the following th@—1 equations for
ai,a,,,a,_, are taken as independent ones. Leat
=[a,a5, " ,a,_1]" anda, be replaced by + 3" ]« .

Define the Lyapunov exponent of averaged systdr®) as
the asymptotic rate of the exponential growth of the square root of

H, i.e.,

— 1 _
A=Ilm — InH.

2T (29)

T

This definition is essentially the same as the Lyapunov exponent
usually defined in terms of Euclidean norm when the associated
Hamiltonian systems is linear but different when it is nonlinear.
However, it is physically meaningful and it simplifies the evalua-

For example, for mechanical systems the total energy of thien of the largest Lyapunov exponent. _
system is a sum oh component energies. Since the stochastic Following a derivation similar to that ifL3] yields the follow-
excitations in Eq(1) are pure parametriémultiplicative), there ing expression for the largest Lyapunov exponent of controlled
will be system(19):
F.(0)=0, G,(0)=0. 22a) — — _
o A0 Culd 22 xmaxzf Q(a')p(a)da’
That is, 0 is the trivial solution of the uncontrolled system. Let

((9H, 19Pg))(9V/3H,)|y=o=0. Furthermore, assume that theyhereQ(a’) is obtained fromQ(a) in Eq. (28) with «, replaced
drift and diffusion coefficients of fully averaged ItBgs. (19) by 1-3""1a, andp(«’) is the stationary probability density of

satisfy the following conditions: «' obtained from solving the reduced Fokker-Planck equation as-

(30)

kEr(H)=E,(kH), KG(H) =G (kH) (22b)  sociated with [toEq. (27) with «,, replaced by }Ep;llar . Inthe
T _ o 12 derivation of Eq.(30), it is assumed that’ is ergodic on the
(G(H)G'(H)a,a)=c|H|"d (23)  entire intervals & a,<1,r=1,2;--,n. In the casex’ is not er-

where a is an arbitrary vector and>0 is a scalar. Equations godic on the entire intervals, special investigation is necessary
(22a,b) and(23) imply that the drift and diffusion coefficients are(see, for example[12]). The necessary and sufficient condition
homogeneous ik, of degree one and the diffusion procés&) for asymptotic stability with probability one of the trivial solution
is nonsingular, respectively. In the case where @§) does not of Eq. (19) is A ;,,,<0. This is also the approximate condition for
satisfy conditions(22b), we may linearize Eq(19). These as- asymptotic stability with probability one of the trivial solution
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of original system(1). The boundary between stability and insta- Following the derivation from Eq(7) to Eqg. (8), the following
bility regions of original systen(l) is determined approximately averaged [teequations foH, andH, can be obtained:
by N max=0.

The differences between uncontrolled and controlled averaged ~ dH1=(F1(H)+(u;P1))dt+Gy;dB(t) + GidBy(t)

systems are in drift coefficients
Y dH, = (Fo(H) + (U P2))dt+ GoydBy(t) + Gl By(t)  (37)

— 1 oH, Y
Fr(H)_Fr(H):_Z_Ri A NAYTS whereH=[H,,H,]",
ri=12:--,n. (31) Fi{(H)=F{H;+FHs

These differences will stabilize the system studied and they are Fo(H)=F,H,+FH,
determined by dynamical programming E@8) for given f(H)
andR subject to the restrictions in E22a,b). In the designing biy(H)=(GG") 1, =b{H+b{TH,H,
feedback stabilizatiorf,(H) andR are so selected that,,,<0. In
the following an example is given to illustrate in detail the design- boy(H)=(GGT) = b(l)H H,+ b<2)

ing procedure.
bis(H)=byy(H)=0 38
Example 12(H)=Dbay(H) (38)

Consider the feedback stabilization of a linear oscillatdi"d
coupled with a nonlinear oscillator by dampings and stochastically
parametric excitations. The equations of motion of the system are
of the form

F11=2C%D;—B11, F1o=2CL,D,(8+1)/(5+3)

) _ _ _ ) Fu=C3D1, Fpu=2(2C5,D5— Bp)(5+1)/(5+3)
Xy 4 B1aXq+ B1oXa+ 03Xy = CaXg Wi () + CooXoWo(t) + Uy

. . . biY=3C}D;, bF=4CEDy(5+1)/(5+3)
Xa+ BarXq+ BaoXa+ ¥]X,| ’SignX, = C Xy Wi (1)
_ by =4C2.D(5+1)/(5+3),
b$2) = 24C3,D,( 5+ 1)/[(6+3)(35+5)]. (39)

where X; are generalized coordinateg;; are damping coeffi-

cients;C;; are constantsp, is the natural frequency of the linear g ncontrolied systemy;=0. Equation(34) is a special case
oscillator; y, >0 are constantd)V,(t) are independent Gaussian Eq. (21), andF; and G, in Eq. (38) satisfy the conditions in

white noises in the senses of Stratonovich with intensitiBg .2 E ; : ;
g. (22a,b) and (23). Introducing the transformations in E®4)
Assume thap;; , CixDy, andu; are of the same order et and (25), we obtain the following equations ferand a; :

LetX;=Q;, X;=P;, i=1, 2. Equation(32) can be rewritten as
the following Ito equations: dp=Q(a,)dt+3(a;)dB(t) (40)
dQ,=P,dt
dP;=[— U’%Ql_ (Bu— CilDl)Pl_ (B12— C1C 2D ) Po+uy ]dt
+C11V2D 1 P1dB(t) + C12y2D,P,dBy(t)
dQ,=P,dt
dP,=[—|Qx|’signQ,— (B2~ C2:C11D 1) P1— (B2
—C3,D;)Po+ Upldt+Cyr /2D, P1dBy (1)
+022\/2_|32P2d82(t). (33) 0'2(“1):&1(1_011)90(011) (42)

The Wong-Zakai correction terms contain no conservative pafnd
The Hamiltonian associated with E@3) is

da;=m(a;)dt+ o(a;)dB(t) (41)
where
Q(ay)=Njas+Ny(1—ay)+ 3 ¢(ag) + by as(1- 8)/8(1+ )

M(aq) =2(Ny—Np)ay(1— a1)+ (1-2ay)e(ay)
—bSY a?(1— 8)I4(1+ 6)

N=F2—bP/4, N,=F,/2—b2/4

where ¢(ay)=aai+bas+c
H,=(P%+ w3Q3)/2 a=bd+b%y— by —b2
H=P3/2+ y|Q,| " H/(5+1). (35) b=b{l) + b2~ 2b
The Ito equations forH; andH, are obtained from Eq33) by 2)
using ltodifferential rule as follows: C=b(11
dH; =]~ (81~ CiiD1)Pi—(B1o~ C1,CoD2) P1P,+us Py A=b%-4ac=(b}+b3)2—4b?blY . (43)
2 2 2 2 2 2
+C1D1P1+ CD,Pa|dt+ C1;y2D, P1dBy (1) Sinceo?(a;)=0 at two boundaries;; =0, 1, a; is singular at
T these two boundaries. It can be further identified by evaluating
*+C12V2D2P1P20B,(1) diffusion exponent and character value and by using Table 4.5.2 in
dH,=[— (B~ C1:C1D1)P1P,— (Bor— C§2D2)P§+ u,P, ([23)) that «;=0 is an entrance andl_z lisan entrance \_Nhen
6<1 and regular whe@>1. a4 is nonsingular and ergodic in the
+C3,D,P2+C2,D,P3]dt+Cyy2D,P1P,dB (1) interval 0< ;< 1. The stationary probability densip(«;) exists
) and it is obtained from solving the reduced Fokker-Planck equa-
+C2y2D,P5dBy(1). (36) tion associated with Ttd&q. (41) as follows:

132 / Vol. 70, JANUARY 2003 Transactions of the ASME



/’{,max S Zmax

_0.25'rw<wi:.l.ir»v‘i.\w\i,‘.-i..‘\1\.\\i..‘.i”,,
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D

Fig. 1 The largest Lyapunov exponents N and A, Of uncontrolled and
optimally controlled system  (32) versus intensity D,=D,=D of stochastic ex-
citations. w=1.0, y=1.0, 6=3, B1,=8,,=0.01, B,,=B,,=0.0, ¢;1;=C»=1.0, Cy,
=c,=2.0, f;=f,=0.0005, R,=R,=1.0.

C(1- al)(l—ﬁ)/zum) c(1- al)(l—a)/Z(Hﬁ)
pla)= T+(1-8)/A1+0) plai)= 1+ (1-8)/A1+0)
(¢(aq)) (¢(ayq))
ANy = o)+ (b1 +b5) (1 - 8)/4(1+ 6) F{B(Mhz)ﬂbﬁ)m%’)(l5)/2(1+5)
X exX| X ex —
VA V=A
2aa1+b—\/K _,2aa;+b
n——————|| for A>0 (44) Xtg ———| for A<O (45)
2aa,+b+ A NN
0.02 :
o N
% i : ﬂ.max
I‘g 0.0 _ S S e S e
é s -
~ i
-0.03 |-
0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 2 The largest Lyapunov exponents  Apay and Ama of uncontrolled and
optimally controlled system  (32) versus intensity & of nonlinearity. w=1.0,
v=1.0, B11=PB»=001, B,=,,=0.0, €1;=C,=1.0, C¢1,=¢,=2.0, f;=f,
=0.0005, R,=R,=1.0, D;=D,=0.01.
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Fig. 3 The largest Lyapunov exponent N, Of optimally controlled system
(32) versus f;=f,=f. =10, y=1.0, 6=3, B1,=P,,=0.01, B,=P,,=0.0, c;
=C5,=1.0, c;,=C,,=2.0, R,=R,=1.0, D;,=D,=0.01.

C(1—ay) 1 R1+9) IH4 I,
play)= (@(ay) T - IAITS) ap, v szzpz- (48)
8(N1—N\p)+(b{Y+b2)(1—8)/2(1+ 6) It is seen from Eq(20) that in order to satisfy the conditions in
xXexpg — 2aa.+b Eq. (22a,b), dV/dH, should be constant. That i¥, should be
1

linear function ofH; andH,. Then, it is seen from dynamical
for A=0 (46) programming Eq(18) that f(H) — y should also be linear func-

. N tion of H; andH,. Let
whereC is a normalization constant. The largest Lyapunov expo-

nent of uncontrolled systert82) is then f(H)—y=fH+1f,H,
1
N max= J Q(ay)p(ay)da. 47) V(H)=kiH1tkeH,. (49)
0 Substituting Eq.(49) into Eq. (18) leads to the following
Now consider the controlled systef82). From Eq.(35), equations:

/Tmax

HERET R RET R il Lo bl Ll [ SRRET

-0.6 —— .
0.0001 0.001 0.01 0.1 1 10 100 1,000

R

Fig. 4 The largest Lyapunov exponent N, Of optimally controlled system
(32) versus R;=R,=R. w=1.0, y=1.0, 6=3, B1,=B2,=0.01, B1,=0,,=0.0, cy;
=c,,=1.0, ¢1,=c,,=2.0, f;=f,=0.0005, D,=D,=0.01.
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1 1 and 2, where the largest Lyapunov expongp, of uncon-
f1+Fpky+Foko— ﬁk§=0 trolled system(32) is positive while the largest Lyapunov expo-
1 nent \ ,ax Of optimally controlled systen32) is negative. It is
5+1 noted that the absolute value of negative largest Lyapunov expo-
fo+Fiky+Fok— mkgza (50) nent can be taken as a measure of stability margin. Figure 1—4

show that feedback stabilization is more effective for stronger
k, andk, can be solved from Eq50) for given f; andR; (i  nonlinearity and stochastic excitations and with larderor
=1,2). The optimal contrali¥ are then obtained from E¢17) as smallerR;.
follows:
Conclusions
k; ki .

U =— ﬁpi: - ﬁQi . 1=12. (51) In the present paper a procedure for designing feedback con-
i i trol to asymptotically stabilize with probability one quasi inte-

Substitutingu* into Eq. (37) and then averaging* P; yield the grable Hamiltonian systems has been proposed. The procedure

consists of deriving the averaged equations for first integrals, es-

following averaged drift coefficients for controlled first integrals;*' > X 1 . ;
tablishing the dynamical programming equation for an ergodic

_ Ky control problem, and determining the stability by evaluating the
Fa(H)=| Fu= 5p-]H1+FaHy largest Lyapunov exponent of the averaged system. One example
! has been worked out in detail to illustrate the procedure. It has
_ (6+1)k, been shown that the procedure is relatively simple. It has also
Fo(H)=FxHy+| Faor m) 2 (52) Dbeen shown that a quasi-integrable Hamiltonian system can al-
2 ways be stabilized by the control via proper choice of the cost
Let function.
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Squeeze Film Force Using an E||iptica| cally the squeeze film performance. These methods require a
k

. . nowledge of the velocity profile in the squeeze film. Usually, a
Ve|OCIty Profile parabolic velocity profile is assumed and the expression for the
squeeze film force is obtained.

However, the parabolic velocity profile assumption in the

R. Usha squeeze film is derived by neglecting the inertial effects and hence

e-mail: ushar@iitm.ac.in the resulting solution obtained for the squeeze film force is not
valid for large amplitude motion of the squeeze film. Further, the

P. Vimala experimental results on the squeeze film force in heat exchangers

between a tube and its cylindrical supp@rti and Rogerg1,2])

. . . and the experimental and the simulated results on the squeeze film

Department of Mathematics, I_ndlan Instltut(_a of force components in a circular geometgsmonde et al.3] and

Technology, Madras, Channei 600 036, India Esmondd4]) show that the temporal inertia force dominates the
convective inertia and the viscous forces for large-amplitude mo-
tion and hence again the parabolic velocity profile assumption is

The squeeze film force in a circular Newtonian squeeze film HEg§dequate. ) _

been theoretically predicted by using the elliptical velocity profile Therefore, in order to accurately predict the squeeze film force
assumption in the squeeze film by three different approximatié large-amplitude motion, it is necessary to assume the shape of
methods. As examples, the numerical results for the sinusoidayelocity profile that takes into account the inertial effects. Gross
squeeze motion, constant velocity squeezing state, and cons@rl- [5] have suggested the use of elliptical velocity profile as-
force squeezing state have been obtained and the results hgyg'ption in such cases where the inertia cannot be neglected.
been found to be in good agreement with those obtained using” View of this, the axisymmetric problem of squeeze film in a
experimental test coefficients predicted by the spectral analy§fEcular geometry is analyzed by the approximation methods using
techniques for Newtonian circular squeeze film geometry. The A eIInpchI velocity _proflle assumption and_ the squeeze film forc_e
lidity of applying the energy integral method (EIM) or the succed$ theoretlc.ally predmted. The resglts obt.alned are cpmpared wlth
sive approximation method (SAM) has been justified and the those predicted using other velocity profile assumptions for sinu-
fectiveness of EIM or SAM in predicting squeeze film force usi idal squeeze motion, constant velocity squeezing state, and con-

the elliptical velocity profile assumption in the squeeze film f&tant force squeezing state for large-amplitude motion. The effec-
large-amplitude motion has been demonstrated. tiveness of SAM or EIM in predicting the squeeze film force

[DOI: 10.1115/1.1526124 using the elliptical velocity profile assumption is demonstrated by
comparing the present results with those obtained using the
experimental test coefficients predicted by spectral analysis tech-
nigues by Esmonde et 4B] for Newtonian circular squeeze film

1 Introduction geometry andii) the exact similarity solution due to Waii§].

The study of the dynamics of liquid squeeze films is important
in many practical engineering applications. The squeeze film forge  Mathematical Analysis

that arises due to the motion of two surfaces separated by a vis:l.he equation of continuity and the Navier-Stokes equations in
cous fluid is highly nonlinear in nature and hence it is difficult tg q y q

obtain exact closed form solutions including the effects of ﬂui§yIindricaI p_ola_r coordinate_s, simplified l.JSing the_order of magni-
inertia. The studies based on Reynolds equation neglect the ine ng analysigTichy and Winer{7]) for axisymmetric flow, are

effects completely, in predicting the squeeze film force. But, the Ju U Iw
approximation methods like the successive approximation method ar + T + 9z 0 (1)
(SAM), momentum integral metho@MIM ), and energy integral
method (EIM) include the inertial effects in predicting theoreti- ap Jau au au J2u
—=—p—0plU—+W—|+u— 2
_ _ o o Par P\Por TV oz TR g2 )
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- ap
CHANICS. Manuscript received by the ASME Applied Mechanics Division June 2, —=0 (3)
2000, final revision, August 26, 2002. Associate Editor: K. T. Ramesh. 4
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Fig. 1 Geometry of the parallel circular squeeze film and ellip- 02
tical velocity profile
0 1 1 1
(o 02 04 06 08 1
whereu andw are the components of velocity in the radial and Z

axial directions. Figure 1 shows the squeeze film configuration
the axisymmetric flow between two parallel circular disks of r.
diusr, located az=0 andz=h(t). The disk az=0 is fixed and
the other az=h(t) has motion only in the axial direction.

An elliptical velocity profile in the squeeze film with semi-
major axis “a” and semi-minor axis b” is assumed in the form

?ifg. 2 Elliptical velocity profiles at a radial location for differ-
%nt values of A

2z—h 1
) I
u?(r,z,t)+B(r,t) 2+ C(r,t)u(r,z,t)+ D(r,t)z+E(r,t)=0 A2h [sm ( Ah )+S'n (K)]
) " I
. . ) . A?sin i —| —JAZ—1
whereB, C, D, andE are determined using the no-slip conditions A
u=0 on z=0; u=0 on z=h(t) (5) _h (4z—h)JAZ-1
2h R
w=0 on z=0; w=h on z=h(t) (6) A?sin 1(K)_VA2_4
and (-) refers to derivative with respect t The condition(5) i (22— h)J(Ah)Z=(2z—h)?

gives the equation of the elliptical velocity profile as

+ 502 : (12)

1
2ain—1l | _ [pZ2_
c\2 h\2 A“sin (A) VA 1}
Utz 273
(02+Bh2)+1 L
272 Bla T4

=1 ) The elliptical velocity profile thus obtained is used in the different

approximation methodé§SAM, MIM, and EIM) to get the average
radial pressure gradient, and the squeeze film force is then ob-

Equating the semi-major axis and the semi-minor axia emdb, ~fained from
respectively, wherd=Ah/2, (A=1), A is a constant parameter

introduced to specify that part of the ellipse which is used to fa
describe the velocity profile, an@ andB are obtained as F:f (P—Pa)lz=nyr dr (13)
0
C—a\/4bz h? B—az 8
b ' " b? (®) where r, is the radius of the disk ang, is the pressure at
r=r,.
so that the elliptical velocity profile in the squeeze film is given by :

(Fig. 2

3 Approximation Methods

There are three basic approaches to the integration of the
Navier-Stokes equations to determine the average radial pressure
The equation of continuityl) and the conditior{6) then yield the gradient. In the MIM, the average radial pressure gradient is ob-
semi-major axis and the radial and axial components of velocityined by integrating the expression for the local pressure gradient

U= - [NANP= (22 P~ A= (7). (9)

as across the squeeze film, so that
Ah r h h 452
a=- - (10) S V)
h Azsin’l(%)— o= o n ), \ tu—two dz+ h ), 37 dz. (14)
hr [V(Ah)2=(2z—h)2—hA2—1] In the EIM, the Navier-Stokes equation is first multiplied by the
U=-1z I (11) radial velocity u and then the resulting equation is integrated
2ain-1 T _ a2 7 across the squeeze film to obtain the average radial pressure gra-
A”sin (A) A 1} dient. This gives
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* Elkouh [8]; ¢ Kuzma [9]; Tichy and Winer

[7] (perturbation solution up to first order )

ap p h( du ) au au Tgble 1 Force coefficients for different velocity profiles using
—_—=— dz different methods

h (92
f 2 dz. (15)
f udz

The expressions for the assumed velocity profile in the squeeze
film are substituted fou andw that appear on the right-hand side
of (14) and(15) and the resulting average radial pressure gradient
is then integrated to give the pressure in the squeeze film.

In the SAM, the Navier-Stokes equation is rewritten as

#u 1ap p(&u au au)
)

7 aar " E3 (16)

—+u—+w
ot Yo "Wz

Method Profile a B y
A=1.0 1.0000 1.6211 -
MIM Elliptical A=1.1 1.0000 1.7200 18.9247
A=1.2 1.0000 1.7430 15.9691
A=1.0 1.0808 1.7564 -
EIM Elliptical A=1.1 1.1468 1.9627 12.6821
A=12 11620 2.0133 12.3072
A=10 1.1250 1.8308 12
SAM Elliptical A=1.1 1.1704 2.0016 12
A=12 11796 2.0421 12
* MIM 1.0 1.8 12
* EIM Parabolic 1.2 2.1429 12
> SAM 12 2.1429 12
MIM 1.0 1.5 0
EIM Uniform 1.0 1.5 0
SAM 1.0 1.5 0
Esmonde et al.3] Experimental test 1.22 0.8 8.85

and is then linearized using the assumed velocity profile in the
squeeze film. The equation of continuity expressed in the form

coefficients using
spectral analysis
techniques

' dz= hr 17
S dEmg a7

is then used to find the radial pressure gradient.

In the present investigation, the elliptical velocity profile given
in (11) and(12) are used on the right-hand side (@#), (15), and
(16). The squeeze film forcE is then obtained froni13) by the
three approximation methods as

ah th 'yvh
PR T R (18)
where\ = prrr2/8 and
, 1 1
G[Azl 1-JAZ-1 sm‘l(z) } - 5}
a=1; B= 1 2
(Azsin‘l(z)—\/Az—l)
8
y= 1 . (19)
(AZ sin’l(K) - \/Az—l) JAZ—1
For MIM,
g A? 1 Azm (1
—7"1‘ 6+ 7 Sin K
= —

1 2
(Azsin’l(x)—\/Az—l)
AZ 1 A? 1
_ o 2_ [

4[ 2+6+2\/A 1 sin (A)}

(AZ sin’1<%> —JA?—1

B:_

2 the

1 15
4[sin‘1(z) ( - ZA“+ 3A2

2

A

A+l efficient « takes the value one for different velocity profile as-
{Aln( )_zj sumptions in the squeeze film by MIM. This implies that the
_ A-1 (20) choice of the assumed velocity profile in the squeeze film does not
v 1 2 affect the temporal inertia coefficieatwhen MIM is employed to
2 qin—1 A2_1 p ploy
AZsin N Ac—1 predict the squeeze film force. On the other hand, in the case of

[ 3A%(A%— 4)sin’l(%) —(3A%+14) JA2— 1+ 24A

a=

{3A2(4—A2)sin1

+(3A2—10)\/m1

1
2ain—1) 2|
S(Asm (A

Azfl)

+

+

parabolic

1+ 5A2( -

4<A2 sin~ !

o

4
24 3 +A%(5A?—8)\A2—1 sin‘l(

Al

3A

oo (]

a3 vty -2

e e

y=12.

4 Results and Discussion

The values of the coefficients, 8 and y obtained by the three
methods, using the elliptical velocity profil@1) and(12) in the
squeeze film are presented in Table 1, for different values of the
profile factorA. In order to facilitate comparison, the results ob-
tained (Elkouh [8]; Kuzma,[9]; and Tichy and Winef7]) using
velocity profile = (3hr/h%)(z?
=(—6h/h%)(z%/3—h7/2)) and the uniform velocity profiley(
=rh/2h;w= —hz/h) for the circular squeeze film geometry by
+ JAZZ 1(15A2— E)} the three approximation methods, are presented in Table 1. The

4 experimental test coefficients obtained using spectral analysis
1 3 techniques by Esmonde et al3] are also presented for
(A2 sin’l( —) —JAZ— 1) comparison.

From Table 1 it is observed that the temporal inertia force co-

(1)

—h2z);w

EIM or SAM, the value ofax depends upon the use of the assumed

For EIM and for SAM,

Journal of Applied Mechanics

velocity profile in the squeeze film. This suggests that the tempo-
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Fig. 3 Effects of fluid inertia on the squeeze film force using elliptical velocity profile under sinusoidal squeezing

ral inertia force in the circular squeeze film might be reasonabignt results with the experimental results by Esmonde €i3al.
accurately predicted if either SAM or EIM is employed. Also, it isshow that simulated values for temporal inertia coefficient are also
observed from Table 1 that the value@fjiven by either EIM or greater than that obtained using elliptic velocity profile with either
SAM using elliptical velocity profile(for different values of the E|M or SAM.
profile factorA) lie between those predicted by uniform velocity Thys, the results presented in Table 1 and the deductions based
profile and parabolic velocity profile assumptions. on these values as given above imply that the use of either SAM
_With regard to the convective inertia force coefficighand the = o £\ with elliptical velocity profile assumptions in the squeeze
viscous force coefficieny, it is observed from Table 1 that the g, mignht predict reasonably accurate values of the squeeze film

values of 5 and y predicted by EIM or SAM using elliptical force for large-amplitude motion. In view of this, the results are

velocity profile are close to those obtained by any of the threg . . - -
) . ) . ; pfesented for sinusoidal squeeze motion, constant velocity squeez-

methods using parabolic velocity profiles. Further, the viscous . . o
ing state and constant force squeezing state using elliptical veloc-

force coefficienty predicted by all the methods using uniform. o ) ;
velocity profile has the value zero. Such a prediction would gy profile in the squeeze film by SAM and are compared with the

valid only for very low-viscosity fluids. othe_r methods and other velocity proﬁles. _ _

The temporal inertia coefficient predicted by the experimental Figure 3 presents the results obtained for sinusoidal squeeze
results of Esmonde et di3] for the circular squeeze film geom-motion (W*(T)=1+esinT; h* is the dimensionless gap width
etry is higher than that predicted using parabolic profile by sugiven by h* =h/h,, whereh(t)=hy+esinwt, hy is the initial
cessive approximation methddable ). Comparison of the cur- squeeze film thicknesg=e/h, and T is the dimensionless time

2000, 600
=1.0, Elipti fil
Elliptical profile (SAM) Re=1.0, Elliptical profile
1 Esmonde et at.(1992)
1500 2 SAM
400} 3 EIM
. 4 MM
» w
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T

Fig. 4 Effects of fluid inertia on the squeeze film force for constant velocity
squeezing state
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Fig. 5 Comparison of squeeze film force variation with Wang's [6] results. —Wang, — -—-
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given byT= wt) of the circular geometry using elliptical velocity in force and that the effect of inertia is to increase the normal
profile by different methods, for different values of Reynold$orce on the upper disk.

numbers. It is observed that except for small valueg ahd Re,

there is a significant distortion in the waveform of the fluctuating Conclusion

force and phase shift. The comparison is made with reference torpe squeeze film force in a circular Newtonian squeeze film has
the waveform of the force obtalneci for the doubly limiting casgeen theoretically predicted by using the elliptical velocity profile
e—0 and Re-0. (F*ecosT, Re=phgw/u is the Reynolds num- assumption in the squeeze film using three different approxima-
ber andF* =F/ar2p, is the dimensionless forpdlt is also noted tion methods, and the numerical results for sinusoidal squeeze
that phase shift is remarkable as Re increases and this mayni@ion, constant velocity squeezing state, and constant force
attributed to the effect of fluid inertia. The distortion in waveformsqueezing state have been obtained. Motivated by the suggestion
is magnified ase increases and this is due to the change in they Gross et al[5] and the investigation by Han and Rogégt§)
gapwidth. on two-dimensional squeeze film geometry, the elliptical velocity

Figure 4 presents the comparison of the results obtained usprgfile in the film has been derived by taking into account the
elliptical velocity profile by different methods and by using SAMinertial effects. It has been observed by Esmonde ¢8athat the
with different values of Reynolds numbers for the constant velogarious physical phenomena associated with the circular squeeze
ity squeezing state. The dimensionless squeeze film force filtm for different film sizes for sinusoidal excitation obtained us-
creases with the increase of Re for elliptical velocity profile asag spectral simulation agree well with their experimental results.
sumptions using SAM. Further, the dimensionless squeeze filmview of this, the present results have been compared with the
force obtained by EIM and SAM do not differ significantly whenexact similarity solution of Wan§6] and with those predicted by
elliptical velocity profile assumption is used and the values liEsmonde[4] using experimental test coefficients obtained from
between those of MIM and the results of Esmonde ef3]l. the spectral analysis techniques and have been found to be in good

The squeeze film force obtained using elliptical velocity profilagreement. It has been observed that the squeeze film force pre-
assumption using MIM and EIM is comparéBig. 5 with the dicted by EIM or SAM using the elliptical velocity profile might
exact similarity solution presented by Wal]. It is observed that be accepted as reasonably accurate for large-amplitude motion.
the solution obtained by EIM using elliptical velocity profile is in  The investigations by Elkoufl1] for steady flow in a hydro-
good agreement with that of Wang’s results. static thrust bearing, Kuzmg8] and Elkouh[8] for flow in a

In the case of constant force squeezing state, it is evident frddewtonian circular squeeze film, Turf%2] for flow in a New-
Fig. 6 that the gapwidth decreases considerably with the incredsaian annular squeeze film, and Gupta and Kaf@} for flow in

50.0

rRe =12.0, Elliptical Elliptical
profile (SAM) profile (SAM)
1.0 400 | T=6.0
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»
w
20.0 |-
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h

Fig. 6 Effects of fluid inertia on the squeeze film force under constant force squeezing state
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a Newtonian curved squeeze film using SAM or EIM have bedimuous jumps are observed in a small fraction (25%) of Zip disks
shown to be in good agreement either with experimental resuttitating between 3000 rpm and 4500 rpm. For those disks exhib-
(Tichy and Winer,[7]) or with the numerical solutiofGrimm iting jumps, the jumps are repeatable for both increases and de-
[14]) and have thus justified the validity of applying SAM or EIMcreases in rotation speed during a test; no hysteresis is observed.
in lubrication problems, in particular, in squeeze flow problem# disk that initially exhibits the jump phenomenon may fail to
These investigations have assumed a parabolic velocity profdehibit jumps several days or weeks later and vice versa. Numeri-
assumption in the squeeze film and hence the results are valid dat results for a rotating membrane hydrodynamically coupled to
small to moderate Reynolds numbers. The success of these tle-surrounding flow show that the number of possible equilibria
proximation methods in predicting theoretically the squeeze filis a sensitive function of the radial flows above and below the
force has given us the confidence to apply these methods in tlisk. In particular, a small change in radial flow from a radially
present investigation for large-amplitude motion with elliptical veinward flow to a radially outward flow can abruptly change
locity profile assumption. The results in the present investigatidhe number of possible equilibria from two to one. The character-
show how EIM or SAM can also be effectively used for largeistics of this transition are compatible with the experimental
amplitude motion of the Newtonian circular squeeze film, by usbservations.[DOI: 10.1115/1.1526121

ing elliptical velocity profile assumption in the squeeze films.
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Fig. 1 Displacement versus rotation speed for two disks. (a): A typical Zip
disk response without the jump phenomenon; (b): the jump phenomenon at

approximately 4500 rpm.

research suggests that bending stiffness in very flexible rotating Experimental Results

disks may be importan{2,6]. Despite these limitations, the sim- We begin by describing a series of experiments performed on

plified model has the numerical advantage that the search for ectlJB Zin disks i d q ine th d ilib
libria can be performed using an ordinary differential equation®M€92 ZIp disks In order to determine the steady-state equilib-

shooting technique involving only one unknown parameter. Asf§m of the disk as a function of rotation speed. The magnetic
consequence, the results obtained are definitive, robust, and ff&MP and bearing of a Zip disk drive was removed and attached
from numerical artifacts. This would not be true for a more faitht© a rigid frame. A DC motor was also attached to the frame and
ful, but complicated model. For example, inclusion of the bendirgPnnected to the Zip disk clamp/bearing by a belt drive. Computer
stiffness would lead to three unknown parameters in the shootiggntrol of the DC motor allowed variable Zip disk rotation from 0
method; equilibria could be found, but determining tafitequi- to 5000 rpm. Zip disk drives normally operate at approximately
libria had been found would be difficult. 2800 rpm.

The results indicate that the number of equilibrium states of anThe sliding dust cover of a Zip disk was removed to perma-
enclosed, flexible disk is controlled by small changes in the direaently expose approximately one square cm of the periphery of
tion of radial flows above and below the disk. When either thge magnetic polymer disk. This was the only modification made
upper or lower flow rate changes direction, as might be expectgskhe Zip disk. The Zip disk was mounted on the clamp/bearing in
in an enclosed housing such as a Zip disk, an abrupt transitigi: same manner as in a Zip disk drive. A Philtec Photonic dis-
from one to two equilibria can occur. Thl_s equmb_rlum transitiony|cement sensor with a sensitivity of 0.64003 m/V/ was po-
has many features that are compatible with experimental obser foned immediately above the magnetic polymer disk in order to

tions, although more definitive experimental evidence is required, . o the transverse position of the disk. The probe measures
to validate the model. The explanation of the phenomenon oﬁer_g average displacement of the disk over an area of approximately

by this simple model suggests that controlling the radial flow iy square mm. For each experiment, only the relative displace-
floppy and Zip disks may be an important design objective. ment of the outer edge of the disk from its initial position was

measured. Since the initial position of the stationary disk was
uncontrolled and nonrepeatable, no attempt was made to measure
Table 1 Jump magnitude and corresponding rotation speed or control absolute position of the disk.

for disks displaying the jump phenomenon for both horizontal In each experiment, the disk was rotated at 238 distinct, equally
and vertical orientations. All entries are the averages of mul-

tiple runs. spaced speeds between 0 to 5000 rpm. At each fixed speed, 500
data points were acquired at 1000 Hz and averaged. The rotation
Horizontal Orientation Vertical Orientation speeds were either increased from O to 5000 rpm, or decreased
Disk # Jump(mm) Qjm, (rpm)  Disk #  Jump(mm)  Qjump IPM) from 5000 to 0 rpm.
1 0.08 4325 5 0.08 4650 Figure 1 shows two representative plots of the relative displace-
2 0.02 3470 2 0.09 4080  ment of the disk as a function of rotation speed. In Fi@)lthe
Z 8:(1)2 ﬁgég g 8:% gg%g displacement of the periphery of the disk varies continuously
Average:  0.0675 4120 Average:  0.0775 4093 throughout the experiment. The disk begins to ascend slightly af-

ter 3000 rpm reaching a peak at approximately 3700 rpm before
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declining steadily. In, Fig. (b), however, the disk abruptly jumps r=RIR, W=W/(C_+Cy) o,=0"/ppQ?R2 (1)
approximately 0.2 mm at 4500 rpm. Before and after this jump,
the curve varies in a continuous manner. The component of the pressure fields generated by centripetal ac-
An abrupt jump occurred in 4 disks out of 11 tested in a horiseleration produces equal and opposite pressures on the upper and
zontal position and 4 disks out of 11 tested in a vertical positiolower surfaces of the disk. We take advantage of this and define
Two disks demonstrated this behavior in both the horizontal atie dimensionless pressurngs andpy by
vertical position. The jump was repeatable during a particular test 3
for both increasing and decreasing speed. _ 2 20202 _ 2
No significant vibration was detected when the frequency re- P=20PF R = 1)+ poA(CLHCu) 2% )
sponse of the disk position was calculated except for disk runout ) ) )
which only occurred for low speeds:500 rpm). Above 500 rpm, Where, for brevity, the subscriptsandU have been omitted.
the disk position was steady both before and after the jump. TheVVe assume the disk/air equilibria are axisymmetric and neglect
spatial distribution of the disk was not possible to determine witfi® bending stiffness of the disk. Transverse equilibrium of & spin-
out partially removing the Zip disk cover. Since the air flow deling disk written in the stationary frame of reference require,

pends significantly on the integrity of the cover, the spatial distri- 1
bution of the disk was not measured. —(row,) ,+p.—py—T'=0 (3)
Table 1 lists the jumps magnitude and rotation speed for the r n

eight disks exhibiting the phenomenon. In both the horizontal a.r\}\9|1ere a comma indicates differentiation. Pelech and Shapiro’s

vertical orientations, the jumps occur above the normal operati ; ; PR
speed of a Zip disk2800 rpm; for the horizontal orientation, the fbdel for the axisymmetric pressure distributions reducé¢b,

average rotation speed at which the jump occurs is 4120 rpm; for 6q,
the vertical orientation, the average rotation speed of the jump is pL=— AT W) 4)
L

4093 rpm. This suggests that gravity loading of the disk influences

the phenomenon only modestly, if at all. 6q
While the jump phenomena was repeatable for a particular test Py,=— —U3 (5)

as the disk was spun up and spun down, it was not necessarily ' mr(Cy—Ww)

repeatable between tests conducted on different days. Some digk§nqary conditions for the coupled ordinary differential Egs.

would exhibit the behavior over the course of consecutive da $)—(5) are

and consecutive tests, while others would vary from day to da</.

Over the course of testing even the most reliable of disks would w(k)=p (1)=py(1)=0 lim,_,0,w,=0. (6)

vary, alternately displaying the jump behavior and not displaying o ] ) '

the behawvior. The six dimensionless parameters in the model are the clamp-
ing ratio

3 Modeling «k=Ri/R;, @

We now develop a simple model to explain the jump phenongravity
enon. A thin, axisymmetric annular disk of outer radRis, den-
sity pp, and Poisson’s ratio spins about its axis of symmetry
with constant ar_wgular velocityl_whi!e enclosed _Within an axi- fractional clearances
symmetric housing, as shown in Fig. 2. The disk is clamped at
inner radiusR;, its thickness i\, and its transverse deflection is c,=C_/(C_+Cy) cy=Cy/(CL+Cy), 9)
W. The in-plane radial stress is; . The upper and lower clear- .
ances between the undeflected disk and the housing walig are2nd radial flows
andC, , and air leakage through the housing is measured by the _ 2 4 _ 2 4
volumetric radial upper and lower flow®, and Q, . The air = 1QUIPpAQ(CLHCL)* au=pQuIppAQA(CL+Cy)
pressure in the clearancesHg andP, . The surrounding air is of
density pg and viscosityuw. When present, gravitg acts down- The radial stresses are given by the standard generalized plane
ward. R measures radial position. stress solution with vanishing in-plane radial displacement at
Dimensionless variables are defined by =k and vanishing traction at=1, [11]:

I'=g/(C +Cy)0?, 8)

N A

" Ro

Fig. 2 Schematic of the rotating disk enclosed in a housing
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k21— ) (3+ v— k2= vK?) w(«), which must vanish in order to satisfy the boundary condi-

o= 8(1+ v+ K2— vrD)r2 tions(6). A root finding technique can be used to determine values
of w(1) corresponding to solutions. The root finding is made

(L+v)(83+v+k*—vk* (B3+v)r? easier by the fact that ¢, <w(1)<cy. However, the root find-

8(1+ v+ K2 vid) g (11) ing is not entirely straightforward in that for valuesw(1) close

to either—c or ¢y, it can be impossible to integrate the differ-

For an I-Omega Zip diskR;=12.5mm; R,=43 mm; C_  ential equations to = «. When the disk deflectiow comes suf-
=Cy=0.5mm; A=0.05 mm; py=1300 kg/n¥; Q=2800rpm; ficiently close to either—c_ or ¢, at some interior locationk
pi=1.2 kg/n?; and m=2.0x 10" ° kg/s/m. This givex=0.291 <r<1, the right-hand side of eithéd) or (5) can become large
andI'=0.114.q, andqy are unknown. We can estimate the ordeenough that it causes the integration stepsize to be reduced until it
of magnitude fory, andqy by examining the experimental stud-becomes numerically zero and the integration fails. This integra-
ies of Pelech and Shapif@] in which radial flow was measured tion failure frequently occurs for values wf(1) which are quite
for a disk rotating close to a rigid wall. In their experimerifs, close to solution values. Consequently, the root finding scheme
range from 0.2 to 0.7 whilg, varies from 0.02 to 20. We suspectshould approach roots from an interior valueadfl) and must be
that these values of), are higher than those for the Zip diskable to correctly handle failed numerical integration.
geometry since there is no housing in Pelech and Shapiro’s ex-The only other special feature of the shooting scheme is evalu-
periment to restrict flow. In addition, in Pelech and Shapiro’s exdting the derivatives at= 1, which is a regular singular point of
periments only one side of the rotating disk is pressurized so tH&} sinceo,(1)=0, [12]. Substitution ofr =1 into (3) gives
both components of the total pressi®en (2) contribute to the W, (1)=T/o, | (12)
disk deflection. In the experiments of Pelech and Shapitas T rorir=1-
well as for the Zip disk, the nominal centrifugal pressurdifferentiation of(3) with respect ta followed by substitution of
peQ?R2, is approximately 19 times greater than the nominalf =1 gives

Reynolds pressurgypA(C+Cyy) Q2. Such a large pressure dif- W, (D) =[=PLor+Pu = (107 o)W, 1111207 1.

ference would be expected to strongly influence the order of mag- (13)
nitude ofq, . From these considerations, we estimagteand . L
to range (fqrt)m 10% to 10° L. ma u Equationg12) and(13) should be used to evaluate the derivatives

of watr=1; everywhere else, E¢3) should be used.
4 Numerical Solution
As described if7], the coupled ordinary differential Eq&)— 5 Results
(5) can be solved using a shooting scheme. If one guesses a valuEigure 3 shows a contour plot of the number of equilibria as

of w(1), Egs.(3)—(5) can be integrated as an initial value probfunctions ofq, andqy for the Zip disk geometry given in Table 2:
lem fromr=1 tor= k. The error in the guess @f(1) is givenby «=0.291,»=0.3,I'=0.114, andc, =c,=0.5.

0.3

02 0

Ay
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S
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0
o OQ’OOQOO
0.1 ) arls)! | |
-0.1 0 0.1 0.2 0.3
9
Fig. 3 Contour plot of the number of equilibria as functions of q, and qy. K

=0.291; »=0.3; I'=0.114; ¢, =c;=0.5. The number of equilibria in each region is
superimposed on the plot except for the lower left quadrant.
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Table 2 Data for an I-Omega Zip disk contour atg,>0 andqy=0 and, over a smaller range, by the
contourg, =0 andqgy>0. In these transitions from two equilibria

R (mm) 12.5 to one equilibrium, one equilibrium changes continuously while
R, (mm) 43 the other vanishes. If the disk were in the continuously varying
C. (mm) 0.5 equilibrium, no sudden displacement change would be observed.
Cy (mm) 0.5 If the disk were in the other equilibrium, an abrupt displacement
A (mm) 0.05 change would occur.
pa (kg/n?) 1300 The structure of this equilibrium change is consistent with ex-
Q (rpm) 2800 perimental obs'ervatlons...Sllnce the jump requires the disk to as-
Ka/m? 12 sume one particular equilibrium of the two allowable, any changes
pi (kg/m) ' in the disk that predispose its deflection to one or the other equi-
w (kgis/m 2.00E-05 librium would affect whether or not a jump is observed. This
K 0.291 possibly explains why the jump phenomenon is repeatable on any
r 0.114 given day, but not necessarily over several days: overnight storage

could lead to creep in both the disk and the surrounding gauze of
the disk that could alter the preferred equilibrium state. In addi-
] ] ] ) ) tion, thermal stresses may play a role.
~ A more detailed understanding of Fig. 3 is obtained by exam- e can estimate the maximum possible jump size by comput-
ining the error plots ofv(«) versusw(1) given in Fig. 4 where ng (%(1)+c,) wheref(1) is the value ofv(1) for the continu-
we letqy=—q, . This corresponds to a slice through the contowysly varying equilibrium. The maximum jump size varies be-
plot in Fig. 3 with a slope of-1. ~ tween 0.50 and 0.76 over the range 6, <0.2 and 6<I'<0.2. In

In Fig. 4, for the most negative values @f , the error curve is most cases, the continuously varying equilibrium is close to the
concave up and entirely above thgx)=0 axis. These curves center of the housing. The results indicate that the magnitude of
have no equilibrium solutions. As increases,(at g, =0 in the observed jumps should not vary significantly when the orien-
both figures the curve loses its upward concavity for largaation of the disk is rotated from a horizontal to vertical position,
negative values of(1) and intersects the(«) =0 axis once. As je., changind’ from 0 to 0.114. This is borne out by the data in
g, is further increased, the curve becomes concave down fpsple 1.
large positive values ofw(1), showing two equilibria, and
then moves entirely downwards so that there are no equilibria.
The plots are slightly asymmetric about tle=q, axis due
to I'#0. . .

From these results, we postulate that the jumps in Zip di& Discussion
displacement described in Section 2 correspond to a change fromi\lthough the proposed model is simple, it appears to describe
a configuration with two equilibria to a configuration with onlythe experimentally observed phenomenon. This contrasts with
one equilibrium. These transitions are shown in Fig. 3 by tharior research that has often proposed and analyzed more compli-

q, =-0.01
q, =-0.02
q, =-0.03

)

3 | g, =001
| q =0.02
|- q =0.03
| . g =0.04
| q =005
|- q, =0.06

05 -04 03 -02 -01 0 01 02 03 04 05
w(1)

Fig. 4 w(1) versus w(x) for different q, assuming g, =—gq, . Roots indicate equilibrium
solutions. k=0.291; »=0.3; '=0.114; ¢,=c,=0.5.
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cated experimental results or analytical models without mutuffjnite Element Ana|ysis of Brittle

corroboration. Such research makes it difficult to distinguishin . . . .
primary and secondary physical effects. ’ &racklng due to Single Grit Rotating

Of course, the experimental results and analytical modeling p$cratch
formed here are preliminary rather than definitive. A number o
assumptions have been made analytically that may not be ad-
equate: the disk deflection is assumed to be axisymmetric, steagy,
and linear; geometric imperfections of the disk, potential thermaa%Y Subhasft
stresses, and bending stiffness have been neglected; hydr(ﬁ&}/-Zhan 2
namic lubrication theory has been used even though the cleararnce 9
is relatively large(although it is about the same as Pelech and
Shapiro[7]). More complicated analysis of the system may lead tBepartment of Mechanical Engineering—Engineering
a different explanation of the observed phenomenon. Mechanics, Michigan Technological University,

That being said, the present results suggest that the jump ppfp'ughton MI 49931
nomenon of the disk can be avoided by precise control of the tota ’
radial flows surrounding the disk. Whether or not such control is
practical or desirable remains an open question. Presently, Zip
disk enclosures almost fully enclose the flow, which keeps thdnite element analysis of single grit rotating scratch on brittle
total radial flow small and makes small changes in radial flomaterials was conducted using an “elastic-plastic-cracking”
direction possible and perhaps even likely. A less restrictive flo&PC) model. The brittle material removal mechanism was mod-
design may eliminate the jump phenomenon but may also dr@ked based on a critical crack-opening displacement criterion. It

more particles and debris into the enclosure. was found that the tangential and normal force profiles as well as
the damage morphology observed in scratch experiments were
7 Conclusion fully captured by the EPC model. The results revealed that the

induced damage zone size increases linearly with a brittleness

1 Experimental results are presented showing a discontinuqarameter (EY /o?)Y® as well as the maximum depth of cut.
jump phenomenon in I-Omega Zip disks. The jump was record¢@Ol: 10.1115/1.1526119
on the transverse displacement of the disk at its outer periphery as
the disk rotation speed varied. The jump behavior was not dem-
onstrated by each disk tested, nor was it necessarily repeataple |ntroduction
over several days. - o .

2 A simple model was developed to explain this behavior. T _Grl_ndlng_ with diamond Whe‘?'s is the most common process for
model takes into account the hydrodynamic coupling between t! E'?h'”g hl_gh-str(_angt_h ceramic components. .A summary of ex-
thin flexible disk and the air circulating within the Zip disk houspe“mentf”II investigations and empirical mod_ellng of grln_dlng pro-
ing. The model makes the simplifying assumptions of axisy _lessturmfg tl(wje IaStttYOtdSFadfﬁ \t/ver:e trew;awedﬂ?y le afr_ld_ 'F]'ag
metry and negligible bending stiffness, which permit robust sol 1]. ore fundamental studies that relate strength of a finisne
tion of the nonlinear system equations. ceramic component to the grinding-induced damage continue to

3 Results show that the number of disk equilibrium states l&e reportede.g.,[2,3]). . . .
greatly affected by small changes in the air flow inside the ZiP Funda_mental studies that capture the interaction between gr_lnd-
casing. The authors postulate that the jump phenomenon can med!u(rjn e;n? the4wgrkp|ege ‘.NeTe m.f"”'y iorr:_ducted dusllng
attributed to these changes in the number of equilibria caused ers indentations/4—6], and single-grit scratching models

small changes in the radial flow above and below the disk. 7. Re_sul_ts of the §cratch experiments on br_ittle materials_ re-
vealed distinct material removal patterns for different materials

[8,9]. It was observed that in Homalite-100 the material removal
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Table 1 Material properties of Pyrex glass varied from 50 to 400 hours depending on material properties and
scratching speed on a Sun Ultra 80 workstation with one 450
MHz processor.

Young’'s Poisson’s  Yield Hardening  Fracture

Density Modulus Ratio Stress Modulus Stress
p (glen?)  E (GP3 v Y(GPa E,(GPa oy (GP3
2.2 70 0.24 3 0.7 0.2 3 Results and Discussions

The basic material properties are listed in Table 1. By varying
systematically the material properti¢ise., Young’s modulusg,
yield strengthY, and tensile fracture strength) and the scratch-

ing speed, the relationships between damage zone size, material

\\//vlrfe'\ceA[TionE details of the formulation can be obtained elser'emoval volume, material properties and loading conditions were
S . . . investigated.
The finite element model is motivated by the experimental set g

up of Loukus[8] and Subhash et d19]. The specimeii3x3x1.5 3.1 Influence of Scratch Speed. Figure 1 provides the in-
mm®) is constrained in horizontal and vertical directions similar tduced damage and the evolved force profiles due to a scratch at 31
the experimentd,11]. The conical indenter with an apex angle ofm/s. It shows that the effective crack-opening displacement on the
90 deg is pivoted at a radius 20 mm. The tangential fétcand top surface(Fig. 1(a)), which represents the lateral damage zone,
the normal force-,, are recorded on the side and bottom surfacess, more irregular compared to that beneath the surfgige 1(b)),
respectively. Due to the symmetry of the problem, only half of thevhich is the median damage zone. The resulting tangential and
specimen was modeled as 22640 eight-node solid elements withcemal force profiles(Fig. 1(c)) oscillate severely during the
minimum element size of 10 microns. The indenter was modeladratch process. These oscillations are due to the instantaneous
as a rigid surface and subjected to a constant angular velociiress release as a result of crack opening or the lack of contact
which resulted in a 2.2-mm length scratch with a maximum deptietween the indenter and the specimen when elements were de-
of cut of 30 um. The friction coefficient between the specimeneted due to excessive damage as per the critical crack-opening
and the indenter was assumed to be 0.3. The typical run tirdssplacement criterion discussed before.

package ABAQUS(Version 5.8 through the user subroutine

| |
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Fig. 1 Contours of evolved damage zone  u, due to a scratch at velocity 31 m /s and a duration of
76.7 ps. (a) Top view, (b) side view, and (c) the resulting tangential and normal force profiles.
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Fig. 2 Contours of evolved damage zone u, as a result of a scratch at velocity 209 m /s and a
duration of 11.5 us. (a) Top view, (b) side view, and (c) the resulting tangential and normal force
profiles. Here, L and M denotes lateral damage size and median damage size, respectively.
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Fig. 3 Plot of induced damage zone size as a function of the
brittleness parameter (EY/a-?)l’3 indicating that damage zone
size increases linearly with brittleness parameter (depth of cut
is 30 microns )

Journal of Applied Mechanics

04

Damage zone size (mm)
o (=3
o w
I I

4
o
T

RNV T TSRS TN SUSI ST SN |

R R
00 0.01

Fig. 4 The relationship

0.02 0.03 0.04 0.05
Maximum depth of cut, d (mm)

between the induced damage zone

size and the maximum depth of cut revealing that the scratch-
ing induced damage zone size is proportional to the imposed

maximum depth of cut
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Fig. 6 The plot of total removed volume of material versus the
squared maximum depth of cut suggesting material removal
strongly depends on the maximum depth of cut

Fig. 5 The relationship between total material removal volume
during scratch and the brittleness parameter revealing that
brittleness parameter has marginal effect on the material
removal

here are partly based on the force profiles, the general trends of
the damage zone sizes and the volume of material removed.

In Fig. 2, the scratching speed was increased to 209 m/s while )
other parameters were kept constant as those in Fig. 1. It is séen Conclusions
that the lateral damage zone size seems to inci@ase Fig. 1(a)
to Fig. 2a)). However, the median damage size appears to be I%s]
sensitive to the scratch speédom Fig. 1(b) to Fig. 2Ab)). It is
interesting to see that the force profiles oscillate much less fi > The d . 0 i i v with
quently in Fig. Zc) than in Fig. 1c). This perhaps means less ‘e damage zone size appears 1o |2n(i/r3ease inearly with a
frequent but larger material fragment removal at higher scrat@@ndimensional brittleness paramet&Y(of)™ as well as the
velocities. The force profiles in Fig.(d) are similar to those of Maximum depth of cut. ) )
Homalite, while the force profiles in Fig(® are more like those = 3 The material removal volume is affected more dramatically
of Pyrex glass due to high speed scratcHi@i It should be noted by the maximum depth of cut rather than by the material
that in our model the rate dependence of constitutive model waEPerties.
not considered. Therefore, the differences between Figs. 1 and 2
are completely due to the inertial effect. Acknowledgments

& The EPC model is capable of capturing the salient features of
€ tangential and normal force profiles as well as the damage
rr@_orphology during the scratching process.

3.2 Damage Zone Size. While keeping the maximum depth  The authors acknowledge the financial support by the U.S. NSF
of cut a constant at 30 microns, it is shown in Fig. 3 that thender Grant No. DMI-9610454. This work was partially sup-
induced damage zone size increases almost linearly with a nornaldrted by NCSA and utilized the SGI/CRAY Origin 2000 super-
mensional brittleness paramet&Y/o?)*°. This result is consis- computer at UIUC.
tent with the indentation induced cracking simulation results res
ported earlief10]. Figure 4 reveals that the damage zone siz eferences
also increase |inear|y with the maximum dep’[h of cut. This re-[1] Li, K., and Liao, T. W., 1996, “Surface/Subsurface Damage and the Fracture

sult is also in agreement with the experimental observations of,, ﬁgggg&hgGé?gggmgﬂsmécsﬂh;hgﬂefeg Process. Jeonadl.op, 207220,

Loukus [8] Mechanical Evaluation of the Effects of Grinding Residual Stresses on Bend-

. . . ing Strength of Ceramics,” Mater. Sci. EngA234-23 pp. 1126-1129.
3.3 Material Removal Volume. Since the depth of cut in (3] Lee, s. K., Tandon, R., Readey, M. J., and Lawn, B. R., 2000, “Scratch

our rotating scratch process is not a constant, the material removal Damage in Zirconia Ceramics,” J. Am. Ceram. S®&S3(6), pp. 1428—1432.
per unit |ength is not an appropriate measure of material removal4! La\_/vn, B. R, EVQI‘]S, A. G_., a.nd Marsha_ll, D. B._, 1980, "ElaS'[IC/Pl?StIC Inden-
rate. Thus, the material removal volume per scratch is used to }gﬁ;ﬁ’”s[;irgggggnsiirf‘g‘g?' The Median/Radial Crack System.” J. Am. Ce-
study the relationships between material removal, material propysj chiang, s. s., Marshall, D. B., and Evans, A. G., 1982, “The Response of
erties, and processing parameters. The material removal volume IS Solids to Elastic/Plastic Indentation. I. Stresses and Residual Stresses,” J.
simply the sum of the volumes of all the finite elements that were Aplﬂl{' Phys.531), pp. 298-311. N o
removed as per the criterion discussed before. Figures 5 and ”CA%P'”A’:H'?&%H;V;”%J;Q’& 1996, “Grinding Mechanisms for Ceramics,
reveal _that the volume of material rer_noval Increases marg'na”y[ﬂ Ahn, Y., Farris, T. N., Chandrasekar, S., 1998, “Sliding Microindentation Frac-
with brittleness parameter, but dramatically with the square of the  ture of Brittle Materials: Role of Elastic Stress Fields,” Mech. Mat2, pp.
maximum depth of cut, respectively. This implies that the domi-m i43;152j £ 2000, “Investiaation of Material R | Mechanisms duri
: : H H OuKas, J. k., , “Inves Igation o aterial Removal echanisms auring

.nant Vanable. that affects mate”‘f’" re.moval rate in a.n actual grmc.j Single Grit Scratching on Brittle Materials,” Ph.D. dissertation, Michigan
ing process is depth of cut, which is consistent with the experi-  technological University, Houghton, MI.
mental reports presented elsewhgtel 2). [9] Subhash, G., Loukus, J. E., and Pandit, S. M., 2002, “Application of Data

Although the EPC model is capable of capturing the fundamen- Dep?ndent Systems Approich for Eial;lation of Fracture Modes During a

: ; ; ; A ; ; Single-Grit Scratching,” Mech. Mater34(1), pp. 25—-42.

tal deformation mechanisms during single-grit scratching of brittle, o 720" 200G G 2001, “An Elastic-Plastic-Cracking Model for
materials, it cannot measure a single crack size or identify a spe- Finite Element Analysis of Indentation Cracking in Brittle Materials,” Int. J.
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[11] Zhang, W., 2001, “Finite Element Analysis of Induced Damage Due to |ndeﬁ}'imoshenk0[4]. The ana|ysis was based on classical bending
tation and Scratching on Brittle Materials,” Ph.D. dissertation, Michigan Techt-heor and started by assumina the individual force and bendin
nological University, Houghton, MI. y . y 9 . 9

[12] Warnecke, G., and Rosenberger, U., 1995, “Basics of Process ParamdiaPment in each layer. The bending moment was related to the
Selections in Grinding of Advanced Ceramics,” CIRP And4(1), pp. curvature of the layer, and both layers were assumed to have the
283-286. same curvature. The solution was obtained by balancing the forces

and moments in the system and satisfying the strain continuity
condition at the interface between the two layers. In this bilayer
case, there were three unknowns to be solved and three conditions

An Alternative Method of So|ving to be satisfied. Timoshenko’s approach has been adopted by many
. . others to analyze residual stresses in multilaygss;10.. How-
MUIt”ayer Bendmg Problems ever, for multilayers, the numbers of both the unknowns and con-
tinuity conditions at interfaces increase with the number of layers
in the system[5-10.
C. H. Hsueh It should be noted that the definition of the neutral axis cannot
Metals and Ceramics Division, Oak Ridge National be used in solving the bending problem of bilayéasd multi-
Laboratory, Oak Ridge, TN 37831-6068 layers when residual stresses are involved. Instead, the neutral
axis can only be obtained by finding the location with zero nor-
S. Lee mal stress after solving the stress distribution in the system. In
) . . . . analyzing residual stresses in bilayers, Hsueh and Evans found
Department of Materials Science and Engineering, that if the neutral axis were defined as the line in the cross section
National Tsing Hua University, Hsinchu, Taiwan of the bilayer where the bending strain component is zero, the
definition could be readily used to solve the bending problem,
T. J. Chuang [15]. The same finding was subsequently reported by Townsend

et al.[16].

As a complement to Hsueh and Evans’s analysis, the present
study examines the physical significance of Hsueh and Evans’
neutral axis and the extent to which it is also useful in solving
the bending problem if multilayers are subjected to both residual
Stress distributions in multilayers subjected to both residusltresses and external bending. First, redefining Hsueh and Evans’
stresses and external bending are analyzed to derive closed-faigutral axis as the “bending axis” to avoid confusion, the general
analytical solutions. There are always three unknowns to t®lution for multilayers subjected to residual stresses and external
solved and three equilibrium conditions to be satisfied in theending is derived. Then, the solution is reduced to that for
present analysis. In contrast, the numbers of unknowns and cdilayers and compared to existing solutions. The physical signifi-
ditions increase with the number of layers in the system in existiggnce of the bending axis is also examined. Finally, a comparison

Ceramics Division, National Institute of Standards and
Technology, Gaithersburg, MD 20899-8521

analyses. [DOI: 10.1115/1.1526123 between the bending axis and the neutral axis is made by consid-
ering a bilayer subjected to both residual stresses and external
bending.

1 Introduction
) o ] 2 Analyses
Residual stresses and bending in a film/substrate system wer

documented about a century agb]. In 1865, Rosse tried to make _* R . -
flat bimetallic mirrors for a Newtonian telescope by coating glag¥ films with individual thicknesses; , are bonded sequentially to
with silver via a chemical process and then electroplating with s_ubs_trgte with ?}tr:'Cknes%’ t?t hf'gh r:en;f)eratu(;es. Thefsub-
copper. However, upon deposition, the copper film detached froffi Pt . denotes the layer number for the film and ranges from 1
the glass and the planar glass became curved owing to the cbh With layer 1 being the layer immediately adjacent to the
traction of the copper film. Advances in technology have result bstrate. The coordinate system is defined such that the interface
in extensive applications of film/substrate and multilayer systerg§tWeen the substrate and layer 1 of the film is locatera0,

as microelectronic, optical, and structural componefik, how- the substrqte free surface is Iocateda.t—ts, the free surface.of
ever, the issues of residual stresses and bending remain. Conliil layers is located at=h,, and the interface between layers
erable efforts have been devoted to analyzing these ig+ekd], andi+1 is located atz=h;. With this definition, the relation

and the analyses are generally based on classical beam-benfififjreenni andt; is described by

theory,[12—-14]. The “neutral axis” has been defined in bending i

theory as the line in the cross sec_tion of_ a beam where the norrr_1a| hy= 2 t; (i=1 ton). (1)
stress is zero. When the beam is subjected to external bending j=1

only, the normal strain in the cross section is proportional e ¢sefficients of thermal expansion of the substrate and films
the distance from the neutral axis and inversely proportional e a. and a: respectively. The system is cooled to room tem-

. . s i .
the Irejlldluds of curvaturg. F:jOV\t/ﬁver, V\;heln external Eendlngha rature and is subsequently subjected to applied bending. The
a).(t'ﬁ. (t)t? Ing are cc;_m met " %neu ra "’tlx.'g Ta{ el aPhYW Slowing analytic logic is used to determine the stress field in the
within the cross section, at its edge, or outsid¢1§,14. In this tem. First, the system experiences an unconstrained differential

o> . : S
case, the strain is not proportional to the distance from the nem%%finkage due to the cooling temperatusd;, such that thermal
axis. )

Th idelv ad d . di idual strains,as AT anda; AT, exist in the substrate and film layers,
i gm%st wi e)éa'opéeb eqSuatlon to pre r'](?tr:es' f.llja Stresrslesré%pectively(Fig. 1(b)). Second, uniform tensile and compressive
iims is the one derived by Stond], in which a film much g oqses are imposed on the individual layers to achieve displace-
thinner than the substrate was considered. A general solution

) . . . . Ent compatibility such that the strain in the multilayer is a con-
bending of bilayers due to residual stresses was first derived Q)ént c anrc)i the tgtal force on the system remains z(Euyg. 1(0).

Comtibuted by the Abplied Mechanics Division ofiE A . Third, bending occurs to balance the bending moment induced
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF : ; t@‘_ﬂ'@
MECHANICAL ENGINEERSfor publication in the QURNAL OF APPLIED MECHAN- bythe asymmetric stresses in the sys . 1(d)). Fourth, the

Ics. Manuscript received by theswe Applied Mechanics Division, Mar. 17, 2002; Curvature of Fhe system desgribed in Figd)lis modified by an
final revision , July 26, 2002. Associate Editor: D. A. Kouris. applied bending momeni/ (Fig. 1(e)).

in elastic multilayer strip is shown in Fig(d), wheren layers
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@ Az of the bending axis, the bending strain component becomes pro-

I F z=hp portional to the distance from the bending axis and inversely pro-
ayern n e=hp—1 portional to the radius of curvature. Therefore, the total strain in
laye{i t : the multilayer(Fig. 1(e)) can be formulated as
[ ' |
z=h)
layer 1 n =0
substrate Is z—ty
Z=—ts g=C+ (for —tg<z=<h,), (2)
(b) i En=05AT | '
T t ]
\ €i=0jAT :
] . , wherer is the radius of curvature artg dictates the location of
[ £1=014/ the bending axis. The advantage of using B).to describe the
E5=0sAT strain in the system is that the strain continuity conditions at the
© interfaces between layers are automatically satisfied.
G The normal stresses in the substrate and fiknsand o; , are
—> &= J&<— . i
, - .C related to strains by
1 8,‘:(; :
]
) 1 '
Ed EI=C < oo=Eye—aAT) (for —t=z=0), (3)
< es=c —>
(@ oi=E(e—aAT) (for i=1 to n), (3b)
whereEg andE; are Young’s moduli of the substrate and layef
films, respectively. In the case of biaxial stresges., a planar
instead of a strip geometryYoung’s modulus in Eq(3) should be
replaced by the biaxial modulug/(1—v), wherev is Poisson’s
© ratio. The strain/stress distributions in the multilayiez., Eqs.(2)
and(3)) are contingent upon solutions of the three parameters,
: ty, andr, which can be determined from the following three equi-
' librium conditions. First, the resultant force due to the uniform
strain componen(.e., the total force in Fig. (t)) is zero. Second,
1) the resultant force due to the bending strain component is zero.
Third, the sum of bending moments is in equilibrium with the
M M applied moment. With the above three equilibrium conditions, the
Fig. 1 Schematics showing bending of a multilayer strip due solutions are
to residual stresses and external bending: (a) stress-free con-

dition, (b) unconstrained strains due to temperature change
AT, (c) constrained strain to maintain displacement compat-

n
ibility, (d) bending induced by asymmetric stresses, and (e) ex- (Estsas+ 2L Eitia) AT

ternal bending c= Ed+=M Et, ’ (42)
Based on the logic described in Fig. 1, the strain in the

multilayer, e, can be decomposed into a uniform component and a

bending component. While the uniform componentis dictated —Ed2+ 3P Eiti(2hi_1+t)

by the logic in Fig. 1c), the bending component results from the tp= - (4b)

logic described by Figs.(d) and (e). With the present definition 2(Estst 21 Eity)

n
3| E(c— aAT)2— D, Eiti(c— a;AT)(2h,_1+1t) | +6M
i=1
= 0 (40)
Et2(2ts+3ty) + >, Eiti[6h7 1 +6h; 1t +2t7—3ty(2h; 1 +1))]
i=1

=| Bk

whereM is the applied moment per unit width of the strip. Wher8 Results

i=1,h;, (i.e.,ho) is defined as zero in Eqelb) and(4c). Based A gpecial case of one layer of film on a substréte., n=1) is
on Eq.(4b), the position of the bending axis remains unchangegnsidered to compare with existing solutions. In this case, the
whether the multilayer is subjected to residual stresses, exterggbscript 1 for the film is replaced by the subscfiptVhen the
bending, or both. film is much thinner than the substrdiee., t;<t;), Egs.(4a—c)
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(a) (b) Az 0'2 ¥ l LI ) I LI I L) T ' LI I T i
——1——p] . film \ .
77777, F777 7777, =y S 00--q---"7-"-"""---- -
:neutral axis bending axis /] %// ; - .
L ¥ V 75 S -0.2F substrate bending axis -
A~ % // Y z F :
/ ) £ N \‘\/ =0 & .0.4f _/ =
77 NN NNNNN < 0.6 -
’<_E-‘/Ef—> % o ]
z 0.8 -
Fig. 2 Schematics showing (a) equivalent cross section of the C A i | | [, ]
bilayer to account for different Young’s moduli between the two -l e '0 7
layers when the bilayer is subjected to only external bending -0.4 .'0'2 0 0.2 :
and (b) the bending axis in the cross section of the bilayer is Normalized moment, M/Estyz(af-as)AT

located at the same position as the neutral axis in the equiva-

lent cross section Fig. 3 Normalized position of neutral axis as a function of nor-

malized applied bending moment, M/ Est3(ay—ag)AT, for
o i ) GaAs/Si bilayer systems with  t;/t;=0.2
can be simplified, and it can be derived from Edb) that the

bending axis is always located at the centerline of the substrate

(i.e., tp=—14/2). Furthermore, when the bilayer is subjected t§oung's moduli areE;=85 GPa and,=130 GPa. The thickness
residual stresses onlj.e., M=0), the stresses in the system beratio t, /t;=0.2 is assumed to elucidate the essential trends. By
come using Egs(2), (3), and(4) with n=1, the normalized position of
the neutral axis is shown in Fig. 3 as a function of normalized
(for 0=<z<t,), (5a) applied momentM/Esti(affas)AT. The position of the bend-
6tr ing axis given by Eq(4b) with n=1 is also shown. The bending
axis is fixed, but the neutral axis shifts with the normalized ap-
plied moment. It can be seen in Fig. 3 that whe®.1<ZM/
Estg(af—aS)ATs—O.OS, there is no neutral axis in the bilayer.

. . \ . When 0.1k M/Esti(af—as)ATsO.w, a neutral axis also ap-
Equation(5a) is the same ES the vl/ell-known S_toneys_, equatlorbears in the film which, in turn, results in dual neutral axes in the
[3]. Also, from Eg.(5b), 0s=0 atz= —2t¢/3, which defines the slystem

location of the neutral axis. Conversely, in the presence of exté
nal bending onlyi.e., AT=0), the stresses become

2
s's

oi=Ei(as—ap)AT=—

2Eftf(32+ 2ts)(af— CYS)AT

t

(for —tg=z=<0). (5b)

Os

4 Conclusions

_6EM  Eftg for 0z The neutral axis defined in classical bending theory cannot be
TTE2 (for O=z=ty), (63)  ysed to analyze the bending problem of bilayer strips subjected to
s residual stresses. Instead, the neutral axis can only be obtained
6(2z+t)M after the stress distribution in the system is solved. The neutral
os=——3— (for —ts<z<0). (6b) axis shifts with the combined residual stresses and external bend-
ts ing, and there can be zero, one, or two neutral axes in the bilayer

In this case, the neutral axis is locatedzat —t/2. Therefore, (Fig. 3. The bending axis as we have defined it overcomes this

depending upon whether the film/substrate system is subjectedifgtation. It can be utilized to readily solve the bending problem

residual stresses or external bending, the neutral axis is locate®@'gsented by not only bilayers but also multilayers. The location

a depth 2/3 or 1/2 of the substrate thickness under the interfa€ the bending axis remains unchanged whether the system is

However, this fact has not commonly been recognized, and tﬁgbjec_ted to residual _stresses, (_external bepdlng, or both. The bend-

assumption that the neutral axis is located at the centerline of #Rg axis has the physical meaning of passing through the centroid

substrate has been made erroneously when the system is subje@tdfe equivalent cross section of the systéfiy. 2). Also, for a

to residual stresses. multilayer system, there are always three unknowns and three
It can be shown that the solution for bilayer strips subjected §fiuilibrium conditions to be solved by adopting the bending axis

residual stresses given by Timoshenld is the same as the N the_anaIyS|s. I—_|owever, the numbers_of unkno_vvns and condi-

present general solution with=1 andM =0. Bilayer strips sub- tions increase with number of layers in the existing analyses,

jected to external bending only have also been analyzed by —10).

moshenko, in which bending of a strip of homogeneous material

with an equivalent cross section, as shown in Fi@) Zwhere Acknowledgments
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Also, a superposeff) is used to denote variables that are related
to the exact three-dimensional theory. In this beam theoiythe
displacement vector of material points on the beam’s reference

line andé, are the rotations and extensions of line elements which

On the QueSt for the Best Timoshenko in the reference configuration were oriented in two orthogonal
Shear Coefficient directions in the beam’s normal cross section.

In order to analyze the accuracy of a solution in beam theory it
is necessary to specify formulas for calculating the values

M. B. Rubin _ = =

. . . . = t = t 5
Faculty of Mechanical Engineering, Technion—Israel U=, 6= 8,(Xs 1), ®)
Institute of Technology, 32000 Haifa, Israel in terms of theu*, which are considered to be exact values cor-

responding ta and §, , respectively. These values are referred to
as the “exact beam kinematics.”

The quest for the best Timoshenko shear coefficient has focused
mainly on determining a value fot that predicts the best natural
Classical Timoshenko beam theory includes a shear correctifrequencies of the beam. The objective of this note is to empha-
factor « which is often used to match natural vibrational frequensize the following points.
cies of the beam. In this note, a number of static and dynami@l) The constitutive equations for the beam are considered to
examples are considered which provide a theoretical basis fgield the “best” solution if the predicted beam kinemati€3)
specifyingx =1. Within the context of Cosserat theory, naturatlosely approximate the exact valug® for both static and dy-
frequencies of the beam can be matched by appropriate specificamic responses.
tion of the director inertia coefficients with =1. (P2 The beam kinematic&t) are exact for all homogeneous de-
[DOI: 10.1115/1.1526122 formations. Thus, ifkk# 1, then the resulting beam theory will not

correctly predict the static problem of simple shear.
(P3) The resultant force and moment are uniquely defined in terms
Introduction of integrals of the three-dimensional traction vedtbracting on
] ) ) ) the cross section of the beaisee(11a,b) below). In contrast, the
_For two-dimensional deformation of a Timoshenko beam, thgact heam kinematid§) are not uniquely defined in terms of
kinematics are characterized by the lateral displacemanid the o geformation fields which are nonlinear functions of the cross-

e-mail: mbrubin@tx.technion.ac.il

rotation ¢ of the beam’s cross section sectional coordinates, . Consequently, the value afthat yields
u=u(xs,t), (1a) the “best” solution depends explicitly on the functional forms
proposed for(5). This is one reason that different expressions for
5= 8(x3,1), (Ib)  « have been proposed in the literature.

(P4) The tensorial structure of the Cosserat theory reveals that a
particular functional form fok5) is consistent with the usual defi-
nitions of average strain and average stress in effective stress
V=ru*A(u,3+9), (2) theory whenk=1.

h % is the sh dulug is th fthe b , (P5 The director inertia coefficients in the Cosserat theory are
whereu™ is the shear modulug) is the area of the beam’s CroSSmaasures of the distribution of inertia in vibrational modes and

section, and throughout the text a comma is used to denote parial he used to match natural frequencies of beams
Comtibuted by the Abplied Mechanics Division ofiE A . (P6) The standard Timoshenko theory predicts the correct result
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- that short wavelength waves travel at the shear wave spged

CHANICS. Manuscript received by the ASME Applied Mechanics Division, March 3,On|y When. K= 1 . . . .
2002; final revision, July 26, 2002. Associate Editor: O. O'Reilly. The remaining sections of this note justify these points.

wherex; denotes the axial coordinate ahdenotes time. In this
theory the shear forc¥ is specified by the constitutive equation
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Throughout the text, boldfaced symbols denote vectors or mii=mb+t3, (10a)
second-order tensorasb denotes the scalar product between two '
vectorsa and b, A-B=tr(ABT) denotes the scalar product be- myyﬁ'};ﬁ:mbﬂ—tfur m%, (100)
tween two second order tensoksand B, and the symbok de- o . T
notes the tensor product which is defined so tha®lf)c where the intrinsic director coupla$ the director couplesn®,
=(b-c)a andc(a®b) =(c-a)b for arbitrary vectorsa, b, c. Also, the external assigned director couplgsdue to body force and
the components of these tensors are referred to fixed orthonoridiface tractions on the lateral surface of the beam, the mass
base vectorg of a rectangular Cartesian coordinate system withnit length, and the constant director inertia coefficieyftsand
coordinates; . y“# have been defined by

ti:j t*ida, (11a)
Linear Equations of Cosserat Beam Theory A

Here, attention is confined to a uniform, homogeneous beam me= | x t*3da (11b)
. . . . . . - a y
that in its stress-free reference configuration occupies a right- A

cylindrical region with a uniform cross section/, which is

bounded by the closed curv€. More specifically, the are&d and B .
the second moment of arég, of the cross section are defined by mb= o b*da+ ﬁct*ds' (11c)
A= j Ja € mb = f X.pib*da+ f X tds, (11d)
A ac
o™ LX“Xﬁda' (60) m= Lpéda=p3A, (11e)
whereda is the element of area. Also, it is convenient to take the
reference. line to be Fhe centroid .of the cross septipn an'd toltake mw:f Xpida=0, (11f)
the coordinate directions to be oriented in the principal directions A
of the cross section, so that
my*F=myPe= f XX gp5 da (11g)
f x,da=0, (7a) A
A with the constitutive assumptiofiL1f) being motivated by the
l15=15,=0. () condition (7a). Also, integration of(9c) over the cross section
yields
Within the context of the three-dimensional linear theory of an
elastic isptropic material,. the strain eneryy, stress tensor* T:J’ T*da, (12a)
and strain tensoE* are given by A

*

T=t®e. (120)
The homogeneous strath and the inhomogeneous straifi

v
PE* = oS (B =" | {5

](E*~|)2+E*-E*}

(83) in the Cosserat theory are defined by
(9 * * _ l _
*ZPSFZZM*[ T3+ |(ETDI+E*|,  (8D) E=z(o®e+e®8)=Ej(e®§), (139)
* * ﬂa: 5&,31 (l&)
E*=3(ujeq+eaul), (8)
3= 85(X3,t)=U 3. (13c)

wherep} is the reference mass density arid is Poisson’s ratio.

Also, the balance of linear momentum can be written in the forM{Oreover, for an elastic beam the strain ene¥gyand the consti-
tutive equations foll andm® are given by

poU* = pb* +t7, (%)

J%, Y >
t*i:T*a (gb) EZE(E,BQ), T:mﬁ, m :m&ﬂ . (14)
T*=t*ge, (9c) It was shown in[10] that restrictions can be placed on the strain

o o ) energy which ensure that the Cosserat theory will predict solutions
where a superposéd) denotes partial differentiation with respecthat are consistent with exact three-dimensional solutions for all
to timet, b* is the external body force per unity mass, and thBomogeneous deformations. These restrictions are satisfied when
symbols with superscripts are introduced for ease of comparisgris specified in the form
with more general formulas developed|itil].

Within the context of the three-dimensional approach, the bal- I=3%(B)+V¥(B.), (15)
ance laws of the linearized Cosserat beam theory can be de‘(/ﬁlferez*

oped bfy l_taking weighted averages_,f_of I}he ':hree—dimensio?al bAlpresents the strain energy of inhomogeneous deformations
ance of linear momenturi®a). Specifically, the Cosserat balanceyich js a quadratic function of its argument. For the simplest
of linear momentum can be obtained by averadi®® over the ﬂlﬁaoryqj is taken in the form

cross section, and the balances of director momentum can be o
tained by weighting9a) by x, and then averaging the result over MU = LE*[114(k19)2+ Lol ko9 2]+ S *[IB2],  (16)
the cross section. This approach is similar to that used by Cowper

[12] and details can be found fpl1], Sec. 5.25f13]]. In particu- whereE* =2(1+v*)u* is Young's modulus) is a constant, and
lar, the resulting Cosserat balance laws become the strains«,; and 8 have been defined by

is three-dimensional strain energy functi@a) and¥
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Discussion

Kai=Ba®,  B=3 (K1~ Kz0). (17 ) 1P made in the intod
_ ) Returning to the point&?1)—(P6) made in the introduction it is
It then follows from (14)—(17) that the constitutive equations opyious that(P1) is merely a statement of how to assess the ac-
become curacy of a solution in beam theory. The validity of poiR®) is
o deduced by the constitutive E€R2a) which results from the re-
T:2AM*H—*](E-|)| +E|, (18a) striction on the Cosserat strain energy function that ensures con-
1-2v sistency with exact solutions for all homogeneous deformations.
t=Te (1) With regard to point(P3) it is noted that expressions for the
b exact beam kinematig®) are either specified explicitly,10,12,
or are made tacitly when an assumed displacement field is substi-
t1=2A,u*[ 12 *]{(1— v*)Eq+ v* Eppt v Eggle; tuted into a variational principle like that used [id], or when
v different specifications are made for the strain energy function of
the beam in terms of the three-dimensional strain energy function,
+Ee+ E1363}: (18c)  [14].
In the discussion of effective properties of inhomogeneous ma-
1 terials_it is common to define the average striirand average
t?=2Au* | Eqpe + m]{v* Eut(1—v*)Ept+ v Eggle;  stressT in terms of integrals of the exact quantitiE$ and T*
over the volume of a representative volume element. Here, these
average quantities are defined in terms of integrals over the cross-
+E2e83|, (18d)  section of the beam
1 - E*d 243
= — a,
t=2Au* [ Eiger T Exept m]{’/* Ent v Ep Ala (2%
1 .
+ (1_ V*)ESS}%} (l%) T= K AT da. (24b)
mi=1,%] LE*| ’ 18f Moreover, Wil&h reference to a. rectfingular Cross sectiqn, Rubin
217 I 11415 (18) [10] has considered three specificationsdicand &, , the third of
m2=— %M* 36+ E* | poicpels. (189) which can be generalized to the form
In order to interpret the meaning of these quantities it is noted U= Ef u*da, (25a)
that, with respect to an arbitrary cross section with unit outward Al
normal e;, the resultant forcen and the resultant momemh 1
(about the centroid of the cross secli@me given by Ea o f u* da, (250)
n=t>, m=e,Xm‘=mg, A
My=E*lpoK3, Mp=—E*lpkgs, me=wp*JB.  (19) %=Uz, (25)
ConsequentlyE* I, andE* 1, are the bending rigidities associ-SC that the exact resul in (24a) and is given by
X : . . . . _
ated with the bending straing ; and «,3, respectively, angk*J E— %(§®Q+Q®5|)- (26)

is the torsional rigidity associated with the twist per unit length
Furthermore, the value af can be specified to be equal to theAlso, the resul{12a) shows thafl is related to the average stress

exact value for any given cross section even though warping is npthy the formula

included in this model.

For the simple case of bending in teg—e; plane, in the ab-
sence of body force and tractions on the lateral surface of tl
beam p=0 andb“=0), the kinematic variables can be expresse

in the forms
U=u(xs,t)e;, é=a(Xxst)es, =0, k13=093,
2E;5=6+us, (20)
and the kinetic quantities become
t'=V(x3,t)e;, t?=0, t3=Ve, ml=—M(x3,t)e;,
m?=0, (21)

where the shear forc¥ and the momenMM are given by the

constitutive equations

V=2Au*Ez=Au*(5+uy), (229)
M= —E*l k5= —E*11,65. (22b)
Then, the equations of motidii0) reduce to
mu=V g, (23a)
myé=—-V—M ;. (230)
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T=AT. (27)
%%nsequently, the specification®5) with (u=u_,5a=3a) are
onsistent with these definitions of average stress and strain pro-

vided that the functional dependenceTobn E, and of T onE is

the same as that @™ onE* for general anisotropic linear elastic
materials. This means that for the special case of isotropic mate-
rials, the shear coefficient¢ must be unity, which validates point
(P4).

To explain point(P5) it is recalled that within the context of the
Cosserat theory, the director inertia coefficient§ require con-
stitutive equations and they are not necessarily determined by the
expressior(11g), which in view of(7b) and(11e) yields the com-
mon assumption that

(28a)
(280)

Moreover, the research {10,11,13,1% suggests that the director
inertia coefficients/*# model not only the distribution of mass in
the cross section but they model the distribution of inertia in a
particular vibrational mode. Specifically, for the case of a rectan-
gular cross section with height in the e;-direction and depti

in the e,-direction, the work i 15] for free vibrations of a paral-

myaB:pg I ap

m=p§A.
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lelepiped, and the work ifll, Sec. 5.1F for forced shearing In this limit, the transverse wau@0a) is essentially insensitive to
vibrations through the thickness of the beam, suggests that the free lateral surface of the beam so the wave should travel at

director inertia coefficients be specified by the shear wave speedin an infinite media withk=1. In view of
H2 W2 the solution(34b), this result is independent of the director inertia
y“:—z, yzz:—Z, yl2=y2l_q, (29) coefficient. Consequently, this restricyion anis inde_pen_dent of_ _
™ ™ the Cosserat theory and can be obtained by considering the limit

instead of the values obtained by exact integratiofLaf). In this  ©f Short wavelengths in the original Timoshenko formulatic,

regard, it should be mentioned that the valuegtf for different Acknowledgment

cross-sectional shapes need to be determined by matching vibra- )
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Finally, to justify point(P6) consider wave propagation in anmotion of research at the Technion. Also, the author would like to
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Dr. Daniel C. Drucker
1918-2001
Graduate Research Professor Emeritus
University of Florida

Dr. Daniel C. Drucker, 83, died Sept. 1, 2001 of
leukemia in Gainesville, FL. Few people have served
the engineering profession with such dedication and
distinction as did Dan Drucker. He was known as a
brilliant scientist, a leader in engineering education,
and an eloquent spokesman for the engineering profes-
sion. Dan was a past president of the American Society
of Mechanical EngineeréASME), the American Soci-
ety for Engineering EducatiofASEE), the American
Academy of Mechanic§AAM), and the Society for
Experimental Stress AnalysiSESA (now known as
the Society for Experimental Mechanics, SEMHe
also served as president of the International Union of
Theoretical and Applied MechanicdUTAM), being
only the second American ever to serve in that office.
Dan was one of the most honored persons in the field
of applied mechanics.

Dan was known throughout the world for contribu-
tions to the theory of plasticity and its application to
analysis and design in metal structures. He introduced
the concept of material stability, now known as
“Drucker’s Stability Postulate,” which provided a uni-
fied approach for the derivation of stress-strain rela-
tions for plastic behavior of metals. His theorems led
directly to limit design; a technique to predict the load
carrying capacity of engineering structures. Dan also . )
made lasting contributions to the field of photoelastic- Champaign. After Dan's death, his daughter found
ity. His 1940 paper on three-dimensional photoelastic-2mong his mementos a “Medal for Getting the Most
ity has become a classic and “Drucker’s Oblique Inci- Medals” which someone had jokingly presented to
dence Method” is widely used in university and him. ) ] ]
industrial photoelastic laboratories. In 1988 Dan received the National Medal of Science.

ASME established the Daniel C. Drucker Medal in He was a member of the National Academy of Engi-
1997 to honor him for his contributions to applied me- neering and of the American Academy of Arts and Sci-
chanics in research, education, and leadership. Th&nces, and was a Foreign Member of the Polish Acad-
medal is bestowed on individuals in recognition of sus-emy of Science. He was listed in national and
tained, outstanding contributions to applied mechanicsinternational editions o#Who's Who
and mechanical engineering through research, teaching, He had a reputation as an incisive thinker, and his
and/or service to the community. Dan was the first re-advice was eagerly sought and generously given at the
cipient of the award, which was presented at an 80thuniversity, state and national levels. An articulate
birthday luncheon honoring him during the Thirteenth speaker who consistently gave stimulating and infor-
U.S. National Congress of Applied Mechanics in mative talks, Dan was frequently invited to give key-
Gainesville, FL, in June 1998. ASME also honored note or other major addresses at engineering meetings.
Dan with the Timoshenko Medal, the Thurston Lec- A list of such participation is too long to be given here,
tureship, the ASME Medal, and Honorary Membership. but recent examples include: the National Academy of
For 12 years he was the Editor of tdeurnal of Ap-  Sciences Committee on Human Rights, the National
plied Mechanics Research Council Engineering Research Board, the Na-

Dan was a highly esteemed member of SESA/SEMtional Science Board and the chairmanship of the Na-
and received that Society’s two highest honors, thetional Academy of Engineering Committee on Mem-
Murray Lecturership and Honorary Membership; he bership Policy.
also received SESA's M. M. Frocht Award. ASEE con-  Dan Drucker was born in New York City and started
ferred upon Dan the Lamme Medal, the Distinguished his engineering career as a student at Columbia Univer-
Educator Award of the Mechanics Division; he was a sity. His ambition at that time was to design bridges.
Founding Fellow of ASEE, and was elected to its Hall While still an undergraduate at Columbia he met a
of Fame. ASCE presented to him the von Karmanyoung instructor named Raymond D. Mindlifater a
Medal. The University of Liege gave Dan the Gustav SESA Founding Member, President, and Honorary
Trasenter Medal and Columbia University conferred Membey), who told Dan that “hevould pursue a Ph.D.
upon him the Egleston and lllig Medals. From the So- degree and hevould write a thesis on photoelasticity.”
ciety of Engineering Sciences he received the first Wil- Dan complied, and received his doctorate in 1940. It
liam Prager Medal; the Founder Engineering Societieswas during his student days that Dan met a young lady
gave him the John Fritz Medal. Dan had honorary doc-named Ann Bodin. They eloped and were married in
torates from Lehigh, the Technion, Brown, Northwest- 1939, living as a loving and devoted couple for more
ern, and the University of lllinois at Urbana- than 61 years. Dan and Ann, who predeceased him, had
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a son, Dr. David Drucker now of Utica, NY, and a still at Brown University. That happy relationship con-
daughter, Mrs. Mady Drucker Upham now of Rock- tinued while we both worked through the various SESA
port, MA; and four grandchildren. offices, and while he was a very busy dean at the Uni-
Dan taught at Cornell University from 1940 to 1943 versity of Illinois. He always made time to talk with me
before joining the Armour Research Foundation. After ghout technical subjects or SESA business.
serving in the U.S. Army Air Corps, he went back t0 \when Dan came to Florida he immediately joined
the lllinois Institute of Technology for a short time be- department's “lunch bunch” which met every
fore joining the faculty of Brown University in 1947. oo, qay at noon. At various times that included

g p Y- ! y von Ohain, Chia-ShuriGus Yih, plus Dan Drucker

lllinois at Urbana-Champaign in 1968 as Dean of En- d Wh derful f coll N
gineering. During his more than 15 years there, the2"d Me. What a wonderful group of colleagues. Now

UIUC College of Engineering was consistently ranked all of those special friends have passed away except for
among the best five in the nation. Although known for Me, but | feel truly blessed to have been among them.
its insistence upon technical excellence, his college was Up until the last month of his life, Dan and I still
also recognized for its total commitment to equal op- tried to have lunch three days a week. Those were
portunity for all. He left lllinois in 1984 to become a happy occasions, even though we both realized that the
graduate research professor at the University ofinevitable was sneaking up on him. We didn’t dwell on
Florida, from which he retired in 1994. that and found lots of things to laugh about. In all of

| met Dan during my first SESA meeting in 1949. At the thousands of hours we spent together, | never heard
that time | had just started working toward a Ph.D. at him utter a single swear word. He had a great sense of
the University of lllinois and intended to write a thesis humor, but he never told a joke and he never spread
on three-dimensional photoelasticity. Tom Dolan, who gossip. | have never met a more honest man or pure

was my advisor, also attended the meeting and mad@erson. Dan Drucker was the kind of person that we all
sure that | met the important SESA members. When heyy g pe,

saw Ray Mindlin and Dan Drucker standing across the "ot coyrse, the Drucker family received letters of

room, he said to me, C(_)me over here, | want you to condolence from all over the world. Mady was kind

g‘eefggrﬁze ;Wgél;r haer)]/ dtr;rr:akutggﬁls tr?rﬁ;@?hr;rf\t/\tlég’vg” enough to give me copies of most of those letters. The
y speax, y ngnt. Y common thread that went through all of those letters

introduction to Dan Drucker, and Tom was right. After that D highl ted . .
that | started to see Dan regularly at meetings and hqwas at Dan was highly respected as an engineering
eader, but that he was also greatly admired as a human

always greeted me with a big smile and a handshake - . L
He had just written the chapter on three-dimensionalbe'ng' Everyone mentioned that his kindness and help

photoelasticity in thédandbook of Experimental Stress had influenced their careers and their lives. What an
Analysis so | often talked with him about my proposed impact he made and what a legacy he left!

thesis. He was easy to talk with and always very help-

ful. In a sense he was a mentor for me while he was Charles E. Taylor
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